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Abstract—Graph machine learning has been extensively studied
in both academia and industry. Although booming with a vast
number of emerging methods and techniques, most of the literature
is built on the in-distribution hypothesis, i.e., testing and training
graph data are identically distributed. However, this in-distribution
hypothesis can hardly be satisfied in many real-world graph sce-
narios where the model performance substantially degrades when
there exist distribution shifts between testing and training graph
data. To solve this critical problem, out-of-distribution (OOD)
generalization on graphs, which goes beyond the in-distribution
hypothesis, has made great progress and attracted ever-increasing
attention from the research community. In this paper, we com-
prehensively survey OOD generalization on graphs and present a
detailed review of recent advances in this area. First, we provide
a formal problem definition of OOD generalization on graphs.
Second, we categorize existing methods into three classes from
conceptually different perspectives, i.e., data, model, and learning
strategy, based on their positions in the graph machine learning
pipeline, followed by detailed discussions for each category. We also
review the theories related to OOD generalization on graphs and
introduce the commonly used graph datasets for thorough evalua-
tions. Finally, we share our insights on future research directions.

Index Terms—Graph machine learning, graph neural network,
out-of-distribution generalization (OOD).

I. INTRODUCTION

RAPH data is ubiquitous in our daily life. It has been
G widely used to model the complex relationships and de-
pendencies between entities, ranging from microscopic particle
interactions in physical systems and molecular structures in pro-
teins to macroscopic traffic networks and global communication
networks. Machine learning approaches on graphs, especially
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for graph neural networks (GNNs), have attracted wide attention
and been extensively studied in the last decade. They have shown
great successes in both academia and industry, illustrating their
excellent capabilities in a wide range of realistic applications,
e.g., social networks [1], recommendation systems [2], knowl-
edge representation [3], traffic forecasting [4], etc.

Despite the notable success of graph machine learning ap-
proaches, the existing literature generally relies on the as-
sumption that the testing and training graph data are drawn
from the identical distribution, i.e., the in-distribution (I.D.)
hypothesis. However, in the real world, such a hypothesis is
difficult to be satisfied due to the uncontrollable underlying data
generation mechanism [5]. In practice, there will inevitably be
scenarios with distribution shifts between testing and training
graphs [6]. These classic graph machine learning approaches
lack the ability of out-of-distribution (OOD) generalization,
which fail dramatically with significant performance drop under
distribution shifts. Therefore, it is of paramount importance to
develop approaches capable of out-of-distribution generaliza-
tion on graphs, especially for high-stake graph applications,
e.g., molecule prediction [7], financial analysis [8], criminal
justice [9], autonomous driving [10], particle physics [11], as
well as pandemic prediction [12], medical detection [13] and
drug repurposing [14] for COVID-19.

Out-of-distribution (OOD) generalization algorithm [15],
[16], [17] aims to achieve satisfactory generalization perfor-
mance under unknown distribution shifts. It has been occupy-
ing an important position in the research community due to
the increasing demand for handling in-the-wild unseen data.
Combining the strength of graph machine learning and OOD
generalization, i.e., OOD generalization on graphs, naturally
serves as a promising research direction to facilitate graph
machine learning model deployments in real-world scenarios.
However, this problem is highly non-trivial due to the following
challenges.

® Uniqueness of graph data: The non-Euclidean nature of
graph-structured data space leads the unique graph model
designs and makes obstacles for the direct adoption of
OOD generalization algorithms that are mainly developed
on Euclidean data (e.g., images and texts).

o Diversity of graph task: The problems on graphs are highly
diverse, ranging from node-level, link-level to graph-level
tasks, along with distinct settings, objectives, and con-
straints. It is necessary to integrate different levels of


https://orcid.org/0000-0003-3544-5563
https://orcid.org/0000-0002-0351-2939
https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2236-9290
mailto:lihy18@mails.tsinghua.edu.cn
mailto:zwzhang@tsinghua.edu.cn
mailto:xin_wang@tsinghua.edu.cn
mailto:wwzhu@tsinghua.edu.cn

LI et al.: OUT-OF-DISTRIBUTION GENERALIZATION ON GRAPHS: A SURVEY

(" Distribution shift on graph sizes Distribution shift on node features \

Train

Train

Test(large) Test(noise) Test(color)

- J
/ Distribution shift on graph structures and node features N\

Train Test(molecules from unseen scaffolds)
Scaffold 1 ) (Scaffold 44,930\ (Scaffold 44,931 Scaffold 90,124,
A © 5
A0 108 L
3 S —| of
\ |y =active )| = inactive Ly= active y = inactive /

Fig. 1. Complex types of distribution shifts on graphs. The distribution shifts
can exist on graph sizes, node features, and graph structural properties [6]. The
OOD generalized graph approaches are expected to perform well on the unseen
testing data even under distribution shifts rather than overfitting the training data.

graph characterizations into the graph OOD generalization
methods.

o Complexity of graph distribution shift type: The distribu-
tion shifts on graphs can exist on feature-level (e.g., node
features) and topology-level (e.g., graph size or other struc-
tural properties). Such complex types of graph distribution
shifts (as shown in Fig. 1) render more difficulties for OOD
generalization.

With both opportunities and challenges, it is the right time to
review and carry out the studies of graph OOD generalization
methods. In this paper, we provide a systematic and compre-
hensive review! for OOD generalization on graphs for the first
time, to the best of our knowledge. Specifically, to cover the
whole life cycle of OOD generalization on graphs, we start by
providing a formal problem definition. We divide the existing
methodologies into three conceptually different categories based
on their positions in the graph machine learning pipeline, and
elaborate typical approaches for each category. We also review
the theories and datasets for evaluations to further promote the
research on OOD generalization on graphs. Last but not least, we
share our insights on potential research topics deserving future
investigations.

Some related surveys review from the perspectives of graph
data augmentation [18], [19], graph self-supervised learn-
ing [20], [21], graph adversarial learning [22], [23], etc. How-
ever, they are significantly different from ours. First, they do not
focus on the graph OOD generalization that is the center topic
of this survey. Then, a portion of their reviewed methods serves
as an important piece of the puzzle for the whole problem of
graph OOD generalization. To the best of our knowledge, there
is no comprehensive review for current advancements of graph
OOD generalization methods.

The rest of the paper is organized as follows. In Section II,
we formulate the problem of OOD generalization on graphs and
present our categorization of existing literature. We compre-
hensively review three categories of methods in Sections III-V,
followed by our review of related theory (in Section VI) and
evaluation datasets (in Section VII). Lastly, we point out future
research opportunities in Section VIII.

!'The summary of graph OOD generalization methods reviewed in this survey
can be found at https://graph.ood- generalization.com.
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II. PROBLEM DEFINITION AND CATEGORIZATION

In this section, we first describe the formulation of OOD
generalization on graphs. Then we provide the categorization
of existing graph OOD generalization methods.

A. Problem Definition

Let G = (V, E) denote a graph, where V is the set of nodes
and E C V x V is the set of edges. X € RIVI*F denotes node
feature matrix where F' is the dimensionality of node feature. A
denotes the adjacency matrix reflecting the topological structure.
Therefore, the graph G can be composed of the node feature and
topological structure, i.e., G = (X, A).

Let G be the input graph space and Y be the label space.
A graph predictor fy : G — Y with parameter € maps the input
instance G € Gintothelabel Y € Y. A loss function £ measures
the distance between prediction and ground-truth label. The
graph OOD generalization problem is defined as:

Definition 1. (Graph OOD generalization): Given the
training set of IV instances (i.e., nodes, links, or graphs)
D = {(G;,Y:)}, that are drawn from training distribution
Pirain(G,Y), where G; € G and Y; € Y, the goal is to learn
an optimal graph predictor f; that can achieve the best gener-
alization on the data drawn from test distribution Pics:(G,Y),
where Pyt (G,Y) # Pirgin(G,Y):

fo= argﬂ}inEG,%Ptest[e(fe(G%Y)]- (1)

The distribution —shifts between Pi.s(G,Y) and
Pirain(G,Y) can lead to the failure of graph predictor built on
the in-distribution (I.D.) hypothesis, since directly minimizing
the average loss on training instances E¢ y . p,,.,..,. [{(fo(G), Y)]
can not obtain an optimal predictor that generalizes to testing
instances under distribution shifts. Note that the testing
distribution is unknown during the training stage. Compared
to traditional domain generalization problems [86], graph
OOD generalization is inherently more complex, as it requires
addressing potential multi-level distribution shifts, including
those at the feature level (e.g., node features X') and topology
level (e.g., graph size, structural patterns A). These shifts
may occur independently or simultaneously, posing significant
challenges to learning an optimal graph predictor f; that can
generalize effectively within and even across diverse tasks, such
as node-level, link-level, and graph-level predictions.

B. Categorization

To tackle the challenges brought by unknown distribution
shifts and solve the graph OOD generalization problem, con-
siderable efforts have been made in literature, which can be
categorized into three classes:

® Data: This category of methods aims to manipulate the

input graph data, i.e., graph augmentation. They are typi-
cally motivated by the view that OOD generalization failure
is often induced by limited diversity or coverage in the
training data. By systematically generating more train-
ing samples to increase the quantity and diversity of the
training set while generally keeping the model backbone
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Fig. 2.

Taxonomy of graph OOD generalization methods. We categorize existing methodologies into three conceptually different branches based on their positions

in the graph machine learning pipeline, i.e., data, model and learning strategy.

TABLE I

CONCEPTUAL RELATIONS AND DISTINCTIONS BETWEEN THE THREE CATEGORIES OF GRAPH OOD GENERALIZATION METHODS

representations

Aspect Data Model Learning Strategy
Goal Increase data diversity and quality Encode prior knowledge or causal Enhance generalization via tailored
assumptions into model design training objectives and strategies
CTargeted Input graph structure or feature Model architecture design or Training procedures, loss functions
omponent

or optimization schemes

Predominant Phase

of Application Primarily during data preparation

Typically during model design and

Mainly during optimization or

causal modeling

stage representation learning training
GNN Backbone Typically keep GNN backbone Generally have specific GNN Generally are compatible with
unchanged backbone design different GNN backbones
Theoretical . . . . . .
. Graph data augmentation Representation disentanglement, Invariant learning, adversarial
Foundation

training, self-supervised learning

Typical Tools Graph perturbation, mixup,

graphon interpolation

Disentangled encoders,
do-calculus, sample reweighting

Invariance loss, contrastive loss,
adversarial training

unchanged, graph augmentation techniques are effective in
improving the OOD generalization performance.

® Model: This category of methods aims to propose new
graph models for learning OOD generalized graph repre-
sentations, including two types of representative methods:
disentanglement-based graph models and causality-based
graph models. They aim to improve OOD generalization di-
rectly into the design of graph neural networks with specific
prior knowledge or causal assumptions. They are designed
to separate causal from spurious factors through structural
inductive biases, typically operating at the level of graph
representations output by the graph model. Their contribu-
tions or claims are mainly in the new model architectural
design for handling distribution shifts, although in principle
these methods could potentially be combined with graph
augmentations or customized training objectives.

® [Learning Strategy: This category of methods focuses on
exploiting the training schemes with tailored optimization
objectives and constraints to enhance the OOD generaliza-
tion capability, including graph invariant learning, graph
adversarial training, and graph self-supervised learning.
They typically retain the original data and generally do
not rely on specific new model architectures but instead
are often compatible with various GNN backbones to en-
hance OOD generalization through guiding the learning
process.

These methods solve the graph OOD generalization prob-
lem from three conceptually different perspectives. We pro-
vide the taxonomy in Fig. 2 and elaborate on these methods
for each category in the following sections. Drawing inspira-
tion from the existing surveys [15], [86], [87], [88] and also
carefully considering the unique characteristics of graph OOD
generalization methods, our categorization reflects the primary
mechanism of action emphasized by each method, i.e., its core
motivation or central design focus as described in the original
work, and the component of the graph learning pipeline it
primarily contributes, although some hybrid methods inevitably
exist between categories. The key conceptual differences among
these three categories are also summarized in Table I for better
clarification, which highlights their goals, main point of modi-
fication, and underlying theoretical motivations. We summarize
the characteristics of these methods in Table II.

