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 A B S T R A C T

The exploration–exploitation dilemma is one of the fundamental challenges in deep reinforcement learning 
(RL). Agents must strike a trade-off between making decisions based on current beliefs or gathering more 
information. Prior work mostly prefers devising sophisticated exploration methods to ensure accurate target 
Q-values or learn rewards and actions association, which may not be intelligent enough for sample efficiency. 
In this paper, we propose to rethink the trade-off between exploration and exploitation from the perspective 
of cognitive consistency: humans tend to think and behave in line with their existing knowledge structures 
(maintaining cognitive consistency), yielding satisfactory results within a brief timeframe. We argue that 
maintaining consistency, specifically through pessimistic exploration, within the context of optimal policy-
oriented cognition, can improve efficiency without compromising performance. To this end, we propose a 
Cognitive Consistency (CoCo) framework. CoCo first leverages a self-imitating distribution correction approach 
to pursue cognition oriented toward the optimal policy. Then, it conservatively implements pessimistic 
exploration by extracting novel inconsistency-minimization objectives inspired by label distribution learning. 
We validate our framework across various standard off-policy RL tasks and show that maintaining cognitive 
consistency improves sample efficiency and performance. Code is available at https://github.com/DkING-
lv6/CoCo.
1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) has shown 
great promise in various domains, such as games (Mnih et al., 2015; 
Ye, Liu, Kurutach, Abbeel, & Gao, 2021), robotics (Leottau, del Solar, 
& Babuška, 2018; Levine, Finn, Darrell, & Abbeel, 2016), and realistic 
simulated environments (Hsu, Ren, Nguyen, Majumdar, & Fisac, 2023; 
Schulman, Levine, Abbeel, Jordan, & Moritz, 2015). The trade-off 
between exploration and exploitation is a fundamental problem in RL 
and online decision-making. Agents need to strike a balance between 
trying new behaviors (exploration) for gathering more information 
and making decisions utilizing current beliefs (exploitation). Previous 
work (Ecoffet, Huizinga, Lehman, Stanley, & Clune, 2021; Han & Sung, 
2021; Mavor-Parker, Young, Barry, & Griffin, 2022; Yuan, Pun, & Wang, 
2022; Zhang et al., 2021) concentrates on providing intrinsic rewards 
or balancing actions to scale up to larger state spaces, achieving great 
success in sparse-reward and hard-exploration environments. Recent 
studies (Liu et al., 2023; Sun et al., 2022; Yang et al., 2023) commonly 
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adopt optimistic exploration and pessimistic exploitation to address the 
dilemma.

However, frequently neglected is the reality that optimistic explo-
ration, despite its widely used, is not the most effective strategy and 
is indeed suboptimal in terms of efficiency. Most heuristic methods 
teach agents often need to learn strategies ‘‘diligently’’ or even ‘‘inch 
by inch’’ to achieve the desired performance, which may not be ‘‘in-
telligent’’ enough at sample efficiency. In this paper, we initiate a 
critical rethinking of the balance between exploration and exploitation. 
Our emphasis on exploitation is not related to that the high (or low) 
rewards could lead to profit (or failure). Instead, it is grounded in the 
premise that when the expected reward improves, the likelihood of it 
being the optimal action increases, thereby requiring a more refined 
calculation of its value. In essence, expending computational effort 
to quantify the extent of a poor policy’s inadequacies is unnecessary; 
however, with policies that show promise, such investment is essential 
to evaluate their strengths fully, allowing us to single out the most 
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effective one. The significance we assign to exploitation is not focused 
on the accumulation of rewards but on the accurate estimation of the 
optimal actions.

Based on the above understanding, we propose to employ cognitive 
consistency when balancing exploration and exploitation: social psy-
chology and real-world experiences show that humans tend to think 
and behave in line with their existing knowledge structures, that is, to 
maintain cognitive consistency (Festinger, 1962). This tendency allows 
them to achieve satisfactory results in a short time. In the context 
of RL, the core of cognitive consistency lies in conducting pessimistic 
exploration and optimistic exploitation under reasonable premises. In 
other words, the priority is to guide the agent in learning an effective 
policy and then conduct explorations in its vicinity. It is unnecessary to 
systematically examine poor policies to obtain accurate estimations and 
confirm their deficiencies (as exemplified through a didactic example 
in Section 3.1).

Supported by the preceding analysis, the application of cognitive 
consistency in RL has gained a clearer significance: by integrating 
cognitive consistency into the trade-off between exploration and ex-
ploitation, one can enhance efficiency without compromising perfor-
mance. To this end, we introduce a Cognitive Consistency (CoCo) 
framework. Specifically, we first develop a self-imitating distribu-
tion correction approach to capture high-yield samples, to pursue 
cognition oriented toward the optimal policy. Then, we extract a 
novel inconsistency-minimization objective inspired by label distri-
bution learning (LDL) (Geng, 2016; Wang, Geng, & Xue, 2021) to 
conservatively implement pessimistic exploration. Finally, we incorpo-
rate the above two steps into the coherent CoCo framework through 
a briefly reweighted, uniformly sampled loss function. As example, 
we implement cognitive consistency under the actor-critic method for 
practical use. Extensive experiments show that properly maintaining 
cognitive consistency can substantially improve sample efficiency and 
performance of off-policy RL. We also delve into the proposed algo-
rithm and design several experiments, such as ablation studies and tasks 
with reward noise, to demonstrate some key properties of CoCo.

In summary, our contribution is three-fold:

• Novel perspective: We propose to rethink the trade-off between 
exploration and exploitation from a novel perspective of cog-
nitive consistency. Conducting pessimistic exploration and opti-
mistic exploitation under reasonable premises to improve sample 
efficiency is our key contribution compared to previous studies.

• Novel methodology: We present a novel framework CoCo to ad-
dress the exploration–exploitation dilemma. Technically, we use 
self-imitating distribution correction approach to pursue
cognition-oriented optimistic exploitation and innovatively intro-
duce an inconsistency minimization objective inspired by LDL 
to achieve pessimistic exploration. We incorporate the above 
two steps through a briefly reweighted, uniformly sampled loss 
function, thereby rendering the implementation of CoCo both 
straightforward and accessible.

• Superior performance and insightful results: We provide di-
dactic studies to support our rethinking and conduct extensive 
experiments to demonstrate the effectiveness of the proposed 
CoCo framework. Additionally, we design ablation studies on 
the key components of CoCo to gain deeper insights into their 
contributions.

2. Background

This section will briefly introduce the related work and prelimi-
naries. It should be stated that our total algorithm is predicated on 
a more comprehensive design, wherein exploration is focused on the 
perspective of sample collection, and exploitation is concerned with the 
study of how to more effectively utilize the collected samples to train 
the policy.
2 
2.1. Related work

2.1.1. Exploration
Exploration has long been a critical issue in RL. Prior work (Ecoffet 

et al., 2021; Han & Sung, 2021; Mavor-Parker et al., 2022; Yuan et al., 
2022; Zhang et al., 2021) mostly designs sophisticated exploration 
technical to provide intrinsic rewards or balancing actions to scale 
up to larger state spaces. Further study (Liu et al., 2023; Sun et al., 
2022; Yang et al., 2023) attempts to introduce pessimistic exploitation 
into optimistic exploration for gaining better performance. In contrast, 
we emphasize that modifying the exploration policy (i.e., behavior) 
directly impacts the experience collection process and ultimately de-
termines the training distribution (Kumara, Gupta, & Levine, 2020). 
Based on this insight, we propose consolidating the behavior decisions 
of cognition oriented toward the optimal policy to increase the number 
of high-yield samples in the replay buffer. It is important to note that 
we are not discussing our work in the context of improving exploration 
directly.

2.1.2. Exploitation
The exploitation in off-policy RL is expressed as exploiting past 

experiences (Oh, Guo, Singh, & Lee, 2018). Experience replay (ER) (Lin, 
1992) is a widespread technique in off-policy RL, storing experiences in 
a replay buffer for reuse. The problem of data utilization in the replay 
buffer has been widely studied. Prioritization or reweighting of replay 
samples has achieved great performance in ER methods, with criteria 
such as TD error (Schaul, Quan, Antonoglou, & Silver, 2016), corrective 
feedback (Kumara et al., 2020; Lee, Laskin, Srinivas, & Abbeel, 2021) 
and on-policiness (Liu et al., 2021; Novati & Koumoutsakos, 2019; 
Sinha, Song, Garg, & Ermon, 2022; Sun, Zhou, & Li, 2020; Wang, 
Wu, Vuong, & Ross, 2019; Wei, Wang, Li, & Liang, 2024). It has been 
demonstrated that increasing on-policiness (fixing the data distribution 
gap between the behavior policy and the current policy) can lead to 
significant performance improvement. However, this type of method 
is hampered by the behavior policy. It may be inefficient when the 
agent pays excessive attention to the low-yield region exploration. In 
this work, we analyze the pathological concerns associated with the 
on-policiness priority criterion and correct it using the distribution of 
cognition oriented toward the optimal policy. More detailed related 
works are listed in Appendix  A.

