Source code for autogl.module.model.encoders._dgl._gcn

import torch.nn.functional
import typing as _typing
import dgl
from dgl.nn.pytorch.conv import GraphConv
from .. import base_encoder, encoder_registry
from ... import _utils


class _GCN(torch.nn.Module):
    def __init__(
            self, input_dimension: int,
            dimensions: _typing.Sequence[int],
            act: _typing.Optional[str],
            dropout: _typing.Optional[float]
    ):
        super(_GCN, self).__init__()
        self.__convolution_layers: torch.nn.ModuleList = torch.nn.ModuleList()
        for layer, _dimension in enumerate(dimensions):
            self.__convolution_layers.append(
                GraphConv(
                    input_dimension if layer == 0 else dimensions[layer - 1],
                    _dimension
                )
            )
        self._act: _typing.Optional[str] = act
        self._dropout: _typing.Optional[float] = dropout

    def forward(self, graph: dgl.DGLGraph, *__args, **__kwargs):
        x: torch.Tensor = graph.ndata['feat']
        results: _typing.MutableSequence[torch.Tensor] = [x]
        for _layer in range(len(self.__convolution_layers)):
            x = self.__convolution_layers[_layer](graph, x)
            if _layer < len(self.__convolution_layers) - 1:
                x = _utils.activation.activation_func(x, self._act)
                x = torch.nn.functional.dropout(x, self._dropout, self.training)
            results.append(x)
        return results


[docs]@encoder_registry.EncoderUniversalRegistry.register_encoder('gcn') @encoder_registry.EncoderUniversalRegistry.register_encoder('gcn_encoder') class GCNEncoderMaintainer(base_encoder.AutoHomogeneousEncoderMaintainer): def __init__( self, input_dimension: _typing.Optional[int] = ..., final_dimension: _typing.Optional[int] = ..., device: _typing.Union[torch.device, str, int, None] = ..., *args, **kwargs ): super(GCNEncoderMaintainer, self).__init__( input_dimension, final_dimension, device, *args, **kwargs ) self.hyper_parameter_space = [ { "parameterName": "add_self_loops", "type": "CATEGORICAL", "feasiblePoints": [1], }, { "parameterName": "normalize", "type": "CATEGORICAL", "feasiblePoints": [1], }, { "parameterName": "num_layers", "type": "DISCRETE", "feasiblePoints": "2,3,4", }, { "parameterName": "hidden", "type": "NUMERICAL_LIST", "numericalType": "INTEGER", "length": 3, "minValue": [8, 8, 8], "maxValue": [128, 128, 128], "scalingType": "LOG", "cutPara": ("num_layers",), "cutFunc": lambda x: x[0] - 1, }, { "parameterName": "dropout", "type": "DOUBLE", "maxValue": 0.8, "minValue": 0.2, "scalingType": "LINEAR", }, { "parameterName": "act", "type": "CATEGORICAL", "feasiblePoints": ["leaky_relu", "relu", "elu", "tanh"], }, ] self.hyper_parameters = { "num_layers": 3, "hidden": [128, 64], "dropout": 0., "act": "relu", } def _initialize(self) -> _typing.Optional[bool]: dimensions = list(self.hyper_parameters["hidden"]) if ( self.final_dimension not in (Ellipsis, None) and isinstance(self.final_dimension, int) and self.final_dimension > 0 ): dimensions.append(self.final_dimension) self._encoder = _GCN( self.input_dimension, dimensions, self.hyper_parameters["act"], self.hyper_parameters["dropout"] ).to(self.device) return True