III. DATA

The OOD generalization ability of machine learning mod-
els, including graph models, heavily relies on the diversity
and quality of training data [16]. In general, the more diverse
and high-quality the training data, the better the generalization
performance of graph models. With proper graph augmenta-
tion technique, this type of methods can obtain more graph
instances with a simple way for training, whose goal can be
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TABLE II
A SUMMARY OF GRAPH OOD GENERALIZATION METHODS

Category Subcategory Method

Node

Task
Link Graph

Shift Type
Structure

Backbone
Agnostic l€r>1

Size Feature

Structure-wise
Graph Data
Augmentation

GAug [24]
MH-Aug [25]
KDGA [26]

4
v
v

Feature-wise
Graph Data
Augmentation

GRAND [27]
FLAG [28]

Data LA-GNN [29]

<

GraphCL [30]
GREA [31]
LiSA [32]
AIA [33]
MARIO [34]
Mixup [35]

Mixed-type
Graph Data
Augmentation

AN NN N NN N NN NN

AR NS

DisenGCN [36]
IPGDN [37]
FactorGCN [38]
DisC [39]
NED-VAE [40]
DGCL [41]
IDGCL [42]
OOD-GCL [43]

AN NN AN SN S

Disentanglement-
based
Graph Models

OOD-GNN [6]
StableGNN [44]
DGNN [45] v
CAL [46]
DSE [47]
CIGA [48]
EQuAD [49]
CSIB [50]
G-Splice [51]
CaNet [52] v
E-invariant GR [53]
gMPNN*®* [54]
CFLP [55]

Gem [56] v

Model

Causality-
based
Graph Models

AR N N N Y S N N N N NN NN NN
AN N R N N S N YT AR NN NN

AN NN NN T N N N NN NN

AN NN

GIL [57]

C2R [58]

DIR [59]

GSAT [60]
VIVACE [62]
UIL [61]

EERM [63]

INL [64]
FLOOD [65]
GraphMETRO [66]
DIDA [67]

SILD [68]
EAGLE [69]
SR-GNN [70]
SizeShiftReg [71]
StableGL [72]

Graph
Invariant
Learning

AN NN

AN

Learning
Strategy

AN

AN

AN

AR NS YA
AN N N N R N N N N N N N N N N N NN N NN

DAGNN [73]
GNN-DRO [74]
GraphAT [75]
CAP [76]
WT-AWP [77]
OAD [78]

Graph
Adversarial
Training

AN NN

AN NN N NN N

<

Pretraining-GNN [79]
PATTERN [80]
DR-GST [81]
GraphCL [30]

RGCL [82]

GAPGC [83]

GT3 [84]

HomoTTT [85] 4

Graph
Self-supervised
Learning

ANAN

NNSNS NN
AN N N N T N N N N N N N N N N N N N N S NN NN

AN N N Y TN AN N NN N N N N N N N N N N N N NN

NAOSNKRNRSNK SRR SN

“Task™ denotes the task type that each method focuses on, including node/link/graph level tasks. “Shift Type” denotes the type of distribution shifts
that each method can handle, including topology-level (i.e., graph size and graph structure) and feature-level (i.e., node features) distribution shifts.
“Backbone agnostic” indicates whether the method can be used for other GNN backbones. “|&| > 1" indicates whether the method relies on multiple

environments during the training process.

formulated as:

min By [€(fo(X), Y1), )
0

where (X', Y”) belongs to training set D’ augmented from D. In
general, the graph augmentation literature can be summarized
into three types of strategies, including structure-wise augmen-
tations, feature-wise augmentations, and mixed-type augmenta-
tions.

A. Structure-Wise Graph Data Augmentation

Since the graph structure (i.e., topology) plays an important
role in predicting the properties of graphs, some works focus on
structure-wise augmentations for the input graphs to generate
more diverse training topologies that potentially cover some

unobserved testing topologies, leading to better OOD general-
ization ability. Here we mainly review the representative graph
data augmentation approaches that claim to or have practically
been verified to improve the OOD generalization in the paper, the
same below. Please refer to the graph augmentation surveys [18],
[19] for more details of other methods.

GAug (Graph Augmentation) [24] proposes to generate aug-
mented graphs via a differentiable edge predictor for improv-
ing the generalization. It finds that the edge predictors can
effectively encode class-homophilic structure to promote intra-
class edges and demote inter-class edges in the given graph
structure. Such edge manipulation can not only benefit the
prediction accuracy but the generalization ability of the graph
models. GAUG uses an edge prediction module to modify the
given input graph for the downstream training and inference
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processes. It can also learn to generate possible new edges for
the input graph. The performance of node-level classification
tasks can be improved without any modification at inference
time. Based on both denoised structure and mimic variability, it
boosts the generalization capability.

MH-Aug (Metropolis-Hastings Data Augmentation) [25] fur-
ther proposes graph augmentation from a perspective of a
Markov chain Monte Carlo sampling [89] to flexibly control
the strength and diversity of augmentation. A sequence of aug-
mented samples are drawn from the explicitly designed target
distribution that controls the augmentation. For tackling the
infeasibility of direct sampling from the complex distribution,
it adopts the Metropolis-Hastings algorithm to obtain the aug-
mented samples. Instead of random graph augmentations, this
method is more controllable, including an efficient strategy to
measure and control the augmentation strength reflecting the
structural changes of ego-graphs (or samples in node classifica-
tion). Finally, the OOD generalization power is increased by the
diverse augmented training samples.

KDGA (Knowledge Distillation for Graph Augmenta-
tion) [26] identifies the negative augmentation problem of the
graph augmentation methods above, namely these methods
could cause overly severe distribution shifts between the aug-
mented graphs for training and the graph for testing, leading
to suboptimal generalization. KDGA is a graph structure aug-
mentation method proposed based on the knowledge distillation
technique to reduce the potential negative effects of distribution
shifts. Specifically, it extracts the knowledge from the GNN
teacher model trained on the augmented graph data and leverages
such knowledge in a partially parameter-shared student model
that is tested on the given input graph. The experiments on both
homophily and heterophily graph datasets show the effective-
ness in node-level tasks.

B. Feature-Wise Graph Data Augmentation

Besides structure-wise augmentations introduced above that
remove or add edges for the input graph, some techniques on
manipulating node features are also developed recently, showing
effectiveness in enhancing the OOD generalization.

GRAND (Graph Random Neural Network) [27] is one simple
yet effective feature-wise augmentation method for improving
the generalization. It first randomly drops on node features either
partially or entirely and then propagates the perturbed node
features over the input graph. Therefore, each node of the input
graph can eliminate the excessive sensitivity to specific neigh-
borhoods that could induce poor OOD generalization. Under the
homophily assumption [90], it stochastically creates different
augmented representations for each node. The consistency loss
minimizes the distance of the representations learned from the
augmented graphs.

FLAG (Free Large-scale Adversarial Augmentation on
Graphs) [28] is another simple, scalable, and general graph data
augmentation method for better generalization. It proposes to
iteratively augment node features in input node feature space
with gradient-based adversarial perturbations during training,
while keeping graph structures unchanged. It leverages the free
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adversarial training method [91] to craft adversarial data aug-
mentations. Due to its simple and scalable design, this method
can conduct efficient training on some large-scale datasets
and also can be easily incorporated into the training pipeline
of common GNN backbones. Different from GRAND that is
only designed for tasks on nodes, FLAG can be utilized into
node/link/graph level tasks.

LA-GNN (Local Augmentation for GNN) [29] proposes a
local augmentation for GNNs to learn the distribution of the
node features of the neighbors conditioned on the center node’s
feature. Specifically, it first exploits a generative model to con-
duct the pre-training for learning the conditional distribution
of the neighbors’ node features of the center node’s feature.
Then, the learned distribution can be used to generate feature
vectors associated with the center node as additional input for
each training iteration. Since the pre-training of the generative
model and downstream GNN training are decoupled, this data
augmentation method is also model-agnostic, which can be
applied to most GNN backbones in a plug-and-play manner.
The feature vectors of new nodes can be directly generated via
the generative model, so that it can enhance the generalization of
the unseen testing nodes. The main difference between LA-GNN
with some feature-wise graph augmentations above is that it pays
more attention to the local information of the node neighbors
rather than only focusing on global augmentation concerning
the properties of the whole distribution of the graph.

C. Mixed-Type Graph Data Augmentation

Moreover, for combining the advantages of structure-wise and
feature-wise graph augmentation methods, some works do not
conduct single type of augmentation on graph topology or node
feature, but in the mixed-type paradigm, which are increasingly
popular in the community for improving OOD generalization.

GraphCL (Graph Contrastive Learning) [30] first proposes
four general data augmentations for graph-structured data, in-
cluding node dropping, edge perturbation, attribute masking,
and subgraph sampling. Specifically, node dropping is to ran-
domly remove nodes as well as the links to neighbors. And the
edge perturbation is to randomly add or remove a fraction of
edges. Attribute masking is to mask off certain node attributes by
setting the attributes to Gaussian noises. Subgraph sampling is to
sample a subgraph using random walk, which includes a fraction
of nodes from the input graph. After obtaining the augmented
samples of the input, it makes the graph encoder maximize
representation consistency under augmentations and has shown
good OOD generalization ability in graph classification [92].

GREA (Graph Rationalization Enhanced by Environment-
based Augmentations) [31] proposes a data augmentation strat-
egy based on environment replacement to improve the rationale
identification accuracy of the input graphs for OOD generaliza-
tion. The graph rationale is defined as a part of each input graph,
i.e., the representative subgraph, that best supports the prediction
and can be OOD generalizable. The authors argue that existing
augmentation methods (e.g., GraphCL) are mainly heuristic
modification to the input graphs, which could not directly
support the identification of graph rationales. They generate an



LI et al.: OUT-OF-DISTRIBUTION GENERALIZATION ON GRAPHS: A SURVEY

augmented example by replacing the environment subgraph of
the input graph with the environment subgraph of another graph
and encourage the augmented examples to have the same label
of the input graph. Considering the high complexity of explicit
subgraph decoding and encoding, it turns to implicitly conduct
rationale-environment separation and representation learning
for the original and augmented graphs in latent space. Based
on the accurately identified rationale of the input graph, they
verify that the OOD generalization ability is improved.

LiSA (Label-invariant Subgraphs to Construct Augmented
Environments) [32] is one inspiring and effective method to
generate several augmented domains based on label-invariant
subgraphs extracted from the source domain for OOD gener-
alization. It is a promising graph data augmentation method
designed specifically for achieving graph OOD generalization.
Since distribution shifts arise from domain disparities, LiSA
ensures the graph predictor performs consistently across do-
mains. To address the challenge of collecting sufficient domains,
LiSA generates augmented domains by using variational sub-
graph generators to output diverse subgraphs while maintaining
critical predictive information. An energy-based regularization
promotes diversity by enlarging the distances between distri-
butions of different augmented domains, while an information
constraint ensures subgraphs retain label-relevant information.
These augmented domains preserve consistent predictive rela-
tionships, enabling the graph predictor to generalize effectively
on OOD testing graphs in unseen domains.

AIA (Adversarial Invariant Augmentation) [33] proposes a
graph augmentation technique to alleviate the covariate shift
problem that is one specific scenario in graph OOD gener-
alization. The authors claim that existing graph augmentation
strategies suffer from limited environments or unstable causal
features, restricting their OOD generalization ability under co-
variate shift data. To tackle this problem, AIA first proposes
two principles for graph augmentation, which are environmental
diversity and causal invariance. The environmental diversity
principle encourages the graph augmentation to extrapolate
unseen environments (or domains). And the causal invariance
principle reduces the distribution gap between the augmented
graph data and unseen testing graph data. The method consists
of two main modules, including adversarial augmenter to ad-
versarially learn the masks on both graph topology and node
features for enhancing environmental diversity, causal generator
to output the masks that capture causal information. Based on
the two principles and corresponding designs, AIA can get rid
of vulnerability under covariate shift.

MARIO (Model-Agnostic Recipe for Improving OOD Gen-
eralization) [34] enforces representation consistency across di-
verse augmented views via graph augmentation, and incorpo-
rates conditional mutual information regularization to suppress
redundant information while preserving task-relevant features.
By jointly addressing augmentation-induced variability and rep-
resentation redundancy, MARIO effectively mitigates overfit-
ting to spurious correlations and achieves OOD generalization
on both node- and graph-level classification tasks.