2.2. Preliminaries

A reinforcement learning problem can be described as training 
a policy in an infinite-horizon, discounted Markov decision process 
(MDP) denoted as ( ,, 𝑃 , 𝑟, 𝛾, 𝑝0), where  and  represent state 
and action spaces. 𝑃 (𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎) are the transition and reward 
function. 𝛾 ∈ (0, 1) is the discount factor and 𝑝0(𝑠) is the distribution of 
the initial state. The goal is to find an optimal policy that maximizes 
the expected cumulative discounted reward 𝐽 (𝜋) ∶= E𝜋 [𝛴∞

𝑡=0𝛾
𝑡𝑟(𝑠𝑡, 𝑎𝑡)], 

where the expectation is over trajectories sampled from 𝑠0 ∼ 𝜌0, 𝑎𝑡 ∼
𝜋
(

⋅ ∣ 𝑠𝑡
)

, and 𝑠𝑡+1 ∼ 𝑃
(

⋅ ∣ 𝑠𝑡, 𝑎𝑡
) for 𝑡 ≥ 0. We denoted the discounted 

stationary state distribution of the policy 𝜋 (𝑎 ∣ 𝑠) as 𝑑𝜋 (𝑠) and the 
corresponding state–action distribution as 𝑑𝜋 (𝑠, 𝑎) = 𝑑𝜋 (𝑠)𝜋(𝑎 ∣ 𝑠). Then, 
we can rewrite 𝐽 (𝜋) = E𝑑𝜋 [𝑟(𝑠, 𝑎)].

For any stationary policy 𝜋, a standard definition of the state 
value function is defined as 𝑉 𝜋 (𝑠) ∶= E𝑎∼𝜋(⋅∣𝑠) [𝑄𝜋 (𝑠, 𝑎)], and its cor-
responding state–action value function, or Q-function as 𝑄𝜋 (𝑠, 𝑎) ∶=
E𝜋

[
∑∞
𝑡=0 𝛾

𝑡𝑟
(

𝑠𝑡, 𝑎𝑡
)

∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎
]

. The goal is to learn an optimal ap-
proximation to the Q-function (i.e. 𝑄∗(𝑠, 𝑎)) by applying successive 
Bellman projections. 𝑄∗(𝑠, 𝑎) satisfies the Bellman equation 𝑄∗(𝑠, 𝑎) =
∗ (𝑄∗(𝑠, 𝑎)), where ∗ denote the Bellman optimal operator (∗𝑄)
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝑃

[

max𝑎′ 𝑄
(

𝑠′, 𝑎′
)]

.
It turns out that considering the replay of the prioritized experience 

as the selection of a favorable prioritization distribution is plausi-
ble (Sinha et al., 2022). Given a replay buffer  and the corresponding 
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Fig. 1. A Cliff sample. (a) 𝑆 and 𝐺 are start and goal states, the actions are top, down, left and right. Reward is −1 on each step, stepping into the region ‘‘Cliff’’ incurs a reward of 
−120 and sends the agent instantly back to the start (the current episode does not end, only when the agent walks enough 100 steps or reaches the end state). (b) The visualized 
frequency of state visits at different episodes. The number of visits is normalized and is visualized by the color of the grid. (c) TD error (absolute value) and cumulative reward 
(smoothed) at each training episode. (d) Variation of Q-values at key states 𝑎, 𝑑, 𝑔 and 𝑗.
data distribution 𝑑𝜇 , one could train the Q-network with parameters 𝜃
by optimizing the following loss: 
𝐿𝑄(𝜃; 𝑑𝜇 , 𝜔) = E𝑑𝜇 [𝜔(𝑠, 𝑎)(𝑄𝜃(𝑠, 𝑎) − ∗𝑄𝜃(𝑠, 𝑎))2], (1)

where 𝜔 ∶ × → R+ is the prioritization weights of replayed samples 
and ∗𝑄 refers to the target value for the projection step.

Soft Actor-Critic (SAC) (Haarnoja, Zhou, Abbeel, & Levine, 2018) is 
a representative off-policy actor-critic RL algorithm. It introduces the 
entropy into the optimization objective: 

𝐽 (𝜋) = E𝑠∼𝑃 ,𝑎∼𝜋
𝑇
∑

𝑡=0

[

𝑟
(

𝑠𝑡, 𝑎𝑡
)

+ 𝛼
(

𝜋
(

⋅ ∣ 𝑠𝑡
))]

, (2)

where 𝛼 is the temperature coefficient,  (𝜋 (⋅ ∣ 𝑠)) is the entropy of 
policy 𝜋 at state 𝑠. By optimizing the objective function, the agent is 
encouraged to act as stochastically as possible while maximizing the 
cumulative gain, thus improving the robustness and stability of the 
policy.

3. Our method

In this section, we introduce the CoCo framework. We first illustrate 
a potential issue that affects the sample efficiency of optimistic explo-
ration, using a didactic example (Section 3.1). Secondly, we propose 
a self-imitating distribution correction approach to pursue cognition-
oriented optimistic exploitation (Section 3.2). Thirdly, we analyze the 
inconsistency issue in RL from the perspective of LDL, then introduce an 
inconsistency minimization objective to achieve pessimistic exploration 
(Section 3.3). Finally, we integrate the above two components into the 
coherent CoCo framework and show the mutual benefit between them 
(Section 3.4).

3.1. A didactic example for the motivation

The requirements of RL for an optimal policy vary depending on the 
type of task. As for the multi-goal task, the end goal of each episode 
is randomly generated. It is always necessary to learn the policies of 
critical state regions, even ‘‘carpet’’ training, to consistently get good 
performance. In contrast, for some tasks with fixed goal positions, the 
optimal policy may prefer to be unique, i.e., there are low-yield regions 
in the state space. Intuitively, the learned approximate value function 
training on the distribution induced by the current policy 𝜋 will not 
help much in consolidating the optimal policy 𝜋∗ when 𝜋 is far from 
the 𝜋∗. While the behavior policy is influenced by this value function, it 
might exacerbate the generation of these useless samples in the next it-
eration, leading to a pathological concern on the low-yield regions. This 
3 
phenomenon is severe in the over-exploitation caused by optimistic 
exploration, especially using the on-policiness criterion. Note that the 
samples on these non-optimal paths are not completely useless, and 
they may allow some edge states to be estimated accurately. However, 
the accurate estimates may not affect the ranking of the corresponding 
Q-value, which may be more important for optimal decision-making.

For the above case, we design a modified classical Cliff example to 
verify our intuition, as shown in Fig.  1. To reflect the redundancy of 
the state space, we expand the ‘‘safe region’’ of the cliff environment 
by increasing the original 12 ∗ 4 (Sutton & Barto, 2018) range to 12 ∗ 8
in Fig.  1(a). In the experiments, experience replay is performed with the 
on-policiness prioritization criterion, and the value function is updated 
using Q-learning (Sutton & Barto, 2018).

In the Cliff task, the optimal policy is unique, starting at 𝑆 and 
ending at 𝐺, with pathway states 𝑎 − 𝑗. From the heat map of state 
visits frequency in Fig.  1(b), it is clear that most of the exploration 
interactions occur in the upper left region before starting to focus on 
the optimal path. Fig.  1(c) shows the corresponding TD error and cu-
mulative reward at each training episode. It can be seen that the value 
function converges at around 2000 episodes, indicating that until then, 
the agent has been busy updating the Q-value of the explored regions 
under the influence of over-exploitation (on-policiness). The overall 
error is unstable frequently, although it shows a decreasing trend. This 
verifies the effect of Bellman error accumulation on value function 
update, i.e., the Q-value of samples replayed with high frequency (close 
to the start 𝑆) is difficult to get convergence rapidly.

Our intuition is verified in Fig.  1(d). We observe the Q-value at 
selected key states 𝑎, 𝑑, 𝑔, and 𝑗 to investigate the learning of the 
optimal policy. Comparing the first two columns, the convergence value 
𝑄(𝑠, 𝑟𝑖𝑔ℎ𝑡) of the optimal decision right for each state in 12 ∗ 8 is equal 
to the counterpart in 12 ∗ 4. It indicates that the low-yield region fails to 
affect the Q-value of the optimal decision. In addition, the comparison 
of the last two columns reflects the difference between 𝑄(𝑠, 𝑟𝑖𝑔ℎ𝑡) and 
the optimal decision 𝑚𝑎𝑥𝑄(𝑠). It shows that the 𝑄(𝑠, 𝑟𝑖𝑔ℎ𝑡) converges at 
about 400 episodes and keeps in line with the current optimal decision. 
When we combine Fig.  1(b) with our observations, it becomes evident 
that the optimal path is only visited a few times. Nonetheless, its value 
can be updated with precision. Most of the exploration and updates 
are inefficiently spent on low-yield regions, as we suspected. Focusing 
on low-yield regions only updates their value estimate, but it does not 
enhance the learning of the optimal policy. Therefore, we should pay 
less attention to low-yield regions, especially those that will almost 
never be visited again eventually.

The above example shows that paying too much emphasis on low-
yield regions can diminish sample efficiency. The over-exploitation 
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caused by optimistic exploration, especially using the on-policiness 
criterion hampered by behavior policies, can further exacerbate the 
problem.

3.2. Self-imitating distribution correction

The case studies have illuminated that exploitation should be cen-
tered around the optimal policy 𝜋∗. Establishing this as a reasonable 
premise is crucial for successfully applying cognitive consistency in RL. 
Since the optimal policy 𝜋∗ cannot be accessed in advance, we develop 
a tractable approximation in the following claim.

Claim 3.1.  Within the entropy-regularized off-policy RL framework, the 
policies with higher Monte-Carlo episode returns are closer to the optimal 
policy. 

The cognition refers to the knowledge (i.e., the policy) that an agent 
utilize. To support the above claim, we introduce the relationship be-
tween the state–action distribution and the gap in policies’ cumulative 
rewards (Lemma  3.2). Then, we use the lower bound of the optimal 
soft Q-value (Lemma  3.3) to prove our claim.