Besides, in parallel with the development of graph neural
networks, Mixup and its variants [35], [93], as general data
augmentation methods that generate new instances based on the
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interpolation of the given instances, have been theoretically and
empirically shown to improve generalization ability in the fields
of computer vision [94] and natural language processing [95].
The similar strategies are also applied in graphs [96], [97],
[98], [99], [100], [101]. For example, GraphMix [96] adopts
manifold mixup [93] on node classification tasks by jointly
training a fully-connected network (FCN) and a GNN. The
loss of FCN is computed using manifold mixup while the loss
of GNN is computed normally. A parameter sharing strategy
is utilized between the FCN and GNN to help the transfer
of critical node representations from the FCN to the GNN.
G-Mixup [97] interpolates the node features and graph structure
in the embedding space as data augmentation, i.e., interpolating
the hidden representations of graphs. NodeAug [100] analogizes
Mixup with a two-branch graph convolution module. It mixes
the raw features of a pair of nodes, and feeds them into the
two-branch GNN layer, followed by mixing their hidden rep-
resentations of each layer. ifMixup (intrusion-free Mixup) [99]
applies Mixup not for the latent representations but directly on
the graph data. Due to the issue that graph data are irregular
and the nodes of two graphs are not aligned, ifMixup assigns
indices to the nodes arbitrarily and matches the nodes with
the indices. G -Mixup [101] tackles the key challenges when
mixing up directly on the graph data, as graph data is irregular
and not well-aligned, and graph topology between classes is
divergent. Specifically, it first adopts graphs within the same
class to estimate a graphon. After that, it does not manipulate
graphs directly, but interpolates graphons of different classes in
the Euclidean space to obtain the mixed graphons, where the syn-
thetic graphs are produced via sampling based upon the mixed
graphons. This method performs well in graph classification
datasets with distribution shifts, reflecting its promising OOD
generalization. OOD-GMixup [102] addresses hybrid structure
distribution shifts through controllable data augmentation. It first
extracts task-relevant graph rationales to eliminate spurious cor-
relations. Then, it generates virtual samples via manifold mixup
and calibrates them using Extreme Value Theory to reweight
training, improving OOD generalization. Since these methods
share similar ideas, we use the notation “Mixup” to denote these
Mixup-based methods that are introduced above in Fig. 2 and
Table II.

IV. MODEL

Besides augmenting the input graph data to assist achieving
good OOD generalization, there are branches of works that
specially design new graph models, i.e., fy in (1). By introduc-
ing some prior knowledge to model design, the graph model
is endowed with the ability to produce graph representation
with the properties that could help to improve OOD gener-
alization. Along this branch, there are two kinds of popular
techniques: disentanglement-based graph models and causality-
based graph models.

Distinction between Disentanglement-based and Causality-
based Methods: While both aim to extract stable, task-relevant
information while reducing the influence of spurious pat-
terns, they are built upon fundamentally different theoretical
principles and modeling strategies. Our categorization is
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based on their core mechanisms for achieving OOD gen-
eralization either through statistical or causal assumptions.
Disentanglement-based methods originate from representa-
tion learning and aim to decompose latent representations into
statistically independent components, each corresponding to
a distinct latent factor. These methods emphasize modular
and interpretable representations, often implemented via multi-
channel encoders or routing-based mechanisms [36]. Notably,
they do not require extra prior knowledge of the data-generating
process or assumptions about causality. Causality-based meth-
ods, by contrast, are motivated by principles from causal in-
ference. They assume that the observed graph data is gener-
ated from the underlying causal assumptions (e.g., structural
causal model), and seek to learn representations that are stable
across different interventions. Techniques in this category often
include confounder balancing, backdoor/frontdoor adjustment,
and counterfactual reasoning. Although both approaches aim to
improve OOD generalization, they differ in the type of informa-
tion they seek to capture: disentanglement-based methods focus
on identifying statistically independent factors in the data, while
causality-based methods aim to model the underlying causal
mechanisms that govern the data.

A. Disentanglement-Based Graph Models

In this section, we introduce the graph models based on
disentanglement for OOD generalization.

The formation of a real-world graph typically follows a com-
plex and heterogeneous process driven by the interaction of
many latent factors. Disentangled graph representation learning
aims to learn representations that separate these distinct and
informative factors behind the graph data and characterize these
factors in different parts of the factorized vector representa-
tions [36]. Such representations have been shown to enhance
OOD generalization [103], [104]. The existing methods fall into
three groups, i.e., supervised disentanglement methods [36],
[37], [38], [39], unsupervised generative disentanglement meth-
ods [40], and self-supervised contrastive disentanglement meth-
ods [41], [42].

DisenGCN [36] is the first method to learn disentangled
node representations, whose key ingredient is a disentangled
multichannel convolutional layer DisenConv. Executing inside
DisenConv, the proposed neighborhood routing mechanism is
to identify the factor that may cause the link from a center node
to one of its neighbors, and accordingly send the neighbor to
the channel responsible for that factor. It infers the latent factors
by iteratively analyzing the potential subspace clusters formed
by the node and its neighbors, after projecting them into several
subspaces. The authors prove that after a sufficient number of
iterations, the proposed neighborhood routing mechanism can
converge. Therefore, each channel of DisenConv can extract
features specific to only one disentangled latent factor from the
neighbor nodes, and perform a convolution operation indepen-
dently. By stacking multiple DisenConv layers, DisenGCN is
able to extract information beyond the local neighborhood and
produce disentangled representations. Since the latent factors of
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nodes are disentangled, it could lead to better OOD generaliza-
tion performance.

IPGDN (Independence Promoted Graph Disentangled Net-
work) [37] extends DisenGCN [36] by explicitly encourag-
ing the latent factors to be as independent as possible in ad-
dition to the neighborhood routing mechanism for disentan-
gling latent factors behind graphs. It minimizes the depen-
dence among different representations with a kernel-based mea-
sure Hilbert-Schmidt Independence Criterion (HSIC) [105].
Specifically, to disentangle the target node, the convolution
layer of IPGDN first constructs features from different as-
pects of its neighbors via disentangled representation learn-
ing, and then encourages the independence among latent rep-
resentations through minimizing HSIC to obtain the final re-
sults. Note that the disentangled representation learning and
independence regularization are jointly optimized in a uni-
fied framework, leading to more disentangled representations
when compared with DisenGCN. And both DisenGCN [36]
and IPGDN [37] are proposed for handling node-level tasks on
graphs.

FactorGCN (Factorizable GCN) [38] is a disentangled GNN
model for graph-level representation learning. It adopts a fac-
torizing mechanism by decomposing input graphs into several
interpretable factor graphs for graph-level disentangled repre-
sentations. Each of the factor graphs is separately sent to a
GCN, tailored to aggregate features in terms of only one disen-
tangled latent factor, followed by an aggregating operation that
concatenates together all derived features of disentangled latent
factors. The final produced graph-level representations present
block-wise interpretable features, and each of the factorized
representations corresponds to a disentangled and interpretable
relation space. These steps constitute one layer of FactorGCN,
so that FactorGCN can produce a hierarchical disentanglement
with various numbers of factor graphs at different levels by
stacking a number of layers to disentangle the input data at
different levels.

Compared with the methods disentangling latent factors,
DisC (Disentangled Causal Substructure) [39] is a disentan-
gled GNN model directly disentangling causal and noncausal
information of the input graph. By explicitly disentangling the
input graph into causal and bias subgraphs, this method can only
utilize the causal substructures to make stable predictions when
severe bias appears under distribution shifts. Specifically, it first
filters edges into causal and bias (i.e., noncausal) subgraphs by
a parameterized edge mask generator, whose parameters are
shared across entire datasets. The edge masker is expected to
indicate the importance for each edge and extract causal and bias
subgraphs. Then, the causal and bias subgraphs are fed to two
GNNs trained with causal-aware weighted cross-entropy loss
and bias-aware generalized cross-entropy loss respectively, lead-
ing to disentangled representations. Next, it further permutes the
latent representations extracted from different graphs to generate
more training samples. Although containing both causal and bias
information, the causal and bias subgraph of newly generated
samples are decorrelated. Finally, the proposed model could
focus on the true correlation between the disentangled causal
subgraphs and labels for achieving OOD generalized prediction.
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Besides the supervised methods above, there exist some un-
supervised disentangled methods.

NED-VAE (Node-Edge Disentangled Variational Auto-
encoder) [40] is a deep unsupervised generative approach for
disentanglement learning on graphs, which can automatically
capture the independent latent factors in both edges and nodes
from attributed graphs. The objective is designed for node-edge
joint disentanglement by optimizing three sub-encoders (i.e., a
node encoder, an edge encoder, and a node-edge co-encoder) that
learn the three types of representations, and two sub-decoders
(i.e., anode-decoder and an edge decoder) that co-generate both
nodes and edges to model the complicated relationships between
nodes and edges. The base NED-VAE can also be extended
to realize the group-wise and variable-wise disentanglement to
support more fine-grained disentanglement.

Since reconstruction in unsupervised generative methods
could be computationally expensive and even introduce bias
that has a negative effect on the learned representations, DGCL
(Disentangled Graph Contrastive Learning) [41] first proposes to
learn disentangled graph representations with self-supervision.
Specifically, it first identifies the latent factors behind the in-
put graph and derives its factorized representations by the
tailored disentangled graph encoder whose key ingredient is
a multi-channel message-passing layer. Each of the factorized
representations describes a latent and disentangled aspect per-
tinent to a specific latent factor of the graph. Then it con-
ducts factor-wise contrastive learning in each representation
subspace characterized by each factor independently instead
of in the whole representation space. This tailored design
can encourage that each disentangled factor of the factorized
representations is sufficiently discriminative only under one
specific aspect of the whole graph, so as to help the graph
encoder produce disentangled graph representations that inde-
pendently reflect the expressive information of latent factors.
Unlike generative models, contrastive learning is an instance-
wise discriminative approach that makes similar instances closer
and dissimilar instances far from each other in representa-
tion space [106], [107], so it can eliminate computationally
expensive graph reconstruction and learn informative graph
representations.

To further promote the disentanglement of the learned graph
representations, IDGCL (Independence Promoted Disentangled
Graph Contrastive Learning) [42] further extends DGCL by
explicitly employing HSIC [105] to eliminate the dependence
among disentangled representations that reflect different aspects
of graphs pertinent to different latent factors. Since the disen-
tangled graph representations are expected to capture mutually
exclusive information in terms of the latent factors, IDGCL
formulates the statistical independence among different latent
representations effectively. The factor-wise contrastive repre-
sentation learning and independence regularization are jointly
optimized in a unified framework so that the disentangled graph
encoder can produce better disentangled graph representations.
Compared with the existing methods, IDGCL encodes a graph
with multiple disentangled representations in a self-supervised
manner, making it possible to explore the meaning of each
channel, which benefits in more explainability and OOD gener-
alization for producing graph representations.
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OOD-GCL (OOD Generalized Disentangled Graph Con-
trastive Learning) [43] further introduces a theoretically-
guaranteed disentangled graph contrastive learning model to
address OOD generalization challenges. By employing a dis-
entangled graph encoder and tailored invariant self-supervised
learning, it can capture invariant latent factors, ensuring general-
ized graph representations under distribution shifts. Theoretical
analyses confirm its ability to provably learn disentangled graph
representations and achieve OOD generalization based on the
learned disentangled graph representations.

B. Causality-Based Graph Models

In this section, we introduce the graph models based on
causality for OOD generalization.

Causal inference is one important technique to achieve OOD
generalization. Graph machine learning models tend to exploit
subtle statistical correlation existing in the training set even
though it is a spurious correlation (unexpected “shortcut”) for
predictions to boost training accuracy. The performance of graph
models that heavily rely on the spurious correlations can be
substantially degraded since the spurious correlations could
change in the wild OOD testing environments. In contrast, the
causality-based graph models supported by causal inference the-
ory can inherently capture causal relations between input graph
data and labels that are stable under distribution shifts [108],
leading to good OOD generalization. The existing methods
can be divided according to their theoretical ground including
confounder balancing [6], [44], [45], predefined structural causal
model [46], [47], [53], [54], and counterfactual inference [55]
and Granger causality [56].

1) Confounder Balancing Based Methods: Some meth-
ods [6], [44], [45] introduce confounder balancing into graph
models.

OOD-GNN [6], backed by confounder balancing the-
ory [109] in causality, first tackles the OOD generalization
problem by a non-linear decorrelation operation on graphs.
Specifically, OOD-GNN proposes to eliminate the statistical
dependence between causal and noncausal graph representations
of the graph encoder by a nonlinear graph representation decor-
relation method utilizing random Fourier features [110], which
scales linearly with the sample size and can get rid of spurious
correlations. The parameters of the graph encoder and sample
weights for graph representation decorrelation are optimized
iteratively to learn discriminant graph representations for predic-
tions. The decorrelation operation actually has the same effect
with confounder balancing that encourages the independence
between treatment and confounder. The graph encoder trained
on the weighted dataset can estimate the causal effect of the
variables in graph representations to the labels more accurately,
while getting rid of the spurious correlations. In this way, OOD-
GNN achieves the satisfactory performance on several graph
benchmarks with various types of distribution shifts (i.e., shifts
on graph sizes, node features, and graph structures), indicating
its strong OOD generalization ability in the wild environments.

StableGNN [44] proposes to exploit a differentiable graph
pooling layer to extract subgraph-based decorrelated repre-
sentations based on sample reweighting, which is similar in
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principle to OOD-GNN. First, the graph high-level variable
learning component employs a graph pooling layer [111], [112]
to map nearby low-level nodes to a set of clusters, where each
cluster is expected to be one densely-connected subgraph unit of
original graph. Then, it generates the cluster-level embeddings
through aggregating the node embeddings in the same cluster,
and aligns the cluster semantic space across graphs through an
ordered concatenation operation. The cluster-level embeddings
act as the high-level variables for graphs. Next, the sample
weights are optimized to eliminate the statistical dependences
between these high-level variables. Thus, the graph encoder can
concentrate more on the true connection between discriminative
substructures and labels, leading to good OOD generalization
ability.

In addition to the graph-level decorrelation models above,
DGNN (Debiased GNN) [45] is a node-level decorrelation
model with a similar methodology with StableGNN [44] that
removes the spurious correlations on nodes to achieve stable
predictions under distribution shifts. Specifically, it proposes a
framework for OOD generalized node representation learning
by jointly optimizing a decorrelation regularizer and a weighted
GNN model. The decorrelation regularizer is expected to learn
a set of sample weights for eliminating the spurious correlation
between causal and noncausal node information for OOD gener-
alization. And the learned sample weights via the decorrelation
regularizer are used to reweight the prediction loss of GNN
model so that the prediction could be OOD generalized.

2) Structural Causal Model Based Methods: Some meth-
ods [46], [47], [48], [53], [54] take the structural causal model
(SCM) into account in their model designs. In general, the SCM
describes the underlying causal mechanisms. It can improve
OOD generalization when introducing appropriate causal mech-
anisms into model designs.

CAL (Causal Attention Learning) [46] takes a causal look
at the GNN model and constructs a structural causal model via
presenting the causality among five variables: graph data, causal
feature, shortcut feature, graph representation, and prediction.
Based on this SCM, they focus on the backdoor path between
causal feature C' and prediction, wherein the shortcut feature
S plays a confounder role. This backdoor path could form
spurious correlation, namely using the shortcut feature instead
of using causal feature to make predictions, leading to poor OOD
generalization under distribution shifts. Therefore, this method
exploits the do-calculus on the causal feature to cutting off the
backdoor path (i.e., backdoor adjustment [113]), and gets rid of
the confounding effect. Finally, it can learn the true relationships
between the causal feature and prediction, without being influ-
enced by the unstable shortcut features, which enhances OOD
generalization on graph classification tasks.

DSE (Deconfounded Subgraph Evaluation) [47] proposes to
faithfully measure the causal effect of explanatory subgraphs
on the prediction. The authors claim that distribution shift is
hardly measurable, so that it is hard to block the backdoor path
from causal subgraph to label by the backdoor adjustment given
the predefined SCM. So, they utilize front-door adjustment and
introduce a surrogate variable of the causal subgraphs. Instead of
adopting the feature removal principle that is used in assessing
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the explanatory subgraph, it designs a generative model, termed
conditional variational graph auto-encoder, to generate the pos-
sible surrogates that conform to the data distribution. Therefore,
it can conduct unbiased estimation of the relation between causal
subgraph and label. Since evaluating the explanatory causal
subgraphs unbiasedly, it mitigates the out-of-distribution effect
and achieves good OOD generalization.

CIGA (Causality Inspired Invariant Graph Learning) [48] fur-
ther categorizes the latent interaction between causal part C' and
noncausal part S into fully informative invariant features (FIIF)
and partially informative invariant features (PILF), depending on
whether the latent causal part C' is fully informative about label
Y,ie.,(S, F) 1L Y|C. For FIIF assumption, the noncausal part
S is directly controlled by the causal part C'. And for PIIF, the
noncausal part S is indirectly controlled by the causal part C'
through the label Y. The two SCMs exhibit different behaviors
in the observed distribution shifts. If one of FIIF or PIIF is
excluded, the performances of graph OOD generalization can
degrade dramatically. Similarly, CIGA instantiates the causal
part C' as the critical subgraph that includes the information
about the underlying causes of the label. So the OOD gener-
alization can be achieved by identifying this critical subgraph
that maximally preserves the intra-class information among
different training environments, hence the predictions will be
stable to distribution shifts. EQuAD (Encoding-Quantifying
Decorrelation) [49] improves upon CIGA by identifying spu-
rious and causal features through a quantification mechanism,
which maps spurious features into a compact space for effective
decorrelation. It also incorporates a sample-specific reweighting
strategy to address data imbalance.

CSIB (Causal Subgraphs and Information Bottlenecks) [50]
leverages SCMs to identify invariant subgraphs that causally
influence labels across environments. It distinguishes FIIF and
PIIF scenarios, and integrates an information bottleneck to
suppress spurious features, enabling graph OOD generalization
under complex distribution shifts.

G-Splice (Graph Splicing for Structural Linear Extrapola-
tion) [51] integrates SCMs to address graph OOD generalization
by explicitly modeling causal and environmental subgraphs. By
identifying causal patterns from environment-dependent fea-
tures, the proposed framework ensures that extrapolated graph
structures maintain causal validity. It leverages SCM to generate
diverse and causally consistent OOD samples through non-
Euclidean space linear extrapolation, significantly enhancing the
generalization capabilities of GNNs under complex distribution
shifts.

CaNet (Causal Intervention for Network Data) [52] builds
on causal intervention theory to address the confounding bias in
node-level prediction tasks induced by latent environments. It in-
troduces an environment estimator to infer pseudo-environment
labels, dynamically guiding a mixture-of-experts GNN predic-
tor. This collaborative learning framework ensures that stable,
environment-insensitive relations are captured, improving gen-
eralization across diverse distribution shifts.

E-invariant GR [53] proposes a twin network directed
acyclic graph [114] as their SCM to learn size-invariant graph
representations (GR) that better extrapolate between test and



LI et al.: OUT-OF-DISTRIBUTION GENERALIZATION ON GRAPHS: A SURVEY

train graph data. Different from the SCMs mentioned above,
the proposed SCM depicts the more complex and fine-grained
relations among several variables, including graphon, train/test
environment, node feature, edge, and graph size. In this SCM,
the training graph is characterized by a graphon, which defines
both the label and structural and attribute characteristics of
graphs. The training environment is indicated by one unobserved
environment variable that represents specific graph properties
in terms of environments so that it could change between the
training and test set. Based on this SCM, the authors propose an
approximately size-invariant graph representation that is able to
extrapolate to OOD test data and prove that the learned graph
representation can perform no worse on the OOD test data than
on a test dataset having the same environment distribution as the
training data. Furthermore, this method can achieve extrapola-
tions based on only one training environment (e.g., all training
graphs have the same size).

Since E-invariant GR [53] only studies the OOD generaliza-
tion of GNNs for graph classification, gMPNN®® [54] further
extends it to study the OOD generalization of GNNs for link
prediction in a similar setting, where test graph sizes are larger
than training graphs. Specifically, the authors first proposed
a SCM assuming the data generation process for the goal to
learn link predictors that generalize under distribution shifts on
graph sizes. And they prove nonasymptotic bounds to indicate
that as the sizes of test graphs increase, the link predictors
based on permutation-equivariant structural node embeddings
will converge to a random guess. They show that the output
structural pairwise embeddings can converge to embeddings of
a continuous function that achieves OOD generalization in link
prediction tasks.

3) Counterfactual Inference and Granger Causality Based
Methods: Besides, some graph OOD methods are inspired by
counterfactual learning [113], which is at the highest level in
the causation ladder [115] and answers what would happen in
another possible world if something had or had not happened.
And some methods are motivated by Granger causality [116],
which describes a causal relationship between variables of some
feature and label if we are better able to predict label using all
available information than if the information apart from such
feature had been used.

CFLP (Counter-Factual Link Prediction) [55] focuses on
OOD link prediction tasks to learn the causal relationship be-
tween the global graph structure and link existence by training
GNN-based link predictors to predict both factual and coun-
terfactual links. It aims to deal with the counterfactual ques-
tion: “would the link still exist if the graph structure became
different from observation?” By answering this question, the
counterfactual links will be used to train the graph encoder
for producing OOD generalized representation. To generate
counterfactual link samples, this method employs causal models
that treat the information (i.e., learned representations) of node
pairs as context, global graph structural properties as treat-
ment, and link existence as outcome. After that, the proposed
model can generate counterfactual training link samples and
thus learn representations from both the factual (i.e., observed)
and counterfactual (i.e., generated) links for improving OOD
generalization.
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Gem [56], built upon the Granger causality, inputs the original
computation graph into the explainer and outputs a causal ex-
planation graph, exhibiting better generalization abilities. This
method considers there exists a causal relationship between
this edge/node and its corresponding prediction if the predic-
tion performance decreases as some node or edge is missing.
Since graph data is inherently interdependent, where nodes
and their edges are correlated variables, it further incorporates
various graph rules, e.g., connectivity check, to encourage the
obtained explanations to be valid and human-intelligible causal
subgraphs. Finally, this method can provide interpretable causal
explanations and OOD generalized predictions for GNNs.

V. LEARNING STRATEGY

Besides graph data augmentation and graph models, some
works focus on exploiting training schemes with tailored op-
timization objectives and constraints to promote OOD gener-
alization, including graph invariant learning, graph adversarial
training, and graph self-supervised learning.

A. Graph Invariant Learning

First, we introduce the graph invariant learning methods for
OOD generalization.

Invariant learning, which aims to exploit the invariant relation-
ships between features and labels across different distributions
while disregarding the variant spurious correlations, can prov-
ably achieve satisfactory OOD generalization under distribution
shifts [117], [118], [119]. When assessing causality is challeng-
ing or the strong assumptions are potentially violated in prac-
tice, it can approximate the task by searching features that are
invariant under distribution shifts [118] for OOD generalization.
Invariant learning assumes that the information of each instance
for prediction includes two parts, i.e., invariant part whose rela-
tionship with the label is stable across different environments,
and variant part whose relationship with the label can change
across different environments. A good OOD generalization can
be obtained when making predictions only on the invariant
information. Along this line, there are mainly two types of
graph invariant learning methods: invariance optimization [57],
[59], [60], [63], [67] and explicit representation alignment [70],
[71], [72].

1) Invariance Optimization: These methods are built upon
the invariance principle to address the graph OOD generalization
problem. The invariance principle assumes the invariance prop-
erty inside the data, so that it can find such invariance in multiple
environments to achieve OOD generalization. The assumption
can be formulated as:

Assumption 1. (Invariance Assumption): There exists a por-
tion of information ®(X) inside input instance X such that
Ve, €' € supp(&), P¢(Y|®(X)) = P (Y|®(X)), where £ de-
notes all possible environments and ®(X) is often called as
invariant rationales of input instance X.