Lemma 3.2.  Assume that reward function is bounded in absolute value 
𝑅max. For any two policies 𝜋̃ and 𝜋, the gap in policies’ cumulative rewards 
is bounded by the state–action distribution discrepancy, 

|𝐽 (𝜋̃) − 𝐽 (𝜋)| ≤
2𝑅max
1 − 𝛾

𝐷TV
(

𝑑𝜋̃ (𝑠, 𝑎), 𝑑𝜋 (𝑠, 𝑎)
)

, (3)

where 𝐷TV(𝑃 ,𝑄) = 1
2‖𝑃 − 𝑄‖1 is the total variation (TV) distance of 

distribution 𝑃  and 𝑄. 
Lemma  3.2 is part of the error-propagation framework proposed in 

Xu, Li, and Yu (2021). As the goal of RL is to find a policy that 
maximizes 𝐽 (𝜋) ∶= E𝜋 [𝛴∞

𝑡=0𝛾
𝑡𝑟(𝑠𝑡, 𝑎𝑡)], the optimization problem can 

be expressed as minimize 𝐽 (𝜋∗) − 𝐽 (𝜇) (Liu et al., 2021), where 𝜋∗
is the optimal policy. Considering that the update of the policy is 
influenced by the actual replayed samples (i.e., corresponding to the 
behavioral policy 𝜇). The behavior policy 𝜇 refers to the strategy that 
an agent actually uses when interacting with the environment (𝜇 ≠ 𝜋
in off-policy RL). From Lemma  3.2, we have that, 
|

|

|

𝐽
(

𝜋∗
)

− 𝐽 (𝜇)||
|

≤
2𝑅max
1 − 𝛾

𝐷TV

(

𝑑𝜋
∗
(𝑠, 𝑎), 𝑑𝜇(𝑠, 𝑎)

)

. (4)

Note that Xu et al. (2021) studies error propagation in behavioral 
cloning, while we emphasize the correlation between performance and 
distribution. Both tell us that the state–action discrepancy plays an 
essential role in analyzing the gap in policies’ cumulative rewards. 
Eq. (4) provides theoretical guidance for the prioritization of replay 
distribution and is the key to establishing a connection between the 
goal of RL and the requirement for replayed samples. Furthermore, 
𝐷TV

(

𝑑𝜋∗ (𝑠, 𝑎), 𝑑𝜇(𝑠, 𝑎)
) represents a mismatch between the data distri-

bution 𝑑𝜇 and that of the optimal policy 𝜋∗. That is, the samples similar 
to optimal distribution should be paid more attention to, i.e., weight-
ing by 𝜔(𝑠, 𝑎) ∶= 𝑑𝜋∗ (𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎). This result is consistent with our 
proposition: 

𝜔(𝑠, 𝑎) ∶=
𝑑𝜋∗ (𝑠, 𝑎)
𝑑𝜇(𝑠, 𝑎)

=
𝑑𝜋 (𝑠, 𝑎)
𝑑𝜇(𝑠, 𝑎)
⏟⏞⏟⏞⏟

(𝑎)

⋅
𝑑𝜋∗ (𝑠, 𝑎)
𝑑𝜋 (𝑠, 𝑎)
⏟⏞⏞⏟⏞⏞⏟

(𝑏)

, (5)

where term (a) is the on-policiness weight and term (b) is the distri-
bution gap between the current policy 𝜋 and the optimal policy 𝜋∗. 
The term (b) is considered in this paper as a correction to alleviate the 
pathological concerns discussed in Section 3.1.

The aforementioned analysis illustrates the correlation between the 
replayed distribution and the gap in policies’ cumulative rewards, yet 
it does not capture the monotonicity that is reflected in Claim  3.1. Our 
next step is to supplement the proof of Claim  3.1 with the ultimate goal 
of RL and the lower bound of the optimal soft Q-value.
4 
Lemma 3.3 (Lower Bound of Optimal Soft Q-Value). Let 𝜋∗ be an optimal 
policy in entropy-regularized RL: 𝜋∗ = argmax𝜋 E𝜋

[
∑∞
𝑡=0 𝛾

𝑡 (𝑟𝑡 + 𝛼𝜋
𝑡
)]

, 
where 𝜋

𝑡 = − log𝜋
(

𝑎𝑡 ∣ 𝑠𝑡
) is the entropy of the policy 𝜋, and 𝛼 ≥ 0

represents the weight of entropy bonus. It is straightforward that the expected 
return of any behavior policy 𝜇 can serve as a lower bound of the optimal 
soft Q-value as follows: 

𝑅𝜋
∗
𝜏 = E𝜋∗

[ ∞
∑

𝑡=0
𝛾 𝑡
(

𝑟𝑡 + 𝛼𝜋∗
𝑡

)

]

≥ E𝜇

[ ∞
∑

𝑡=0
𝛾 𝑡
(

𝑟𝑡 + 𝛼
𝜇
𝑡
)

] (6)

because the entropy-regularized return of the optimal policy is always greater 
or equal to that of any other policies. 

Since the optimal policy 𝜋∗ cannot be accessed in advance, we 
develop a tractable approximation for 𝑑𝜋∗ (𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎). Inspired by 
Self-Imitation Learning (SIL) (Oh et al., 2018) − which learns to imitate 
state–action pairs in the replay buffer only when the return 𝑅𝑡 =
∑∞
𝑘=𝑡 𝛾

𝑘−𝑡𝑟𝑘 in the past is greater than the agent’s value estimate. 
Differently, we consider the ultimate goal of RL (Liu et al., 2021) and 
evaluate the sample (𝑠, 𝑎) ∼ 𝜏 with the total return 𝑅𝜋𝜏 = 𝛴𝑇

𝑡=0𝛾
𝑡𝑟(𝑠𝑡, 𝑎𝑡)

(i.e., the Monte-Carlo episode return) of trajectory 𝜏 ={

𝑠𝑡, 𝑎𝑡
}𝑇
𝑡=0. We 

then define the self-imitating policy 𝜋si and obtain the relationship by 
Lemma  3.3: 
𝑅𝜋

∗
𝜏 ≥ 𝑅MAX = 𝑅𝜋

si
𝜏 ≥ 𝑅𝜋𝜏 , (7)

where 𝑅MAX denotes the highest return the agent has received so far, 
i.e. the episode return of 𝜋si. Eq. (7) indicates the difference between 
𝐽 (𝜋∗) and 𝐽 (𝜋) is positively correlated with the episode return under 
the corresponding data distribution.

By combining Eq. (7) with Eq. (4), we can conclude that in a 
common entropy-regularized off-policy RL framework, the state action 
pair with a larger Monte-Carlo episode return is closer to 𝜋∗ and thus 
more authoritative. So far, Claim  3.1 has been proven. Furthermore, 
we can also deduce that a relative upper bound during the training is 
𝑅MAX.

3.2.1. A practical implementation
Based on the above observations, to pursue the cognition oriented 

toward the optimal policy, it is necessary to keep the replay distribution 
used for training close to that of 𝜋si. To this end, we consider a self-
imitating distribution correction approach to weight samples, which 
focuses on those generated by the historical optimal policy 𝜋si. Once 𝑅𝜋𝜏
exceeds 𝑅𝜋si𝜏 , it is immediately replaced. Thus, 𝜋si can always play the 
role of a guide whose quality of guidance depends on the total variation 
distance 𝐷𝑇𝑉 (𝜋si, 𝜋∗). Now, we can give the self-imitating weight: 

𝜔si(𝑠, 𝑎) ∶=
𝑑𝜋si (𝑠, 𝑎)
𝑑𝜇(𝑠, 𝑎)

. (8)

To calculate 𝑑𝜋si (𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎), which is essentially an importance
weight, we draw on the Likelihood-Free Importance Weighting (LFIW)
(Sinha et al., 2022). First, we add a small size buffer si to store 
the samples generated by the historical optimal policy. Second, these 
samples are used to train a weight model 𝜅𝜓  by: 

𝐿𝜅 (𝜓) ∶= E
[

𝑓 ∗ (𝑓 ′ (𝜅𝜓 (𝑠, 𝑎)
))]

− Esi

[

𝑓 ′ (𝜅𝜓 (𝑠, 𝑎)
)]

, (9)

where 𝑓 ′ and 𝑓 ∗ is the derivative and convex conjugate of function 𝑓 . 
Then, we apply the optimal 𝜅𝜓  (which outputs 𝜅𝜓 (𝑠, 𝑎) for the samples 
drawn from the conventional buffer ) to estimating the density ratio 
𝜔si(𝑠, 𝑎). The updated 𝜅𝜓  can be effectively used to estimate the density 
ratio. This conclusion is supported by the following Lemma (Nguyen, 
Wainwright, & Jordan, 2010): 

Lemma 3.4.  For any convex, lower-semicontinuous function 𝑓 ∶ [0,∞) →
R satisfying 𝑓 (1) = 0, assume existing two probabilistic measures 𝑃 ,𝑄 ∈
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Fig. 2. The inconsistency in RL.
() that 𝑃 ≪ 𝑄, and 𝜅 ∶  → R+, 
𝐷𝑓 (𝑃 ∥ 𝑄) ≥ E𝑃

[

𝑓 ′(𝜅(𝒙))
]

− E𝑄
[

𝑓 ∗ (𝑓 ′(𝜅(𝒙))
)]

, (10)

the equality is achieved when 𝜅 = d𝑃∕d𝑄. 
In Lemma  3.4, 𝐷𝑓 (𝑃 ∥ 𝑄) = ∫ 𝑓 ( d𝑃 (𝒙)∕d𝑄(𝒙))d𝑄(𝒙) is the 𝑓 -

divergences (Csiszár, 1964). From the Lemma, we can estimate the 
density ratio 𝑑𝜋 (𝑠, 𝑎)∕𝜇(𝑠, 𝑎). Thus obtain 𝜔si(𝑠, 𝑎) by minimizing the 
objective 𝐿𝜅 (𝜓) (Eq. (9)).

The 𝜔si(𝑠, 𝑎) indicates that we also need to focus on a distance be-
tween the recent experience and the optimal policy 𝜋∗. It is concluded 
that self-imitating distribution correction attempts to move closer and 
closer towards the optimal policy.

3.2.2. The difference between self-imitating distribution correction and pri-
oritizing on-policiness criterion

Comparatively, the former is more comprehensive than the latter. 
For one thing, self-imitating distribution correction can accurately focus 
on the sample distribution of the current policy when it works well. 
Thus, it fully exploits the positive effects of on-policiness. For another, 
when the current policy performs poorly, on-policiness then falls into 
a pathological concern. However, our method can shift the focus from 
on-policy sample distribution to the past good ones. Consequently, it 
can avoid the long-term performance slump caused by concentrating 
solely on on-policy experiences.

3.3. Inconsistency minimization for pessimistic exploration

In cognitive dissonance theory (Festinger, 1962), when percep-
tions are inconsistent, individuals experience a sense of discomfort, 
prompting them to modify their behavior to alleviate this sensation 
by rendering their cognitions more consistent. Maintaining cognitive 
consistency in RL corresponds to minimizing the entropy of the decision 
distribution in information theory − the higher the entropy, the more 
hesitant the decision and the more likely it is that cognitive dissonance 
will occur. Unfortunately, directly pursuing consistency (minimum en-
tropy) is risky since an inappropriate exploration policy can easily 
cause incorrect value estimation, suboptimal convergence, and other 
problems. We propose to gradually consolidate cognitive consistency by 
continuously reducing inconsistency, thereby reducing the impact on 
exploration. In this subsection, we first analyze the inconsistency issue 
in RL from the perspective of Label Distribution Learning (LDL) (Geng, 
2016; Wang et al., 2021), then introduce an inconsistency minimization 
objective to consolidate cognitive consistency. To our knowledge, this 
initiative is unexplored in previous RL literature.

3.3.1. The inconsistency in LDL
The goal of training an LDL model is to learn the whole distribution. 

While in the test phase, only the top label predicted is needed. That 
is, LDL may neglect the top label for the sake of learning the whole 
label distribution, which likely leads to objective inconsistency. Fig.  2 
5 
(left) shows the characteristics of label distribution that may result in 
the inconsistency. The trained distribution has much similar to the true 
label distribution, but the top label are not consistent, i.e. 𝑔̂(𝒙) ≠ 𝑑(𝒙)
(𝑔̂(𝒙) = 𝑦1 and 𝑑(𝒙) = 𝑦4 are the respective top label).

3.3.2. The inconsistency in RL
Essentially, RL can also be considered as a LDL which learns an 

action distribution under each state. The inconsistency of RL exists 
mainly in the actor-critic method. Soft Actor-Critic (SAC) (Haarnoja 
et al., 2018) is a representative off-policy actor-critic RL algorithm. It 
introduces the entropy into the optimization: 

𝐽 (𝜋) = E𝑠∼𝑃 ,𝑎∼𝜋
𝑇
∑

𝑡=0

[

𝑟
(

𝑠𝑡, 𝑎𝑡
)

+ 𝛼
(

𝜋
(

⋅ ∣ 𝑠𝑡
))]

, (11)

where 𝛼 is the temperature coefficient,  (𝜋 (⋅ ∣ 𝑠)) is the entropy of 
policy 𝜋 at state 𝑠. By optimizing the objective function, the agent is 
encouraged to act as stochastically as possible while maximizing the 
cumulative gain, thus improving the robustness and stability of the 
policy.

For the multimodal 𝑄 function, the policy trained by the RL al-
gorithm can only converge to a single choice, while the desired one 
should fit a Boltzmann distribution (see Fig.  2). For more tractable, SAC 
restricts the policy to some set of policies 𝛱 , which can correspond, for 
example, to a parameterized family of distributions such as Gaussians: 

𝜋new=arg min
𝜋′∈𝛱

DKL

(

𝜋′
(

⋅ ∣𝑠𝑡
)

∥
exp

(

𝑄𝜋old
(

𝑠𝑡, ⋅
))

𝑍𝜋old
(

𝑠𝑡
)

)

, (12)

where 𝑍𝜋old
(

𝑠𝑡
) normalizes the distribution. We can observe that 

𝜋new
(

𝑎𝑡 ∣𝑠𝑡
)

∝ exp
(

𝑄𝜋old (𝑠𝑡, 𝑎𝑡
)) in the policy improvement step. That 

is, the policy’s update is proportional to the exponential distribution of 
the 𝑄. Therefore, when the 𝑄 function is more uniformly distributed, 
the induced policies are prone to inconsistency (single-peaked policy 
distribution deviates from the center of the maximum 𝑄).

Intuitively, alleviating the inconsistency in RL requires focusing 
on two aspects: (1) We should pay more attention to the states with 
more uniform action distribution during optimization; (2) Since the 
true action label is not available in advance, we need to reduce the 
probability of misdirection, i.e. closer value estimation to oracle.

3.3.3. The problem formulation and practical implementation
Let 𝑄∗ be the Q-function of the true action label, we give the 

optimization objective of inconsistency minimization, 
min𝜔𝑘 E𝑑𝜋𝑘 (𝑠,𝑎)

[

|

|

𝑄𝑘 −𝑄∗
|

|

]

 s.t. 𝑄𝑘=argmin
𝑄∈

E𝑑𝜇
[

𝜔𝑘(𝑠, 𝑎)⋅
(

𝑄−∗𝑄𝑘−1
)2 (𝑠, 𝑎)

]

,

E𝑑𝜇
[

𝜔𝑘(𝑠, 𝑎)
]

= 1, 𝜔𝑘(𝑠, 𝑎) ≥ 0,

(13)

where 𝜋𝑘(𝑠) =
exp

(

𝑄𝑘(𝑠,𝑎)
)

∑

𝑎′∈ exp
(

𝑄𝑘(𝑠,𝑎′)
)  is the policy corresponding to 𝑄𝑘. 𝑄𝑘 is 

the estimate of Q-value after the Bellman update at iteration 𝑘.  is the 
function space of Q-functions, 𝑑𝜇 is the data distribution of the replay 
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buffer and 𝜔𝑘 is the sample’s weight. DisCor (Kumara et al., 2020) gives 
the upper bound: 

E𝑑𝜋𝑘
[

|

|

𝑄𝑘−𝑄∗
|

|

]

≤  (𝑑𝜋𝑘 )
⏟⏟⏟

(𝑎)

−log
(

∑

exp
(

−|
|

𝑄𝑘−𝑄∗
|

|

)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑏)

. (14)

Term (a) is the marginal state–action entropy of the policy 𝜋. DisCor 
bounds the  (𝑑𝜋𝑘 ) by the entropy of the uniform distribution  ( ) for 
tractable. However, the inconsistency between the policy improvement 
and exploitation is indirectly increased by using that upper bound. 
That is, evenly-distributed action distributions deserve more attention 
than unevenly-distributed ones. To minimize the term (a), we draw 
inspiration from the work (Wang et al., 2021) in LDL which assigns 
higher weights to samples with larger information entropy to alleviate 
the inconsistency. Specifically, we give extra attention to the sample 
with larger entropy of action distribution to alleviate the inconsistency, 
i.e., reweighting samples 𝑤.𝑟.𝑡. 𝜔(𝑠, 𝑎) ∶= (𝜋(⋅|𝑠)).

Note that it is not reasonable to just introduce entropy weights for 
Eq. (13), because ∗𝑄𝑘−1 is a bootstrapped target which may not be 
the ground truth label 𝑄∗. Due to the accumulation of Bellman errors, 
𝑄𝑘−1 has a gap from 𝑄∗. Therefore, we need to minimize |

|

∗𝑄𝑘−1 −𝑄∗
|

|

. 
With an application of triangle inequality, we have: 
|

|

∗𝑄𝑘−1 −𝑄∗
|

|

= |

|

∗𝑄𝑘−1 −𝑄𝑘 +𝑄𝑘 −𝑄∗
|

|

≤ |

|

𝑄𝑘 − ∗𝑄𝑘−1|| + |

|

𝑄𝑘 −𝑄∗
|

|

(15)

That is, |
|

𝑄𝑘 −𝑄∗
|

|

 can serve as a surrogate. This result is corresponding 
to term (b), which aims to minimize Bellman error accumulation. In 
Eq. (15), the first term is the approximation error of the bootstrap error 
function, whose value is determined by the approximation algorithm 
and cannot be controlled. The second term is the distance between the 
𝑄 estimate and the ground-truth. Liu et al. (2021) suggests that the 
value of |

|

𝑄𝑘 −𝑄∗
|

|

 is related to the ‘‘distance to the end’’. The bootstrap 
error will accumulate in the reverse direction with the trajectory. To 
solve it, we introduce a confidence weight (Auer, Cesa-Bianchi, & 
Fischer, 2002): 

𝜔(𝑠, 𝑎) ∶=
 (𝑠, 𝑎)
(𝑠, 𝑎)

, (16)

where  (𝑠, 𝑎) =
√

ln 𝑡(𝑠, 𝑎), 𝑡(𝑠, 𝑎) is the step of sample (𝑠, 𝑎) in every 
episode. Different with Liu et al. (2021), we introduce the (𝑠, 𝑎) which 
denotes the times the experience has been reused. Usually, the higher 
the number means the older the sample is, the lower the value of reuse. 
(𝑠, 𝑎) downweights those samples that have been reused many times. 
Thus, the inconsistency minimization weight is: 

𝜔im(𝑠, 𝑎) ∶= (𝜋(⋅|𝑠)) ⋅
 (𝑠, 𝑎)
(𝑠, 𝑎)

. (17)

3.3.4. The connection between inconsistency minimization and exploitation
From the perspective of exploration and exploitation, reducing cog-

nitive inconsistency is often associated with a decrease in the agent’s 
ability to explore. This initiative contradicts prior research and ex-
perience that emphasizes the importance of exploration. Increasing 
exploration can help minimize the risk of getting stuck in a local 
optimum. However, as discussed in Section 3.3.3, our approach to 
alleviating inconsistency requires accurate Q-value as a prerequisite. 
Our method is not an attempt to solely ‘‘exploit’’ but rather to reduce 
meaningless exploration.