Following the recent invariant learning based OOD general-
ization studies [117], [118], [119], these invariance optimization
methods treat the cause of distribution shifts between testing
and training graph data as a potential unknown environmental
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variable e. The optimization objective can be formulated as:

min max R(fyle), 3
fo eesupp}((é') (f0| ) )

where R(fgle) = Ex ype[l(fo(P(X)),Y)] is the risk of the
fo on the environment e that makes predictions based on the
invariant information ®(X). Therefore, as shown in the last
column of Table II, this type of methods relies on explicit
multiple-environment split (indicated by |£| > 1) that can be
provided in advance or generated during the training process.

GIL (Graph Invariant Learning) [57] is proposed to capture
the invariant relationships between predictive graph structural
information (i.e., subgraphs or rationales) and labels under
distribution shifts for graph-level OOD generalization. One of
the main challenges for graph invariant learning is that the
environment labels for graphs is generally unobserved or pro-
hibitively expensive to collect, leading that it is difficult to learn
invariance in multiple environments. Therefore, this method first
studies invariant learning without explicit environment split.
Specifically, GIL jointly optimizes three mutually promoting
modules, including the invariant subgraph identification module,
the environment inference module, and the invariant learning
module. First, the invariant subgraph identification module is
a GNN-based subgraph generator ®(-). Given the input graph
G, it identifies the invariant subgraph ®(G) and defines the rest
of the graph, i.e., the complement of invariant subgraph, as the
variant subgraph and denote it as G\®(G). Then, the environ-
ment inference module cluster all identified variant subgraphs
of the datasets to infer the latent environments. The intuition is
that since the invariant subgraph captures invariant relationships
between predictive graph structural information and labels, the
variant subgraphs in turn capture variant correlations under
different distributions, which are environment-discriminative
features. Finally, the invariant learning module optimizes the
proposed maximal invariant subgraph generator criterion given
the identified invariant subgraphs and inferred environments to
generate graph representations capable of OOD generalization
under distribution shifts. Theories are provided to show that the
OOD generalization problem on graphs is equivalent to finding a
maximal invariant subgraph generator of GIL, and further prove
that GIL satisfies permutation invariance.

C2R (Cooperative Classification and Rationalization) [58]
further proposes a cooperative framework by integrating classifi-
cation and rationalization modules. By clustering non-rationale
subgraphs across the dataset, C2R infers global environments
instead of local environment, and feeds them to enhance clas-
sification, which can improve OOD generalization under distri-
bution shifts.

DIR (Discovering Invariant Rationale) [59] is proposed to
handle graph-level OOD generalization tasks by discovering
invariant subgraphs ®(G) for GNN under interventional dis-
tributions. The basic setting of DIR is also different from
the traditional setting where environments are observable and
attainable, but follows a similar setting with GIL that does
not assume explicit environment split in advance. In detail,
it uses a GNN-based subgraph generator to split the input
graph into invariant and variant subgraphs under distribution
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shifts, which are encoded by the encoder into representations
respectively. Then, the proposed distribution intervener conducts
interventions on the variant representations to create multiple
interventional distributions as the multiple environments. Fi-
nally, the two classifiers that are respectively built upon the
invariant and variant subgraphs make predictions for the input
graph instance jointly, so that the invariant risk is minimized
across different environments. With this strategy, DIR can
capture the invariant rationales that are stable across different
distributions while filtering out the spurious patterns for OOD
generalization.

GSAT (Graph Stochastic Attention) [60] addresses graph-
level OOD generalization problem utilizing the attention mech-
anism to build inherently interpretable GNNs for learning in-
variant subgraphs ®(G) under distribution shifts. The learned
invariant subgraphs of GSAT root in the notion of information
bottleneck [120]. The attention is formulated as the information
bottleneck by injecting stochasticity into the attention mecha-
nism so as to constrain the information flow from the input graph
to the prediction. The injected stochasticity over the invariant
label-relevant subgraphs can be automatically reduced during
the training stage, while that over the variant label-irrelevant
subgraphs can be kept. Besides, GSAT also penalizes the amount
of information from the input graph data. Finally, GSAT can
output the interpretable and OOD generalizable subgraphs that
provably do not contain patterns that are spuriously correlated
with the task under some assumptions.

UIL (Unified Invariant Learning) [61] proposes a unified
framework for graph OOD generalization by jointly enforc-
ing structural and semantic invariance. It separates stable and
environmental features via node- and edge-level masks, then
estimates stable graphons to capture class-specific structural
patterns. By minimizing graphon distances across environments
and enforcing label-consistent predictions, it accurately identi-
fies minimal stable features.

VIVACE (Variance Contrastive Estimation) [62] highlights
the importance of variant subgraphs, which carry environment-
related information often overlooked in prior work. It proposes
leveraging variant subgraphs to estimate spurious correlations
and guide the identification of invariant subgraphs. A reweight-
ing mechanism based on inverse propensity scores is further
introduced to correct for spurious effects, leading to enhanced
OOD generalization.

Besides the graph-level OOD generalized methods, EERM
(Explore-to-Extrapolate Risk Minimization) [63] is designed
to handle node-level tasks under distribution shifts, which can
achieve a valid solution for the node-level OOD problem under
mild conditions. First, to account for the non-IID nature of nodes
on graphs, this method proposes to transform a graph into a
set of ego-graphs for center nodes, so that it can formulate the
node-level OOD generalization problem inspired by the graph-
level problem. Then, it extends the invariance principle with the
recursive computation on the induced BES trees of ego-graphs to
consider the structural information. Finally, the GNN backbone
is optimized by minimizing the mean and variance of risks
from multiple training environments that are generated by the
environment generators, while the environment generators are
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trained by maximizing the variance loss via a policy gradient
method.

INL (Invariant Node Representation Learning) [64] also
builds upon the invariant learning principle to address distri-
bution shifts in graph data with multiple latent environments.
By defining invariant and variant patterns as ego-subgraphs,
INL employs contrastive modularity-based graph clustering to
infer node environments. It then optimizes a maximal invariant
pattern criterion to produce node representations that general-
ize effectively to unseen distributions. Theoretical guarantees
support its performance, and experiments on both synthetic and
real-world datasets demonstrate substantial gains over state-of-
the-art methods in node classification tasks under distribution
shifts.

FLOOD (Flexible Invariant Learning for Out-Of-
Distribution Generalization) [65] further introduces a dual
approach: invariant representation learning and bootstrapped
representation learning. By constructing training environments
and also refining the shared encoder during the test phase,
FLOOD achieves improved OOD generalization. This
framework effectively addresses distribution shifts in both
transductive and inductive settings.

GraphMETRO (Graph Mixture-of-Experts for OOD gener-
alization) [66] tackles distribution shifts by leveraging a mixture-
of-experts (MoE) framework. Each expert is trained to mitigate a
distinct shift component, such as graph size, node degree, or fea-
ture noise, via stochastic graph transformations. A gating model
dynamically identifies the relevant shift components per input
and guides the aggregation of expert outputs into an invariant
representation. This architecture enables flexible modeling of
heterogeneous distribution shifts.

DIDA (Disentangled Intervention-based Dynamic Graph At-
tention Network) [67] is the first method to handle graph OOD
generalization under more complex spatial-temporal distribu-
tion shifts. The existing methods usually focus on only spatial
distribution shifts existing on node features or graph structures
while can not be directly utilized in more complex scenar-
ios where the distribution shifts can simultaneously exist in
spatial and temporal information. Specifically, it first designs
a disentangled spatial-temporal attention network to discover
the invariant and variant patterns behind the dynamic graphs,
which enables each node to attend to all its historic neighbors
through a disentangled attention message-passing mechanism.
Then, it introduces a spatial-temporal intervention mechanism
to create multiple intervened distributions via sampling and
reassembling the variant patterns across neighborhoods and
time, leading that the spurious correlations between the variant
patterns and labels can be eliminated. Note that the variant
patterns are highly entangled across nodes and it is computa-
tionally expensive if directly generating and mixing up subsets
of structures and features to do intervention. So, this method
approximates the intervention process with summarized pat-
terns obtained by the disentangled spatio-temporal attention
network instead of the original structures and features. Lastly,
the invariance regularization is used to minimize prediction vari-
ance in multiple-intervened distributions for learning invariant
patterns.
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Furthermore, SILD (Spectral Invariant Learning for Dynamic
Graphs) [68] extends DIDA to spectral domain with discovering
the invariant and variant spectral patterns for handling distribu-
tion shifts on dynamic graphs. EAGLE (Environment-Aware
Dynamic Graph Learning) [69] addresses OOD generalization
on dynamic graphs by modeling spatio-temporal latent environ-
ments through environment-aware convolution and disentangle-
ment. It can model invariant patterns while mitigating spurious
correlations, achieving good generalization performance under
distribution shifts.

2) Explicit Representation Alignment: The key idea of this
line of works is to explicitly align the graph representa-
tions among multiple environments (or domains) to learn
environment-invariant graph representations for OOD general-
ization. The graph representation alignment strives to minimize
the difference (or encourage the similarity) across multiple
environments via the introduced regularization strategy, which
can be formulated as:

H}iﬂ ]EX7Y [é(fH (X)’ Y)} + éreg (5)7 “4)

where ;.4 (&) denotes the loss of the adopted regularizer. And
the multiple environments £ for calculating the regularizer are
also usually unavailable in advance for most graph scenarios and
are generated during the training process.

SR-GNN (Shift-Robust GNN) [70] proposes to address node-
level OOD generalization in GNNs by explicitly minimizing
the distributional differences between biased training data and
a graph’s true inference distribution of graphs. It encourages
a biased sample of labeled nodes to more closely conform
to the distributional characteristics present in an independent
and identically distributed sample of the graph. The two kinds
of bias occurring in both deeper GNNs and more recent lin-
earized (shallow) versions of these models can be handled.
Specifically, SR-GNN first addresses the distribution shift via
a regularization over the hidden layers of the network for stan-
dard GNN models (e.g., GCN [121]) that iteratively update
information upon the graph structure. The regularizations for
measuring discrepancy among different distributions can be
maximum mean discrepancy (MMD) [122] or central moment
discrepancy (CMD) [123]. Then, for the linearized models
(e.g., SimpleGCN [124]) that decouple GNNs into non-linear
feature encoding and linear message passing, SR-GNN adopts
an instance reweighting strategy for encouraging the training
examples to be representative over the graph data, since the
graph can introduce bias over the features after all learnable
layers. It learns a group of optimal instance weights via kernel
mean matching (KMM) [125].

SizeShiftReg [71] aims to train GNNs with good size general-
ization performance from smaller to larger graphs, which adopts
asimilaridea with SR-GNN [70]. It does notrely on handcrafting
GNN’s based on specific knowledge or assumptions, but studies a
general regularization for any GNNs to be OOD generalizable to
the graph size distribution shifts. The introduced graph coarsen-
ing strategy is to simulate the distribution shifts in the size of the
training graphs. And the proposed regularization is expected to
encourage the GNNs to be OOD generalized. For a given training
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graph, they minimize the discrepancy measured by CMD [123]
between the distributions of the node representations learned by
the GNNs from the original training graphs and the coarsened
graphs. Under such a training paradigm, the learned GNNs can
achieve OOD generalization among different coarsened versions
of the graph as well as graphs with unknown size.

StableGL [72] focuses on stable graph learning (GL) to
capture environment-invariant node properties and explicitly
balance the multiple environments for generalizing well under
distribution shifts. Given one input graph as the training environ-
ment, they aim to train a GNN that has a high average prediction
performance but a low variance of performance on multiple
agnostic testing environments. In more detail, the proposed
method first performs biased selection on the input training
graph to construct multiple training environments. From a local
perspective, since one node in graph is partially represented by
the other neighbor nodes, this method proposes to capture stable
node properties via reweighting the neighborhood aggregation
process. From a global perspective, the authors find that the
prediction errors in different environments progressively diverge
in biased training, eventually leading to unstable performance
across environments. Therefore, the proposed method explicitly
aligns the training process by reducing the training gap among
different training environments, enforcing the learned GNN to
generalize well across unseen testing environments. Different
from SR-GNN [70] and SizeShiftReg [71] that adopt some
discrepancy measurement like MMD or CMD, the regularization
in this method is directly to minimize the variance of training
losses in several environments.

B. Graph Adversarial Training

In this section, we discuss the graph adversarial learning
methods for OOD generalization. Adversarial training has been
demonstrated to improve model robustness against adversarial
attacks and OOD generalization ability. Here we mainly focus
on the graph adversarial training methods that improve the
generalization ability, while the works protecting GNNs from
attacks can be found in the previous survey [22].

DAGNN (Domain Adversarial GNN) [73] is a method moti-
vated by DANN [126] that is one OOD generalization algorithm
to learn domain (or environment) invariant graph representations
by advocating domain-adversarial learning between the domain
classifier and the encoder. In particular, the first objective is to
minimize the classification loss in terms of the encoder on the
source domain data, and the second objective aims to facilitate
the differentiation between the source and target domains. Such
graph adversarial training strategy can maximally utilize the
domain information to train classifiers for OOD generalized
predictions classification. Note that this method is proposed
for text classification where the graphs are converted from the
documents, thus the domain (or environment) splits are available
in the dataset.

GNN-DRO [74] adopts distributionally robust optimiza-
tion [127] that is one type of classical algorithm to handle
distribution shifts for node-level tasks. The GNN is trained
by minimizing the worst expected loss over the considered
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Wasserstein ball, following the assumption that the data dis-
tribution resides in a Wasserstein ball centered at empirical data
distribution.

In addition to directly extending existing OOD approaches for
general machine learning to graph data above, there are some
other works taking more account of the properties of graph itself.

GraphAT (Graph Adversarial Training) [75] aims to improve
the model’s generalization via exploring the adversarial train-
ing on graphs. When generating adversarial perturbations on
a target sample, GraphAT maximizes the divergence between
the prediction of the target sample and its connected samples,
meaning that the adversarial perturbations should affect the
graph smoothness as much as possible. After that, GraphAT
minimizes the graph adversarial regularizer to update model
parameters, reducing the divergence between the prediction of
the perturbed target sample and its connected samples. And
a linear approximation method for calculating the adversarial
perturbations efficiently is derived based on back-propagation.
By resisting the worst-case perturbations, it can enhance model
robustness and generalization.

CAP (Co-Adversarial Perturbation) [76] is proposed from
the perspective of loss landscapes during training process. The
authors observe GNNs are prone to falling into sharp local
minima in loss landscapes in terms of model weight and fea-
ture. Therefore, they propose co-adversarial perturbation (CAP)
optimization to flatten the weight and feature loss landscapes
alternately, which can avoid falling into locally sharp minima
and improve generalization ability. Typically, they formulate
the co-adversarial training objective to minimize the maximum
training loss within a couple regions of model weights and
node features. For further tackling the efficiency problem of
co-adversarial training, they decouple the training objective
and devise the alternating adversarial perturbations: one step
to conduct the adversarial weight perturbation and training
GNN:ss, as well as another step to calculate the adversarial feature
perturbation for each node to update GNNs.

WT-AWP (Weighted Truncated Adversarial Weight Pertur-
bation) [77] follows the line that flatting local minima to improve
generalization for OOD graph data. Since directly applying ex-
isting adversarial weight perturbation techniques to train GNNs
is not effective in practice induced by the vanishing-gradient
issue, WT-AWP uses the loss of adversarial weight perturbation
as an additional regularizer with the loss function (e.g., standard
cross-entropy) for training GNN. It also removes perturbation
in the last layer of the GNN for a more fine-grained control of
the training dynamics. Besides the designs for training strategy,
a generalization bound for OOD graph classification is also
derived.

OAD (Online Adversarial Distillation) [78] is an online ad-
versarial knowledge distillation technique for GNNs. Different
from the above methods that introduce adversarial training into
the training process of GNNs, this method brings adversarial
training to solve the problem caused by the knowledge distil-
lation. Motivated by the knowledge distillation technique can
improve the OOD generalization, OAD trains a group of student
GNNs in an online fashion with both global and local knowledge.
By transferring informative knowledge of teacher network, the
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OOD generalization performance of student network can be
enhanced. To learn the complex structure of the local knowl-
edge, adversarial cyclic learning is proposed to achieve more
accurate embedding alignment among student models. It is not
only more efficient than vanilla knowledge distillation technique
with fewer parameters, but also more effective to handle graph
distribution shift.

C. Graph Self-Supervised Learning

Finally, we introduce the graph self-supervised learning meth-
ods for OOD generalization.

Self-supervision as an emerging technique has been employed
to train neural networks for more generalizable predictions
on the image field [128], [129], [130]. It is also shown that
self-supervised learning can benefit GNNs in gaining more
generalization ability [131], whose motivations are as follows.
First, the self-supervised learning tasks encourage the GNN
models to capture salient critical information of the input graph
while avoiding the learned representations trivially overfitting
“shortcuts” information as supervised learning, leading to better
OOD generalization. Then, Xu et al. [132] also attribute such
success to that self-supervised learning could map semantically
similar data to similar representations and therefore some OOD
testing data might fall inside the training distribution after the
mapping.

Here we mainly review the typical graph self-supervised
methods that claim to improve the graph OOD generalization.
For more details of other graph self-supervised methods, the
readers could refer to the surveys [20], [21].

Pretraining-GNN [79] explores several graph pre-training
techniques on both node-level and graph-level to improve OOD
generalization of GNNs. They encourage GNNSs to capture
domain-specific knowledge about nodes and edges, in addition
to graph-level knowledge such that the learned representations
can be more OOD generalized. For node-level pre-training of
GNN:ss, they propose two self-supervised methods, i.e., context
prediction and attribute masking. For graph-level pre-training
of GNN:gs, they also provide two options including making pre-
dictions about domain-specific attributes of entire graphs (e.g.,
supervised labels), or making predictions about graph structure
namely modeling the structural similarity of two graphs. Overall,
such pre-training strategy for GNNs is to first perform node-level
self-supervised pre-training and then graph-level multi-task su-
pervised pre-training.

PATTERN [80] is proposed to study the ability of GNNs
to generalize from small to large graphs, by proposing a self-
supervised pretext task that aims at learning useful d-pattern
representations. Although GNNs can naturally be applied to
graphs with different sizes, it is largely unknown about the mech-
anism of such size OOD generalization of GNNs. Therefore, the
authors first formalize a representation of local structures called
d-patterns for characterizing generalization to new graph sizes.
The d-patterns generalize the notion of node degrees to a d-step
neighborhood of the center node, which models the values of
the node and its d-step neighbors, as seen by GNNss. It is proved
that even only a small discrepancy in the d-patterns distribution
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between the testing and training distributions may result in
weight assignments that do not generalize well, indicating the
existence of bad global minima with poor generalization. Then,
the self-supervised pretext task is proposed aiming at learning
useful d-patterns representations from both small and large
graphs improving the OOD generalization on graph size with
noticeable gains.

DR-GST (Distribution Recovered Graph Self-Training) [81]
is a graph self-training framework that can recover the orig-
inal labeled dataset without distribution shifts. Specifically, it
first shows that the equality of loss function in self-training
framework under the distribution shifts and the population dis-
tribution if each pseudo-labeled node is weighted by a proper
coefficient. Due to the intractability of the coefficient, it replaces
the coefficient with the information gain after discovering the
same changing trend between them. The information gain is
respectively estimated via both dropout variational inference
and dropedge variational inference. Then, it can recover the
shifted distribution with the proposed information gain weighted
loss function, which forces the GNN to focus on nodes with
high information gain. Overall, DR-GST tackles the distribu-
tion shift problem from the perspective of information gain,
and proposes a loss correction strategy to improve qualities
of pseudo labels. Therefore, more unlabeled nodes can be as-
signed with pseudo labels whose distribution is the same as
that of labeled nodes so as to benefit the OOD generalization
ability.

Besides, graph contrastive learning can also be adopted to
promote OOD generalization.

GraphCL (Graph Contrastive Learning) [30] is one of the
representative self-supervised learning methods for GNNs and
has shown its generalization ability in practice. The authors
argue that self-supervision with handcrafted pretext tasks relies
on heuristics to design, and thus could limit the generality of
the learned graph representations. Therefore, they develop the
contrastive learning method GraphCL, whose key idea is to
make graph representations agree with each other under the
proposed four types of transformations for the input graph. The
generalizability ability of GraphCL is verified on molecular
property prediction in chemistry and protein function prediction
in biology.

RGCL (Rationale-aware Graph Contrastive Learning) [82]
is proposed to automatically discover rationales as graph aug-
mentations in contrastive learning for further improving the
generalization performance in unseen domains with distribution
shifts. The authors claim that despite promising performance of
some representative methods like GraphCL, etc., the intrinsic
random nature makes them suffer from potential semantic infor-
mation loss, thus hardly capturing the salient information and
undermining the generality ability. RGCL is proposed to tackle
this problem, which consists of two modules, i.e., rationale gen-
erator and contrastive learner. The rationale generator decides
fractions to reveal and conceal in the graph, and yields the
rationale encapsulating its instance-discriminative information.
The contrastive learner makes use of rationale-aware views to
perform instance-discrimination of graphs. Thus, it can prevent
losing discriminative semantics in augmented views as random
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augmentation and in turn preserve more rationale information
with generalization ability.

GAPGC (Graph Adversarial Pseudo Group Contrast) [83]
is a test-time training method designed for GNNs with a con-
trastive loss variant as the self-supervised objective during
testing. Recently the effectiveness of test-time training has
been validated to improve the performance on OOD test data,
where some self-supervised auxiliary tasks are proposed. The
authors argue that the simple augmentations in self-supervised
training (e.g., randomly dropping nodes or edges) could harm
the label-related critical information in graph representations.
Therefore, GAPGC generates relatively reliable pseudo-labels,
avoiding the severe shifts caused by the incorrect positive sam-
ples. The proposed adversarial learnable augmenter and group
pseudo-positive samples can promote the relevance between the
self-supervised task and the main task, so as to enhance the
performance of the main task. The theoretical evidence is also
derived to show that GAPGC can capture minimal sufficient in-
formation for the main task from information theory perspective,
which benefits the predictions on the OOD testing data.

GT3 (Graph Test-Time Training with Constraint) [84] is
another test-time training method on graphs, which proposes
a hierarchical self-supervised learning framework. Specifically,
it first introduces the global contrastive learning strategy to en-
courage node representations to capture the global information
of the whole graph. The global contrastive learning is based on
maximizing the mutual information between the local node rep-
resentation and the global graph representation. Then, it presents
the local contrastive learning for distinguishing different nodes
from different augmented views of a graph, so that the node
representation can capture more local information. Besides, an
additional constraint is proposed to encourage that the represen-
tations of testing samples are close to the representations of the
training samples. The model’s OOD generalization capacity for
the graph classification task can be enhanced based on this test
time training strategy with self-supervised learning.

HomoTTT (Homophily-guided Fully Test-Time Train-
ing) [85] is a model-agnostic framework for node classification
under OOD settings. It performs fully test-time training using
a parameter-free, homophily-based self-supervised contrastive
learning objective with adaptive graph augmentation. To avoid
performance degradation, it further introduces a homophily-
based model selection to selectively apply the adapted model
per node.

VI. THEORY

In this section, we review some literature focusing on theo-
retical analyses of the generalization of GNNs.

First, there are some theories mainly developed to derive
the generalization bound of GNNs based on different statistical
learning theories. Scarselli et al. [139] provide a generalization
bound for GNNs based on VC-dimension [140]. The authors find
that the upper bounds on the VC-dimension for GNNs are com-
parable to the upper bounds for the recurrent neural networks,
meaning that the generalization capability of GNNs increases
with the number of connected nodes. Verma & Zhang [141]
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take a further step towards deriving a theoretical analysis of
GCN [121] based on algorithmic stability [142] and provide
generalization bounds for one-layer GCN. They conclude that
one-layer GCN with stable graph convolution filters can satisfy
the strong notion of uniform stability and therefore are general-
izable.

Gargetal. [143] study the generalization properties of GNNs
on graph classification based on Rademacher complexity. The
generalization analysis explicitly considers the local permuta-
tion invariance of the GNN aggregation function. The derived
Rademacher bounds are tighter than the VC bounds from [139]
for GNNs. Lv [144] adopts similar theoretical basis with the
work [143], providing the Rademacher complexity bound for
GCNs with one single hidden layer. The primary difference is
that this work accounts for the specific node-level task of GCNs,
which only involves a fixed adjacency matrix.