Additionally, in Section 3.1, we illustrated the pathological concern 
of on-policiness prioritization in some cases and gave a correction 
strategy for it. An often neglected fact is the actual experience gathered 
depends on the agent’s policy when interacting with the environ-
ment (Kumara et al., 2020). Therefore, we propose to consider possible 
future samples to be collected when optimizing the policy. We highlight 
that one could be more conducive if high-yield policies (i.e. self-
imitating policies) can be enhanced to supply high-yield experiences. 
6 
Algorithm 1 The Cognitive Consistency (CoCo) framework
1: Initialize 𝑄𝜃(𝑠, 𝑎), normal replay buffer , si-buffer si, neural 
network 𝜅𝜓 , the highest return 𝑅MAX, the reused times (𝑠, 𝑎). 

2: for each environment step 𝑡 do 
3: Collect new transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1,

(

𝜋
(

⋅ ∣ 𝑠𝑡
))

, 𝑡
(

𝑠𝑡, 𝑎𝑡
)) using 

𝜋 and add it to buffer . 
4: if Finish the current episode then 
5: Calculate the total return 𝑅𝜋𝜏 = 𝛴𝑇

𝑡=0𝛾
𝑡𝑟(𝑠𝑡, 𝑎𝑡) of the current 

episode 𝜏 = {

𝑠𝑡, 𝑎𝑡
}𝑇
𝑡=0. 

6: if 𝑅𝜋𝜏 ≥ 𝑅MAX then 
7: Add samples {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1

)}𝑇
𝑡=1 gathered from the episode 

𝜏 to si-buffer si.
8: end if
9: end if
10: if Reach the update interval then 
11: Obtain samples from  and si. 
12: Update 𝜅𝜓  using: 𝐿𝜅 (𝜓) ∶= E

[

𝑓 ∗ (𝑓 ′ (𝜅𝜓 (𝑠, 𝑎)
))]

−
Esi

[

𝑓 ′ (𝜅𝜓 (𝑠, 𝑎)
)]

.
13: Compute 𝜔si with the updated 𝜅𝜓 . 
14: Compute 𝜔im using Eq.  (17). 
15: Minimize Bellman error for 𝑄𝜃 weighted by 𝜔 = 𝜔si ⋅ 𝜔im:

𝐿𝑄(𝜃; 𝑑𝜇 , 𝜔) = E𝑑𝜇 [𝜔(𝑠, 𝑎)(𝑄𝜃(𝑠, 𝑎) − ∗𝑄𝜃(𝑠, 𝑎))2].

16: Update 𝜋 with base algorithm. 
17: Update the reused times (𝑠, 𝑎).
18: end if
19: end for

On this basis, it is easy to think that the significance of inconsis-
tency minimization lies in the ability to consolidate the policy and 
complement the samples it generated for exploitation.

Overall, the inconsistency minimization objective proposed in this 
section can effectively reduce inconsistencies and plays a crucial role 
in balancing the trade-off between exploration and exploitation, while 
also enhancing sample efficiency.

3.4. The cognitive consistency (CoCo) framework

3.4.1. Architectural overview
We first give the complete prioritization weight combined with the 

self-imitating distribution correction weight 𝜔si(𝑠, 𝑎) and the inconsis-
tency minimization weight 𝜔im(𝑠, 𝑎): 

𝜔(𝑠, 𝑎) ∶=
𝑑𝜋si (𝑠, 𝑎)
𝑑𝜇(𝑠, 𝑎)

⋅(𝜋(⋅|𝑠)) ⋅
 (𝑠, 𝑎)
(𝑠, 𝑎)

. (18)

We then present the Cognitive Consistency (CoCo) framework, 
which uses weight 𝜔(𝑠, 𝑎) to reweight the TD learning of value function. 
It is worth noting that CoCo works solely through a briefly reweighted 
uniformly sampled loss function, without the need for additional re-
wards (e.g., intrinsic rewards) or auxiliary losses (e.g., supervised 
losses) (Li, Gao, Yang, Xu, & Wu, 2022). This makes it more flexible 
when combined with other techniques. The overall structure of CoCo 
is shown in Fig.  3 and the pseudo-code is presented in Algorithm 1.

Intuitive Explanation. First, the samples generated from each 
episode are deposited into a buffer  according to the normal process 
of off-policy RL. Meanwhile, we calculate the total return 𝑅𝜋𝜏  of the cur-
rent episode 𝜏, and store the samples also into si-buffer si if 𝑅𝜋𝜏  greater 
than the highest total return 𝑅MAX. Then, one batch is extracted from 
the buffer  and one from the si-buffer si, while inputting into the 
neural network 𝜅𝜓  and updating its parameters. Next, we feed the batch 
drawn from the original buffer  into the updated 𝜅𝜓  and calculate 
the self-imitating distribution correction weight 𝜔si. Simultaneously, 
the inconsistency minimization weight 𝜔im of this batch is obtained by 
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Fig. 3. Illustration of CoCo. CoCo consists of two components. In the self-imitating distribution correction component, the samples generated by the high-yield policy are stored 
as guide data to correct the sampling distribution. In the inconsistency minimization component, it records the action distribution entropy (𝜋(⋅|𝑠)) and time steps 𝑡(𝑠, 𝑎) during 
sample collection, which are used to calculate the inconsistency minimization weight. Finally, the weightings of the two components are integrated to jointly guide the training.
Fig. 4. Performance of CoCo on the Cliff task in Section 3.1.
Eq. (17). Finally, we integrate 𝜔si and 𝜔im to get the final weight 𝜔, 
and use Eq. (1) to learn the value function for training agent.

3.4.2. Mutually beneficial analysis
The two components of CoCo are mutually beneficial. Intuitively, 

the self-imitating distribution correction captures the high-yield policies so 
that the inconsistency minimization does not act on the poor performing 
ones. Meanwhile, the inconsistency minimization consolidates the cap-
tured good policies, complementing the high-yield experiences and thus 
increasing their frequency of sampling. Such interactions accelerate 
learning efficiency. To verify our intuition, we validate the performance 
of CoCo on the modified Cliff task (Section 3.1), as shown in Fig.  4.

Fig.  4(a) shows the visualized state visits of CoCo on the Cliff task. 
CoCo has locked the optimal path at 600 episodes, which saves a 
third of the time compared to on-policiness. Furthermore, while CoCo 
does explore the low-yield regions (i.e., the upper left) due to the 
impact of exploration, it does not stray into those areas and only makes 
occasional visits. At 300 episodes, the agent has shifted the focus of the 
visit to the central region after visiting the optimal path. It is already 
roughly exploring only around the optimal path by about 500 episodes.

In Fig.  4(b), we observed that the convergence of the Q-value is 
consistent with that of the on-policiness exhibited in Fig.  1(d). How-
ever, the CoCo decreases more rapidly in the beginning, suggesting 
that updates at key states receive more attention. Besides, by exam-
ining the TD error curve, we found that the value rapidly decreases 
and maintains an extremely low value until convergence at around 
500 episodes, indicating that the value function’s update continues to 
focus on a narrow region. Finally, the CoCo exhibits convergence to 
smaller and more stable episode returns, indicating that the agent only 
explores a small area around the optimal path. We attribute this to 
the alleviation of inconsistency. The experimental results validate the 
mutually beneficial relationship between the two components of CoCo.

Additionally, the above conclusion can also be reflected in the 
following Lemma, 
7 
Lemma 3.5 (Refer to Lemma. 5 in Liu et al., 2021). Let 𝜋∗ be the optimal 
policy and 𝜋𝑘 is the policy at iteration 𝑘, the performance discrepancy and 
the Q-value gap satisfy the following relationship: 

𝐽
(

𝜋∗
)

− 𝐽 (𝜋𝑘) ≤
2

1 − 𝛾
(

E𝑑𝜋𝑘,𝜋∗ ||𝑄
∗(𝑠, 𝑎) −𝑄𝑘(𝑠, 𝑎)|| + 1

)

. (19)

where 𝑑𝜋𝑘 ,𝜋∗ (𝑠, 𝑎) = 𝑑𝜋𝑘 (𝑠) 𝜋𝑘(𝑎∣𝑠)+𝜋
∗(𝑎∣𝑠)

2 . 

In Lemma  3.5, the bound is influenced by the discount factor 
𝛾. Nevertheless, we focus on the key relationship revealed by this 
lemma: the decrease of |

|

𝑄∗(𝑠, 𝑎) −𝑄𝑘(𝑠, 𝑎)|| contributes to approximate 
to the optimal policy. While 𝛾 influences the bound’s tightness, this 
relationship remains fundamental to our theoretical framework.

4. Experiments

In this section, we conduct experiments to evaluate the gains 
of CoCo in sample efficiency and performance. We first compare 
CoCo with related state-of-the-art on-policiness algorithms on Mu-
joco (Todorov, Erez, & Tassa, 2012) tasks. Meanwhile, we design 
ablation experiments to validate the components of CoCo and show 
that CoCo is robust to noisy reward. Then, we evaluate our methods on 
Atari games with discrete action spaces, especially demonstrating that 
CoCo is suitable for hard-exploration tasks. Detailed parameter settings, 
implementations, and code are available on GitHub1 and Appendix  B.