Liao et al. [145] establish a PAC-Bayesian generalization
bound of GNNs on graph classification. It further improves
upon the Rademacher complexity based bound proposed in the
work [143], deriving a tighter dependency on the maximum
node degree and the maximum hidden dimension. Also, Ma
et al. [146] present a PAC-Bayesian analysis for generalization
performances of GNNs on subgroups of nodes under non-IID
node-level tasks, which is the key difference compared with the
work [145].

Du et al. [147] establish Graph Neural Tangent Kernel
(GNTK) to characterize the generalization bound of GNNs
on graph classification. GNTK is induced by infinitely wide
GNNs, whose prediction depends only on pairwise kernel values
between graphs, and can be calculated efficiently with an ana-
Iytic formula. It enjoys the expressive power of GNNs, while
inheriting the benefits of graph kernels, e.g., easy to train,
provable theoretical guarantees, etc. Based on GNTK, Xu et
al. [132] derive theoretical evidence of generalization capabil-
ities in one-layer GNNs and study the effect of the alignment
of network architecture and target algorithmic tasks on OOD
generalization. Along with this line, Zhang et al. [148] prove
that using proper tensor initialization and accelerated gradient
descent, their algorithm can learn a GNN with one hidden layer
having the zero generalization error for regression problems or
sufficiently close to the ground-truth model, assuming such a
ground-truth model exists.

Considering most methods mentioned above are developed
based on that graph data can be generated and labeled in any
arbitrary way which is hard to be satisfied in practice, some
works establish generalization bounds that depend on the graph
data as follows. Baranwal et al. [ 149] study OOD generalization
of GNNs under a specific data generating mechanism namely
contextual stochastic block model and analyze the relation be-
tween linear separability and OOD generalization on graphs.
The generalization guarantee for one-layer GCNs on binary
node classification is derived. Furthermore, Maskey et al. [150]
consider a generative model graphons for the graphs which is
not only theoretically powerful and general, but allows tighter
generalization bounds.

In addition to deriving the generalization bound, there are also
some theoretical frameworks on causality, invariant learning,
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and information bottleneck to analyze the OOD generalization
capabilities.

Causal inference offers a strong theoretical foundation for
improving OOD generalization by focusing on stable causal
relationships between input features and labels. Unlike spuri-
ous correlations that are sensitive to distribution shifts, causal
features remain invariant across environments, providing a reli-
able basis for OOD generalized predictions. Theoretical frame-
works such as structural causal models (SCMs) [46], [48],
[51] and causal intervention [52] facilitate the identification
and utilization of these causal features, enabling models to
capture the true determinants of labels. Additionally, coun-
terfactual reasoning [55] could enhance this perspective by
considering hypothetical scenarios, thereby allowing models
to better generalize to unseen data. These approaches collec-
tively underline the importance of causality in addressing dis-
tribution shifts and establishing a principled basis for gener-
alization, ensuring that predictions are reliable across diverse
environments.

Invariant learning provides a principled theoretical frame-
work for OOD generalization by focusing on identifying and
leveraging features that maintain stable relationships with labels
across different environments [117], [118], [119]. This approach
assumes that the input data can be decomposed into invari-
ant components, which are consistent predictors of the target,
and variant components, which are spurious and environment-
specific. The key idea is to optimize for predictive performance
while ensuring invariance across training distributions, thereby
aligning model predictions with the stable causal mechanisms
underlying the data. From a theoretical standpoint, invariant
learning relies on the invariance principle, which assumes that
the conditional distribution of the label given the invariant fea-
tures should remain constant across environments. This principle
is often adopted through optimization objectives that minimize
risks across multiple training environments or regularization
techniques that explicitly enforce alignment in representation
spaces [57], [59], [64]. By focusing on invariant patterns and
discarding variant ones, invariant learning not only enhances
OOD generalization but also offers theoretical guarantees under
certain assumptions, such as the existence of sufficient environ-
mental diversity [69] or latent invariance within the data [67],
[68]. By ensuring that predictions are grounded in invariant
features, this framework establishes a foundation for graph OOD
generalization.

Information Bottleneck (IB) theory is used in some works
for generalized graph learning. The key idea is to maximize
the mutual information between task-relevant subgraphs and
labels while constraining information from task-irrelevant graph
components. For example, GSAT [60] jointly trains the predictor
and subgraph extractor, leveraging a stochastic attention mech-
anism for the information control. InfolGL [151] introduces a
redundancy filter combined with multi-level contrastive learning
to extract invariant features of graphs, maximizing the mutual
information among graphs of the same class and reducing task-
irrelevant noise. Finally, the derived IB-based objective guar-
antees the removal of spurious correlations, improving OOD
generalization.
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VII. DATASETS FOR EVALUATION

To promote further research of graph OOD generalization, we
summarize the existing popular graph datasets for evaluation in
Table III. There are three groups of datasets, including datasets
for graph-level, node-level, and link-level tasks. These datasets
cover multiple sources of graphs (e.g., social network, citation
network, molecular graph, etc) and their causes of distribution
shifts are also complex and diverse (e.g., time, species, scaffold,
etc.).

A. Datasets for Graph-Level Tasks

First, we review some representative datasets for evaluating
the model performances on graph classification tasks.

Spurious-Motif [59]: Tt is a synthetic dataset created by fol-
lowing the work [152], which is designed for distribution shifts
on graph structure. Each graph consists of one motif and one base
subgraph. The base subgraph includes Tree, Ladder, and Wheel
(denoted by V = 0,1, 2, respectively) and the motif includes
Cycle, House, and Crane (denoted by I = 0, 1, 2). The ground-
truth label Y only depends on the motif I, which is sampled
uniformly. The spurious correlation between V and Y is injected
by controlling the base subgraphs distribution as: P(V') = b if
V=TIand P(V)=(1-10)/2if V = I. Intuitively, b controls
the strength of the spurious correlation. It can set b to different
values in the testing and training set to simulate distribution
shifts.

MNIST-75sp [133]: It is a semi-artificial dataset, where each
graph is converted from an image in MNIST [153] using su-
perpixels [154]. The nodes are superpixels, and the edges are
calculated by the spatial distance between nodes. The node
features are the super-pixel coordinates and intensity. The task is
to classify each graph into the corresponding handwritten digit
labeled from 0 to 9. To simulate distribution shifts on graph
features, it generates testing graphs by colorizing images, i.e.,
adding two more channels and adding independent Gaussian
noise to each channel.

CMNIST-75sp [92], [134]: Tt is also a semi-artificial dataset,
consisting of graphs converted from the images in MNIST using
superpixels. Different from MNIST-75sp that adds noise to
simulate distribution shifts, CMNIST-75sp colorizes the digits
with different colors according to the digit labels or dataset split,
inspired by the work [117]. Note that there are two choices of
CMNIST-75sp to simulate the covariate shifts or concept shifts
respectively. For the former choice, the testing data are colorized
with unseen colors compared with the colors for the training
data. For the latter choice, the colors are correlated with the
digit labels for the training data, while colors have different
correlations with labels for testing data, respectively.

D & Do [133]: It is a real-world graph classification dataset
that consists of 1,178 protein network structures with 82 discrete
node labels. The task is to classify each graph into enzyme or
non-enzyme class. To create distribution shifts on graph sizes,
the training and testing sets are split by graph sizes, i.e., the
models are trained on small graphs but tested on larger graphs.
Specifically, the training set includes graphs with 30 to 200 nodes
while the testing set includes graphs with 201 to 5,748 nodes.
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TABLE III
COMMONLY USED SYNTHETIC AND REAL-WORLD GRAPH DATASETS FOR OOD GENERALIZATION

Dataset Task Type Cause of Shifts Metric References
Spurious-Motif Graph Synthetic Graph Correlations Accuracy [59]
MNIST-75sp Graph Superpixel Graph Feature Noises Accuracy [133]
CMNIST-75sp Graph Superpixel Graph Feature Colors Accuracy [92, 134]
D&Da2oo Graph Molecular Graph Graph Size Accuracy [133]
Graph-SST2 Graph Text Sentiment Node Degree Accuracy [135]
OGBG-Molhiv Graph Molecular Graph Scaffold ROC-AUC [7]
OGBG-Molpcba ~ Graph Molecular Graph Scaffold Average Precision [7]
OGBG-PPA Graph Protein Network Species Accuracy [7]
DrugOOD Graph Molecular Graph Assay/Scaffold/Size Accuracy/AUC [136]
CBA-Shapes Node Synthetic Graph Feature Colors Accuracy [134]
Facebook-100 Node Social Network Structure Accuracy [63]
WebKB Node Webpage Network Structure Accuracy [134]
Twitch-Explicit Node Social Network Structure ROC-AUC [137]
Elliptic Node Bitcoin Transactions Time F1 Score [138]
OGBN-Arxiv Node Citation Network Time Accuracy [7]
OGBN-Proteins Node Protein Network Species ROC-AUC [7]
OGBN-Products ~ Node Co-purchasing Popularity Accuracy [7]
COLLAB Link Collaboration Network Field ROC-AUC [67]
Yelp Link Social Network Food Category ROC-AUC [67]
ACT Link Social Network Attribute ROC-AUC [69]
OGBL-PPA Link Protein Network Biological Throughput Hits@ 100 [7]
OGBL-DDI Link Drug Interaction Network Protein-target Hits@20 [7]

“Task” denotes each dataset can be used in graph-level, node-level task or link-level task. “Type” indicates what kind of graph data that
each dataset includes. “Cause of Shifts” indicates the reason for inducing distribution shifts between training and testing data. “Metric” is
the evaluation metric adopted by each dataset. And “References” denotes the work developing each dataset.

Graph-SST2 [135]: 1t is a real-world graph dataset origi-
nating from a natural language sentimental analysis dataset.
Each graph is converted from a text sequence, where nodes
represent words, edges indicate relations between words, and
label is the sentence sentiment. Graphs are splitinto different sets
according to average node degree to create distribution shifts.
The node features are initialized by the pre-trained BERT word
embedding [155]. Thanks to the graph semantics, this dataset is
more human-understandable for visualizing or analyzing some
intermediate results.

OGBG [7]: Open Graph Benchmark (OGB) is a benchmark
consisting of realistic, large-scale, and diverse datasets for ma-
chine learning on graphs, where OGBG is a subset including
several representative datasets for evaluation OOD generaliza-
tion in graph-level tasks, e.g., OGBG-Molhiv, OGBG-Molpcba,
OGBG-PPA, etc. Specifically, OGBG-Molhiv and OGBG-
Molpcba are two graph property prediction datasets with dis-
tribution shifts. The task is to predict the target molecular prop-
erties. The dataset provides the default scaffold splitting proce-
dure, i.e., splitting the graphs based on their two-dimensional
structural frameworks. Note that this scaffold splitting strategy
aims to separate structurally different molecules into different
subsets, which provides a more realistic and challenging sce-
nario for testing graph OOD generalization. And OGBG-PPA
consists of undirected protein association neighborhoods ex-
tracted from the protein-protein association networks of 1,581
different species. The task is to predict what taxonomic group the
given protein association neighborhood graph originates from.
The dataset adopts species split, i.e., separating graphs from
different species into different subsets.

DrugOOD [136]: Tt is a benchmark for Al-aided drug dis-
covery, including some realistic molecular graph datasets. It
provides an automated pipeline for curating OOD datasets based
on a large-scale bioassay dataset ChEMBL [156]. It presents
diverse dataset splitting indicators than OGB to generate

specific domains that are aligned with the domain knowledge of
biochemistry. Rather than only adopting scaffold as the indicator
of dataset splitting, it can provide more choices for separating
graphs into different subsets in terms of assay and size to create
distribution shifts.

B. Datasets for Node-Level Tasks

Then, we review some representative datasets for evaluating
the model performances on node classification tasks.

CBA-Shapes [134]: 1t is a synthetic dataset created by fol-
lowing the BA-Shapes dataset from the work [152]. The input
graph contains a base graph and a set of motifs, where the base
graph is a Barabdsi-Albert (BA) graph on 300 nodes and the
set of motifs includes 80 house-structured motifs. The task is
to predict the structural role of each node, including the top,
middle, or bottom node of a house-structured motif, or the node
from the base graph, i.e., a 4-class classification task. Node
features are assigned with colors to create distribution shifts,
which also have two choices to simulate the covariate shifts
or concept shifts. For the former choice, the testing nodes are
colorized with unseen colors compared with the colors of the
training nodes. For the latter choice, the colors are correlated
with the labels of the training nodes, while colors have different
correlations with labels of the testing nodes, respectively.