4.1. Performance on Mujoco tasks

To verify whether the proposed method CoCo can alleviate the 
inefficiency caused by on-policiness acting on low-yield regions and 
obtain a superior performance rapidly, we select the following methods 
as the compared baselines.

1 https://github.com/DkING-lv6/CoCo.

https://github.com/DkING-lv6/CoCo
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Fig. 5. Performance of CoCo (ours), ReMERT, ReMERN and LFIW combined with SAC on Mujoco tasks. The shaded region represents the standard deviation of the average 
evaluation over four trials with different random seeds.
• ReMERT (Liu et al., 2021) prioritizes samples with higher hind-
sight TD error, better on-policiness, and more accurate Q-value, 
which has demonstrated state-of-the-art performance on many 
tasks.

• ReMERN (Liu et al., 2021) emphasizes the prioritization of Bell-
man error estimation and outperforms the related method Dis-
Cor (Kumara et al., 2020).

• LFIW (Sinha et al., 2022) encourages small TD errors on the value 
function over frequently encountered states, whose performance 
serves as the benchmark for on-policiness.

We incorporate the above algorithms over the competitive algorithm 
SAC (Haarnoja et al., 2018). We use the same parameters as those 
used in these methods, including the total number of time steps, seeds, 
and learning rates. It is worth emphasizing that we do not directly 
intervene in the exploration strategy, and our approach is orthogonal 
to the design of exploration schemes. In contrast, we focus more on the 
‘‘exploitation’’ phase; therefore, this paper does not directly compare 
with exploration-based methods.

Fig.  5 shows CoCo could have an excellent performance on most 
tasks except a comparable result on Hopper. There is not much dif-
ference of the |

|

𝑄𝑘 −𝑄∗
|

|

 between all the sampled state–action pairs 
since Hopper is a simple task. Therefore, prioritizing the samples fail to 
impact the overall performance improvement of the task significantly. 
It is derived from Kumara et al. (2020) and Liu et al. (2021) that both 
DisCor, ReMERT and ReMERN are still limited in terms of performance 
improvement or require more trials to achieve good performance (more 
than 2M or even 5M). It reflects that pursues more accurate value 
estimation to guarantee performance, which may rely on more in-
teractions. However, CoCo demonstrates a surprising performance on 
these tasks. It achieves good results on five tasks earlier than the other 
methods, and even on Walker2d and Humanoid, only need about 0.5M 
interactions to achieve the 1M performance of others.

Since the standard deviations of final performance of CoCo overlaps 
with ReMERT on a couple of tasks, we provide a reliability analy-
sis (Agarwal, Schwarzer, Castro, Courville, & Bellemare, 2021) of the 
results across all runs (on all the Mujoco tasks). We normalize our 
experimental data using the performance of SAC as a benchmark and 
provide the corresponding Interquartile Mean (IQM) results, which are 
shown in the Fig.  6. It validates that CoCo has the best performance 
improvement (the largest mean value) and is statistically significant.
8 
Fig. 6. The interquartile mean (IQM).

4.2. Ablation experiments

CoCo contains two components self-imitating distribution correction 
and inconsistency minimization that we denote separately as CoCo_sc 
and CoCo_im. Fig.  7 illustrates the results of the ablation study per-
formed on these two components. CoCo_sc focuses on past high-yield 
samples to the extent that the trained policies are prone to cover only 
a narrow region of the state space. Therefore, it gradually converges 
to a sub-optimal result after showing some good trends in the begin-
ning phase. CoCo_im aims at minimizing the inconsistency, which can 
reduce the generation of low-yield samples and the accumulation of 
Bellman errors. It is more stable while having good but not outstanding 
performance. From this, we need both 𝜔si to act as a guide and 𝜔im to 
ensure the accuracy of the update and the importance of the samples 
in the replay buffer. In addition, we demonstrate that the proposed 
inconsistency minimization component (which multiplies entropy by an 
additional term) is claimed to be better than DisCor’s choice of entropy. 
We provide the results of the ablation experiments of CoCo_im with 
DisCor in Fig.  8. It can be seen that relying only on the inconsistent 
minimization weights, our method outperforms DisCor in most cases.

4.3. Performance with reward noise

CoCo relies on evaluating the total return to episodes, which can 
be affected by reward noise. To verify CoCo is robust to outliers, we 
modify the reward function 𝑟(𝑠, 𝑎) in the tasks to be equal to: 𝑟′(𝑠, 𝑎) =



D. Wang et al. Neural Networks 187 (2025) 107342 
Fig. 7. Performance of CoCo, CoCo_sc, and CoCo_im combined with SAC.
Fig. 8. Performance of CoCo_im, and DisCor combined with SAC.
Fig. 9. The results of noisy reward tasks.
𝑟(𝑠, 𝑎) + 𝑛 ⋅ 𝑧, where 𝑧 ∼  (0, 1). We present the experimental results 
for the task involving reward noise in Fig.  9. CoCo is affected by 
the noise, but only during the initial stages of training. The reason 
may be that the agent may not have received significantly diverse 
incentives early in the training phase. This issue might lead CoCo to 
inadvertently add noisy samples to the si-buffer as guiding samples, 
as seen in Walker2d before 0.5M. However, the si-buffer is gradually 
updated to include better samples when the cumulative noise return has 
no impact on the better trajectory. Consequently, notable performance 
improvements are observed in Walker2d after 0.5M. We can conjecture 
that the cumulative reward noise typically affects the ranking of the 
total episode returns when 𝑛 is large. This conjecture is supported by 
the performance of CoCo with different noises, as shown in Fig.  9 
(right).
9 
4.4. Performance on Atari games

We also demonstrate that our CoCo framework is competent for 
environments with discrete action space. Since the above methods 
in the previous section have no open-source code available for Atari 
experiments and considering the comparison with SIL (Oh et al., 2018), 
we choose Advantage Actor-Critic (A2C) (Mnih et al., 2016) as the 
baseline algorithm. We keep the same setting as SIL and run 5M steps 
(20M frames) of training on 20 Atari games. As shown by Table  1, CoCo 
outperforms SIL and A2C in almost all the tasks. To further evaluate 
our method, we measure improvement in percentage in score over the 
better of human and baseline agent scores (Wang et al., 2016): 

ScoreAgent − ScoreBaseline 
{ } , (20)
max ScoreHuman, ScoreBaseline − ScoreRandom
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Table 1
Performances on 20 Atari games after 5M steps of training (20M frames). Imp. means the improvement measured by (Wang 
et al., 2016).
 Game Random Human A2C A2C+SIL A2C+CoCo

 score score score score Imp. Score Imp.  
 Alien 227.8 6875 739.7 1251.8 8% 1767.2 15%  
 Amidar 5.8 1676 189 248.9 4% 365.8 11%  
 Assault 222.4 1496 891.2 958.3 5% 933 3%  
 Asterix 210 8503 1869.4 2542.7 8% 3472.1 19%  
 Atlantis 12 850 29028 45672.3 53189.2 23% 63765.5 55%  
 BankHeist 14.2 734.4 1147.8 1031.2 −10% 898.2 −22% 
 BattleZone 2360 37800 3151 8864 16% 11093.3 22%  
 BeamRider 363.9 5775 750.8 1576.5 15% 1824.7 20%  
 Boxing 0.1 4.3 2.2 9.8 181% 19.3 407% 
 Breakout 1.7 31.8 25.2 51.5 87% 59.6 114% 
 Freeway 0 29.6 0 25.7 87% 33 111% 
 Gravitar 173 2672 67.3 276.8 8% 871.2 32%  
 Jamesbond 29 406.7 35.2 164.2 34% 283.7 66%  
 Kangaroo 52 3035 41.3 478 15% 582.3 18%  
 Montezuma’s Revenge 0 4367 0 503.8 12% 1896 43%  
 MsPacman 307.3 15693 1514.8 1878.1 2% 2127.5 4%  
 Qbert 163.9 13455 2182.6 8411.2 47% 14843.2 5%  
 SpaceInvaders 148 1652 249.7 486.5 16% 755.7 34%  
 UpNDown 533.4 9082 3641.2 10126.2 76% 15733.6 141% 
 Zaxxon 32.5 9173 124.2 5372.1 57% 6469.7 69%  
Fig. 10. The relative performance over A2C.
Fig. 11. The results of hard-exploration Atari games.
 
 
 
 
 
 

 

where ScoreHuman and ScoreBaseline come from Mnih et al. (2015). The
visualization result is shown in Fig.  10. We also record the time steps
required for the relative algorithm to exceed human in Table  2, to
show that CoCo has less training cost. It turns out that CoCo delivers
significant efficiency gains. Even after removing a few tasks where only
CoCo exceeds human, CoCo still consumes 35% fewer training steps
than the relevant algorithm evaluation.

RL algorithms on hard-exploration tasks often lead to low-yield
exploration. However, as demonstrated in Fig.  11, CoCo is capable of
 

10 
successfully handling these tasks. This is due to CoCo’s ability to effec-
tively leverage high-yield samples, which are crucial for researching 
hard-exploration tasks. As the enhanced policy approaches the next 
source of reward, it promotes deep exploration.

4.5. Further extension: the myopic issue of CoCo

We have noticed that our CoCo framework could be myopic as we 
prioritize cognitive conservatism. To illustrate, let us consider a grid 
world scenario where the optimal path incurs a significant negative 
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Table 2
Time steps (M) needed for the relative algorithm to exceed human. ‘–’ indicates the 
score is below human-level even after 50M steps. SIL and CoCo represent A2C+SIL and 
A2C+CoCo. RED1 measures steps needed in percentage that CoCo reduced over A2C 
and RED2 measures that over SIL.
 Game A2C SIL CoCo RED1 RED2 Mean 
 Alien – – – – – –  
 Amidar – – – – – –  
 Assault 32.2 13.9 16.8 48% −21% 13%  
 Asterix 33.8 24.4 10.9 68% 55% 62%  
 Atlantis 4.1 3.6 2.7 34% 25% 30%  
 BankHeist 4.8 4.1 4.3 10% −5% 3%  
 BattleZone – – – – – –  
 BeamRider – – – – – –  
 Boxing 5.6 4.5 3 46% 33% 40%  
 Breakout 6.3 4.4 3.9 38% 11% 25%  
 Freeway – 6.4 0.8 – 88% –  
 Gravitar – – – – – –  
 Jamesbond – – – – – –  
 Kangaroo – – 34.7 – – –  
 Montezuma’s Revenge – – – – – –  
 MsPacman – – – – – –  
 Qbert 14.8 7.3 4.7 68% 36% 52%  
 SpaceInvaders 37.3 25.2 18.8 50% 25% 37%  
 UpNDown 9.8 4.3 2.6 73% 40% 57%  
 Zaxxon – – – – – –  
 Normed Mean 16.5 10.2 7.5 48% 29% 35%  
 Normed Median 9.8 4.5 4.3 48% 29% 37%  

Fig. 12. The diagram.

penalty at every time step, except for the final step when the optimal 
action results in an exceptionally large reward. At each time step, the 
agent has the option to move forward or terminate the environment. 
In this case, our approach would encourage the agent to converge on 
a sub-optimal path. In order to assess its performance, we make the 
following changes to the Cliff task:

1. The cliff area is canceled, and the corresponding optimal path 
becomes the last line in the Grid, such as the red path in Fig. 
12.

2. The optimal trajectory gets a large negative reward −10 on each 
time step.

3. If and only if the agent executes according to the red route can 
get an extremely large reward 1000.

The results presented in Fig.  13 demonstrate that our method can 
be myopic in certain scenarios. Specifically, in the modified Cliff task, 
our method ultimately converges to a sub-optimal solution (the path 
in the penultimate row of the grid). This can be observed from the 
reward value, as the policy that eventually converges cannot achieve 
the optimal reward of 1000. Additionally, we tested the on-policiness 
method and found that it too produces sub-optimal results. However, 
our method appears to be more robust because the right actions with 
larger negative rewards have smaller 𝑄 values.

For the myopic phenomenon described above, we attribute it to 
the somewhat harsh conditions for reaching the optimal path. It is 
extremely difficult to explore the red path with a large negative reward. 
Therefore, we further simplified the Cliff task by reducing its scope 
to 6*4, and the experimental results are shown in Fig.  14. In the task 
settings, we specifically increased the exploration rate and reduced the 
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temperature coefficient. It is clear that neither our method nor the on-
policiness method ever reach the ideal policy. The few high-quality 
samples obtained by merely three explorations of the optimal path 
cannot be used effectively.

The aforementioned myopic issue is not unique to our work but 
also exists in existing on-policiness work. However, it is possible that 
combining our work with some special exploration techniques can be 
a positive contribution.

5. Conclusion and future work

We propose to rethink the trade-off between exploration and ex-
ploitation from a novel perspective of cognitive consistency and in-
troduce a framework termed CoCo. The core of CoCo lies in con-
ducting pessimistic exploration and optimistic exploitation under rea-
sonable premises. We highlight that CoCo can enhance sample ef-
ficiency without compromising performance. In CoCo, we first use 
a self-imitating distribution correction approach to pursue cognition-
oriented optimistic exploitation. Then, we innovatively introduce an 
inconsistency minimization objective inspired by LDL to achieve pes-
simistic exploration. Extensive experiments validate our framework and 
its properties, demonstrating that rational utilization of cognitive con-
sistency can substantially improve sample efficiency and performance 
of standard off-policy RL methods.

In future work, an exciting direction would be to generalize our 
framework to model-based RL and offline RL. Additionally, the incon-
sistency minimization objective investigates the RL problem from the 
perspective of label distribution learning, which could inspire future 
investigation.
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Appendix A. Related work

A.1. Sample efficiency

Sample efficiency remains a key challenge in large-scale practical 
applications. Training a good policy may require millions (or even bil-
lions) of environment steps, and this problem is exacerbated when the 
data collection is expensive. Off-policy RL provides better sample effi-
ciency than its on-policy counterparts, owing to its ability to learn from 
data distributions that are not constrained by the current policy. Off-
policy RL provides better sample efficiency (Riedmiller, Springenberg, 
Hafner, & Heess, 2022; Schwarzer et al., 2021; Yu, 2018) than on-
policy counterparts, owing to its ability to learn from data distributions 
not constrained by the current policy. It has shown to be extremely 
valuable in robotics applications and crucial to the advancement of 
offline RL (Riedmiller et al., 2022), especially in light of the rise in 
prominence of off-policy actor-critic algorithms (Haarnoja et al., 2018; 
Heess et al., 2015; Lillicrap et al., 2021).
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Fig. 13. A modified 12*8 Cliff example with a large negative reward on each time step for taking the optimal action.
Fig. 14. A modified 6*4 Cliff example with a large negative reward on each time step for taking the optimal action.
A.2. Cognitive consistency

Human beings strive to maintain balance and harmony within their 
internal cognitive systems, which is a process commonly referred to 
as maintaining cognitive consistency (Festinger, 1962). In social psy-
chology, cognitive consistency refers to the preservation of existing 
knowledge structures, such as percepts, schemata (categories), memo-
ries, and propositions (Greenwald, 1980). Together with the abilities 
to imitate (Arora & Doshi, 2021), compositionally generalize (Liu & 
Frank, 2022), and make inferences (Olson, Khanna, Neal, Li, & Wong, 
2021), cognitive consistency is a crucial factor that enables humans to 
acquire effective policies quickly. It can enhance memory retention and 
information processing, improving the efficiency and quality of learn-
ing. Furthermore, it can enhance cognitive stability and predictability, 
reducing conflict and uncertainty, thus easing the burden during the 
learning process. For instance, when the library needs to add a new 
batch of books, it may be more efficient to maintain consistency with 
the already established cataloging scheme rather than allocating librar-
ian effort to revise it every time by recataloging and reshelving the 
existing collection (Greenwald, 1980).

Previous research has highlighted the importance of maintaining 
consistent cognition among agents in multi-agent systems to achieve ef-
fective system-level cooperation (Bear, Kagan, & Rand, 2017; Corgnet, 
Espín, & Hernán-González, 2015; Oroojlooy & Hajinezhad, 2022). 
NCC (Mao et al., 2020) introduces Neighborhood Cognitive Consistency 
into multi-agent RL by representation alignment between neighbors, 
indicating that maintaining neighborhood cognitive consistency is usu-
ally sufficient to ensure system-level cooperation. In this work, we take 
the first step towards introducing cognitive consistency in standard off-
policy RL for single agents (Hessel et al., 2018; Mnih et al., 2015). We 
propose that cognitive consistency is expressed in off-policy RL as the 
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unity of knowledge and behavior. This consistency can manifest in vari-
ous ways, such as a preference for certain actions or a tendency to avoid 
risky decisions. Another related concept is the exploration–exploitation 
trade-off, which refers to the balance between trying new behaviors 
(exploration) and utilizing current knowledge (exploitation) to maxi-
mize cumulative rewards. The exploitation in off-policy RL is expressed 
as exploiting past experiences (Oh et al., 2018). Existing works use 
experience replay which frequently prioritizes or reweights experiences 
with criteria such as TD error (Schaul et al., 2016), corrective feed-
back (Kumara et al., 2020; Lee et al., 2021) and on-policiness (Liu et al., 
2021; Novati & Koumoutsakos, 2019; Sinha et al., 2022; Sun et al., 
2020; Wang et al., 2019). Another feasible approach is controlling the 
data collection, but the question of how this data is collected has been 
vastly understudied (Kumara et al., 2020). One promising direction 
is to modify exploration policies to manage experience collecting. 
Existing approaches concentrate on designing various intrinsic rewards 
to encourage more thorough exploration (Burda, Edwards, Storkey, & 
Klimov, 2019; Ecoffet et al., 2021; Han & Sung, 2021; Mavor-Parker 
et al., 2022; Pathak, Agrawal, Efros, & Darrell, 2017; Yuan et al., 2022; 
Zhang et al., 2021). Other works (Andrychowicz et al., 2017; Florensa, 
Held, Geng, & Abbeel, 2018) use generative techniques to complement 
valuable learning signals. These initiatives have had great success in 
sparse reward settings.

A.3. Experience replay

Riedmiller et al. (2022) state that sample-efficient RL goes through 
three phases: pure online RL, RL with a replay buffer, and finally offline 
RL. It is well known that pure online RL is inefficient in most scenarios 
because each data point is considered only once. In recent years offline 
RL (entirely without interaction) (Gulcehre et al., 2020; Lange, Gabel, 
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& Riedmiller, 2012; Li et al., 2022; Siegel et al., 2020) has attracted 
more attention, but there are still numerous obstacles to achieving 
widespread use in real-world scenes. In contrast, learning with a replay 
buffer, a fundamental component of off-policy RL, remains a long-term 
concern (Kumara et al., 2020; Liu et al., 2021; Sinha et al., 2022). This 
phase has shown to be extremely valuable in robotics applications and 
crucial to the advancement of offline RL, especially in light of the rise in 
prominence of off-policy actor-critic algorithms (Haarnoja et al., 2018; 
Heess et al., 2015; Lillicrap et al., 2021).