Facebook-100 [63]: Tt is a real-world node classification
dataset which consists of 100 Facebook social network snap-
shots from the year 2005. Each network contains nodes as Face-
book users from a specific American university. The distribution
shifts can be introduced by splitting training and testing sets
via selecting different universities that the users in a network
are from, since these networks have significantly diverse sizes,
densities and degree distributions. For example, the default
dataset split in the work [63] is to adopt the corresponding
networks from three of fourteen universities (e.g., John Hopkins,
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Cornell, etc.) as training set, and the network from another three
universities (i.e., Penn, Brown and Texas) as the testing set. Of
course, the other combinations can also be used to evaluate the
node-level OOD generalization ability.

WebKB [134]: It is a real-world university webpage network
dataset for node classification. The nodes denote webpages
and edges are hyperlinks between two webpages. The node
features are from the words appearing in the webpage. The
task is to predict the classes of webpages including student,
project, course, staff, or faculty. The distribution shifts are from
splitting the dataset conforming to the domain university. The
OOD generalized predictions can be achieved when only using
the word contents and hyperlinks of webpages rather than using
the university features.

Twitch-Explicit [137]: Tt is a real-world social network
dataset, where nodes are Twitch users and edges are friendships
between two users. Node features are games liked, location
and streaming habits. Each network is collected from a specific
region, including DE, ENGB, ES, FR, PTBR, RU and TW. The
seven networks have significantly different structural properties,
e.g., densities and maximum node degrees [63]. The distribution
shifts between training and testing sets are from splitting the
dataset according to the network region.

Elliptic [138]: Tt is a realistic Bitcoin transaction network
dataset consisting of several snapshots, where nodes are trans-
actions and edges are payment flows. The task is to distinguish
between licit and illicit transactions in future data. By adopt-
ing older snapshots in terms of time as the training set while
newer snapshots as the testing set, the distribution shifts can be
observed due to some emerging events in the market.

OGBN [7]: It includes some node properties prediction
datasets, e.g., OGBN-Arxiv, OGBN-Proteins, and OGBN-
Products, which is another subset of the whole OGB [7]. Specif-
ically, OGBN-Arxiv is a real-world citation dataset, where
nodes are arXiv papers, and edges are citations between papers.
Its 40-class prediction task is to predict the subject area of
arXiv papers. The node distribution shifts are introduced by
splitting papers from different time ranges into training and
testing sets. And OGBN-Proteins a protein graph, where nodes
represent proteins and edges indicate different types of biolog-
ically meaningful associations between proteins. The task is
to predict the presence of protein functions. The distribution
shifts are introduced by splitting protein nodes into different
subsets according to the species that the proteins come from.
OGBN-Products is an Amazon product co-purchasing net-
work. Nodes represent products in Amazon, and edges indi-
cate that the two products are purchased together. The task
is to predict the product category. The distribution shifts are
created by a more challenging and realistic dataset splitting
according to the popularity of products, i.e., using the popu-
lar products for training but relatively unpopular products for
testing.

C. Datasets for Link-Level Tasks

Furthermore, we review some representative datasets for eval-
uating the model performances on link prediction tasks.
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COLLAB [67]: Tt is a link prediction dataset derived from
academic collaboration networks. Nodes represent authors, and
edges denote coauthorships on papers published between 1990
and 2006. The dataset is enriched with field-specific information,
categorizing edges by the coauthored publication’s field, such as
“Data Mining”, “Database”, “Medical Informatics”, “Theory”,
and “Visualization”. It spans 16 yearly time slices, capturing the
evolution of collaborations over time. The dataset’s distribution
shifts are introduced by splitting based on the fields of coau-
thored publications, where “Data Mining” serves as the unseen
domain during training, creating a challenging test scenario for
OOD generalized link predictions.

Yelp [67]: Itis areal-world link prediction dataset originating
from customer-business interaction records. Nodes correspond
to customers and businesses, while edges represent review in-
teractions over time. The dataset includes data from January
2019 to December 2020. Categories such as “Pizza”, “American
(New) Food”, “Coffee & Tea”, “Sushi Bars”, and “Fast Food”
are used to label interactions. Distribution shifts are introduced
by withholding interactions involving “Pizza” as a testing do-
main, offering a real-world scenario to evaluate models under
distribution shifts.

ACT [69]: Tt documents dynamic student activity within a
MOOC (Massive Open Online Course) platform. Nodes rep-
resent students, and edges denote their actions, such as course
participation or interaction with learning materials. Different
categories of actions, including “Lecture Viewing”, “Assign-
ment Submissions” and “Forum Participation” are tracked to
introduce varying interaction patterns. The distribution shifts
are created by excluding specific categories of actions during the
training phase, challenging models to generalize across unseen
patterns of student behaviors during testing.

OGBL-PPA [7]: 1t is a real-world graph dataset constructed
from protein-protein association networks. Nodes represent pro-
teins from 58 different species, and edges capture biologically
meaningful associations, including physical interactions, co-
expression, homology, or genomic neighborhoods. Each node
is associated with a 58-dimensional one-hot feature vector indi-
cating its species origin. The dataset focuses on link prediction
tasks, where the goal is to rank positive protein-protein associa-
tions higher than randomly sampled negative edges. The evalua-
tion metric, Hits@ 100, assesses the proportion of positive edges
ranked among the top 100 positions. The dataset introduces dis-
tribution shifts through a biological throughput-based splitting
strategy: training edges are derived from cost-effective, high-
throughput experimental methods or computational techniques,
while validation and test edges consist of associations confirmed
via low-throughput, resource-intensive laboratory experiments.

OGBL-DDI [7]: It is a real-world graph dataset originating
from drug-drug interaction networks. Nodes represent FDA-
approved or experimental drugs, and edges indicate interactions
where the combined effect of two drugs significantly deviates
from their independent actions. The task is to predict new
drug-drug interactions by ranking known interactions higher
than approximately 100,000 randomly sampled negative interac-
tions. The evaluation metric, Hits @20, measures the proportion
of true interactions ranked among the top 20 positions, providing
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a challenging benchmark for model performance. The dataset
employs a protein-target split strategy, where training and val-
idation sets include drugs targeting one set of proteins, while
the test set consists of drugs targeting entirely different proteins.
This splitting approach ensures that models are evaluated on
their ability to generalize to drugs with distinct biological mech-
anisms, reflecting real-world OOD scenarios in drug discovery.

D. Other Benchmarks

In addition, there are also some works that collect these
commonly used or more than one datasets above into a standard
evaluation open-source benchmark and report the experimental
results for some well-known general OOD algorithms and graph
OOD methods under the proposed evaluation protocols. Since
the details of most datasets have been discussed above, here we
review these packages briefly. Specifically, GDS [92] collects
eight datasets for graph-level tasks reflecting a diverse range of
distribution shifts across graphs to compare the performance of
popular OOD generalization algorithms and GNN backbones.
GOOD [134] summarizes more than ten datasets for both graph-
level and node-level tasks with diverse types of distribution shifts
introduced by combining different domain selection strategies
and distribution shift types. It also contains the experiments to
show the significant performance gaps between in-distribution
and OOD settings and the comparisons among different OOD
methods for both general machine learning and the graph field.

VIII. DISCUSSIONS

In this section, we summarize this survey and discuss several
challenges as well as opportunities worthy of future explo-
rations.

A. Summary

The diversity and quality of training graph data play an
important role in OOD generalization of graph machine learning
approaches. Several graph data augmentation methods, includ-
ing structure-wise, feature-wise, and mixed-type methods are
developed to achieve good performances with simple yet effec-
tive paradigms.

Another line of works focuses on exploiting new graph mod-
els to promote the OOD generalization capability. Compared
to graph data augmentation, these models overall enjoy more
solid theoretical ground and more graph-specific designs. The
disentanglement-based graph models present good motivations
while the causality-based graph models are backed by diverse
causal inference theories. These tailored graph models also show
promising OOD generalization performances in practice.

Recently, there is a rapid development for graph learning
strategies, including graph invariant learning, graph adversarial
training, and graph self-supervised learning. Compared with the
graph models, these methods pay more attention to the learning
process, so that they are more flexible to be compatible with
different GNN backbones for enhancing OOD generalization.

To build the theoretical framework of graph generalization,
a number of theoretical derivations on generalization bounds
are proposed, which benefit the deeper understanding of graph
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OOD generalization methods. And to promote deeper research,
diverse datasets under complex realistic distribution shifts cov-
ering node-level and graph-level tasks are adopted to verify the
effectiveness of graph OOD generalization methods comprehen-
sively and fairly.

B. Future Directions

There exist plenty of opportunities worthy of future explo-
rations.

1) More Theoretical Guarantees: While some graph OOD
generalization methods have demonstrated substantial empirical
progress, a critical gap remains in connecting these methods
to the theoretical foundations outlined in Section VI. Bridging
this gap still requires rigorous theoretical characterizations of
learnable graph OOD generalization problems. Moreover, it is
vital to extend the understanding of specific types of distribution
shifts, such as covariate shifts, concept shifts, and label shifts,
which often interact in complex ways in graph-structured data.
Existing works have shown initial success in addressing specific
shift types. Future research should explore OOD generalization
theories that account for diverse shift types, backed by gener-
alization bounds, causality, invariant learning, or information
bottleneck.

2) GNN Architecture: Recent works [132], [133], [157],
[158], [159] emphasize the critical role of architecture design
in GNNs, such as readout operations, to enable generaliza-
tion to OOD graph data. These studies provide foundational
insights into the interaction between GNN architecture and
distribution shifts. To systematically enhance GNNs for OOD
generalization, methods for automatically tailoring a customized
GNN architecture suitable for each graph instance benefit the
predictions under distribution shifts [160], which represent a
promising direction. And more research efforts need to be paid
on automatically learning OOD generalized GNN architectures
suitable for diverse environments.

3) Environment Split: The majority of general OOD gener-
alization algorithms rely on access to multiple training environ-
ments [15]. However, acquiring accurate environment labels for
real-world graph data is often prohibitively expensive, limiting
the applicability of these methods. Future research could explore
developing single-environment OOD generalization methods
that leverage graph structure and feature heterogeneity to learn
environment splits dynamically. Moreover, real-world graph
data often evolves over time, requiring models to adapt to
dynamic or continuous environments. Existing works on lifelong
learning and continual graph learning [161], [162] provide a
foundation for developing methods capable of efficiently updat-
ing graph models and learning strategies to generalize across
temporal distribution shifts. Extending these methods to dy-
namically evolving graphs under unknown distribution shifts
remains a promising and underexplored research direction.

4) Test-Time Training for Generalization: Graph test-time
training can allow more flexibility in inference time to make
use of the inference unlabeled data during the testing stage. It
can improve the graph OOD generalization under unknown dis-
tribution shifts via solving a test-time task. In addition to the two
works [83], [84] introduced in Section V-C that adopt contrastive
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test-time tasks, one more recent attempt GTrans [163] proposes
to adapt and refine graph data at test-time. And LEBED [164]
estimates generalization errors of well-trained GNNs on un-
labeled test graphs under distribution shifts by leveraging a
parameter-free re-training strategy and measuring node predic-
tion and structure reconstruction discrepancies. It is a valuable
direction to design more test-time training tasks or explore more
test-time training strategies to improve OOD generalization on
graphs.

5) Broader Scope of Applications: OOD graph data widely
exist in our daily life. While classical machine learning ap-
proaches on graphs have been applied in diverse applications, de-
ploying OOD generalized graph methods in real-world settings
with distribution shifts remains an essential and underexplored
challenge. Applications such as recommender systems, social
networks, traffic prediction, materials science, and risk-sensitive
domains like healthcare and finance demand not only predictive
accuracy but also trustworthiness in decision-making [165],
[166], [167], [168], [169], [170]. The integration of domain
knowledge is suggested as a potential avenue to improve graph
OOD generalization.
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