Prioritized Experience Replay (PER) (Schaul et al., 2016) considers 
samples with high TD error to be more important. Importance sampling 
is needed to correct for bias since the method of sampling by prioriti-
zation changes the data distribution. It introduces variance, although 
it ensures that expectations are unbiased (Liu, Li, Tang, & Zhou, 2018; 
Schlegel, Chung, Graves, Qian, & White, 2019). Loss-Adjusted Priori-
tized (LAP) (Fujimoto, Meger, & Precup, 2020) points out that some 
benefits of prioritized experience replay come from the change in the 
expected gradient rather than the prioritization itself. Thus, the design 
of prioritization sampling methods should not be considered in isolation 
from the loss function, and a uniform sampling method with the correct 
loss function can be an alternative to non-uniform sampling.

Likelihood-Free Importance Weighting (LFIW) (Sinha et al., 2022) 
argues that the prioritized experience replay of TD learning can be 
considered as choosing a favorable prioritized distribution (Nachum, 
Chow, Dai, & Li, 2019). It encourages small TD errors on the value 
function over frequently encountered states. Several similar works (No-
vati & Koumoutsakos, 2019; Sun et al., 2020; Wang et al., 2019) also 
emphasize the importance of recent samples for training the current 
policy (i.e., more on-policiness).

Distribution Correction (DisCor) (Kumara et al., 2020) demonstrates 
that bootstrapping based Q-learning algorithms do not benefit well 
from the ‘‘corrective feedback’’. It reduces the weight of samples for 
which the target Q-value estimate has a high cumulative error with 
𝑄∗. Inspired by this, SUNRISE (Lee et al., 2021) reweights the target 
Q-value based on uncertainty estimates by using the variance of the 
Q-ensemble.

Regret Minimization Experience Replay Using Temporal Structure 
(ReMERT) (Liu et al., 2021) indicates that previous prioritization cri-
teria are mostly heuristically designed, which can be sub-optimal in 
some cases due to the mismatch with the RL objective. It suggests 
that the optimal sample prioritization strategy should satisfy higher 
hindsight TD error, better on-policiness, and more accurate Q-value. 
Compared with DisCor, the better on-policiness criterion is the key to 
policy correction.

To sum up, DisCor and REMERT advise to reduce the cumulative 
error of Q estimates, which is similar to part of our view. In addi-
tion, LFIW and REMERT indicate that prioritization or reweighting of 
samples with on-policiness can yield significant performance improve-
ments. However, this type of method is hampered by the behavior 
policy. It may be inefficient when the agent pays excessive attention to 
the low-yield region exploration. In this work, we analyze the patho-
logical concerns associated with the on-policiness priority criterion and 
correct it using the distribution of authoritative policies.

A.4. Self-imitation learning

Imitation learning (Abbeel & Ng, 2004; Arora & Doshi, 2021; Ho 
& Ermon, 2016; Torabi, Warnell, & Stone, 2018) learns a good policy 
by mimicking expert demonstrations. Self-imitation learning (SIL) (Oh 
et al., 2018) learns to reproduce past good decisions over self-generated 
experiences without external demonstrations. It is mainly achieved by 
using the supervised learning (SL) objective as an auxiliary loss and 
optimizing it jointly with the standard RL objective (Li et al., 2022). 
In our work, we introduce a novel self-imitating distribution correction 
approach that sets itself apart from SIL and similar algorithms in the 
following ways:
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Table B.3
The symbols and abbreviations.
 Symbol Description Symbol Description  
  State space 𝑠 State  
  Action space 𝑎 Action  
  Transition function 𝑟 Reward function  
 𝛾 Discount factor 𝑝0 Distribution of the initial 

state
 

 𝐽 Cumulative rewards 𝑡 Time steps  
 𝜋 Policy 𝑑𝜋 Discounted stationary state 

distribution
 

 𝜇 Behavior policy 𝜔 Sample weight  
  Bellman operator ∗ Bellman optimal operator  
 𝑉 𝜋 State value function 𝑄𝜋 State–action value function  
  Entropy 𝜏 Trajectory  
 𝑅max Upper bound of the reward 

function
𝑅MAX The highest return  

 𝜔si self-imitating weight 𝜔im inconsistency minimization 
weight

 

  Conventional buffer si Smaller size buffer  

• SIL imitates good decisions for each state individually, which is 
heuristic and probably leads to sub-optimal results. Our approach 
uses the ultimate goal of RL as a metric (Liu et al., 2021) to 
directly mimic the complete high-yield policy.

• SIL uses the difference between the observed return and the 
estimated value as a reward bonus, then utilizes PER (Schaul 
et al., 2016) to sample experiences from the replay buffer. It 
suffers from stale returns (Ferret, Pietquin, & Geist, 2021) and 
introduces bias. Our approach does not require reward setting 
and always guarantees the contribution of self-imitating experi-
ences by storing them in an additional buffer. Besides, we reduce 
the bias by using a brief reweighted uniformly sampled loss 
function (Fujimoto et al., 2020).

• PhAsic self-Imitative Reduction (PAIR) (Li et al., 2022) points 
out that optimizing the mixed objective of RL and SL with SIL 
can be brittle and requires substantial parameter tuning. PAIR 
relies on self-generated samples as supervised signals for the 
offline SL phase, which does not require optimization of a mixed 
objective. Our approach shares some similarities with PAIR, but 
with the distinction that we use self-imitating samples as guidance 
to correct the data distribution over the replay buffer, without 
addressing offline RL.

Appendix B. Details

B.1. Symbols and abbreviations

See Table  B.3. 

B.2. Detailed parameter settings

The detailed parameter settings are listed in Table  B.4. The algo-
rithms ReMERT, ReMERN, LFIW, and CoCo (ours) all contain the full 
parameters of Agent and SAC. ReMERN introduces an error network 
to calculate the cumulative Bellman error with a learning rate of 
0.0003 and a hidden network of [256, 256, 256]. In addition, ReMERN 
maintains a moving average of the temperatures initialized as 10.0 to 
perform the weighting.

The replay buffer size |
|

f
|

|

 of LFIW affects the number of ex-
periences we treat as ‘‘on-policiness’’. According to LFIW’s previous 
experience, the performance is relatively stable for |

|

f
|

|

= 1 × 105. 
The hidden network sizes of 𝜅𝜓  are [128, 128], and the temperature 
hyperparameter 𝑇  for self-normalization to the importance weights is 
7.5. The normalization is:

𝜅̃𝜓 (𝑠, 𝑎) ∶=
𝜅𝜓 (𝑠, 𝑎)1∕𝑇
[

1∕𝑇
] .
Es
𝜅𝜓 (𝑠, 𝑎)
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Table B.4
Hyper-parameters for continuous control tasks.
 Hyper-parameters Value  
 

Agent

Training steps Chosen from {0.5M, 1M, 1.5M, 2M} 
 Buffer size 1 × 106  
 Batch size 256  
 Evaluation interval 5000  
 Update interval 1  
 Random seed 10, 100, 1000, 10000  
 

SAC

𝛾 0.99  
 Init 𝛼 1.0  
 Actor learning rate 0.0003  
 Critic learning rate 0.0003  
 𝛼 learning rate 0.0003  
 Hidden network sizes [256, 256]  
 
ReMERN

Error learning rate 0.0003  
 Error hidden network sizes [256, 256, 256]  
 Init temperature 𝜏 10.0  
 
LFIW

Buffer size || 1 × 106  
 Buffer size |

|

f
|

|

1 × 105  
 𝜅𝜓 hidden network sizes [128, 128]  
 Temperature 𝑇 7.5  
 CoCo(ours) si-buffer size |

|

si
|

|

2 × 105  
 Init 𝑅MAX −1000  

ReMERT, ReMERN, and CoCo maintain uniform parameters with LFIW 
in calculating the likelihood-free importance weight. The difference is 
that CoCo sets the size of si-buffer to |

|

si
|

|

= 2×105. It intends to prevent 
overfitting and catastrophic forgetting due to a lack of diversity.

B.3. Implementation details

Baselines. The source codes of all the above algorithms are pro-
vided by ReMER. 2 Our method CoCo also alters based on this and adds 
only a dozen lines of code. Some implementation details about CoCo are 
as follows. Compute entropy (𝜋(⋅|𝑠)). For the algorithms in discrete 
action spaces, the entropy is calculated by (𝑦) = −

∑

𝑗 𝑦𝑗 log 𝑦𝑗 . 
However, this study only emphasizes continuous control tasks. Thus, 
we use the differential entropy of Gaussian distribution:


[


(

𝜇, 𝜎2
)]

= 1
2
log 2𝜋𝑒𝜎2.

Note that the result of the differential entropy may have negative 
values. We normalize them so that they can be used as sample weights:

(𝜋(⋅|𝑠)) =
(𝜋(⋅|𝑠)) − min(𝜋(⋅|𝑠))

max(𝜋(⋅|𝑠)) − min(𝜋(⋅|𝑠))
.

Compute confidence weight 𝜔(𝑠, 𝑎) ∶=  (𝑠,𝑎)
(𝑠,𝑎) . To ensure that the 

 (𝑠, 𝑎) and (𝑠, 𝑎) have the same magnitude, we compute the confi-
dence weight using the following formula instead:

𝜔(𝑠, 𝑎) ∶=
exp(𝜆𝑡(𝑠,𝑎)+(𝑠,𝑎))

e − 1
,

where  (𝑠, 𝑎) =
√

ln 𝑡(𝑠, 𝑎), 𝑡(𝑠, 𝑎) is the step of sample (𝑠, 𝑎) in every 
episode. 𝜆 = 0.996 and e is the natural logarithm.

Data availability

Data will be made available on request.

2 https://github.com/AIDefender/MyDiscor.
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