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Abstract—Video Temporal Grounding (VTG) localizes mo-
ments in untrimmed videos using natural language queries. Most
VTG datasets focus on short videos, and existing approaches excel
in short-term cross-modal matching but struggle with long VTG,
where long-range temporal reasoning is required for complex
events. Existing approaches typically output timestamp predic-
tions without intermediate steps, limiting effective reasoning,
whereas humans solve this step by step. To address this, we
propose a long VTG framework, StepVTG, with multimodal
visual and speech inputs, leveraging Large Language Models
(LLMs) for step-by-step reasoning. Specifically, we transform
task descriptions, speech, and visual inputs into text prompts.
To enhance temporal reasoning, we introduce the Boundary-
Perceptive Prompting strategy, which includes: i) a multiscale
denoising Chain-of-Thought (CoT) combining global and local
semantics with noise filtering, ii) validity principles to ensure
LLMs generate reasonable, parsable predictions, and iii) one-shot
In-Context Learning (ICL) to improve reasoning via imitation.
For evaluation, we establish MM-LVTG, a new long VTG
benchmark with multimodal inputs, and demonstrate through
extensive experiments that StepVTG achieves state-of-the-art
performance. It offers explainable reasoning steps for predictions
and reveals potential in facilitating video understanding with off-
the-shelf LLMs.

Index Terms—Video Temporal Grounding, Long Videos, LLM

I. INTRODUCTION

Video Temporal Grounding (VTG) [1], [2] aims to localize
moments in untrimmed videos corresponding to a given query,
requiring video-query context understanding and precise tem-
poral boundary identification, as shown in Figure 1(a).

Although existing approaches [?], [2]–[10] have advanced
VTG, they primarily focus on short videos (e.g., <5 min-
utes [1], [2], [11]) with low-level queries and struggle with
reasoning in long videos (>10 minutes [12]–[14]), common
in movies, news, and courses. Long VTG requires reasoning
across multiple high-level events to infer temporal boundaries
over extended durations since an event is usually indirectly
summarized from rich detailed objects and activities. Existing
methods [4], [8], [15] often produce direct timestamps without
intermediate reasoning steps, while humans solve complex
tasks via decomposition. Refer to supplementary materials for
detailed related works.
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To address this, we reformulate long VTG as a long-text
task, leveraging LLMs with chain-of-thought (CoT) reason-
ing over 10K tokens to grasp temporal boundaries, thanks
to the demonstrated efficacy of LLMs in multimodal ap-
plications [16]. Specifically, we propose StepVTG, a ver-
satile framework integrating off-the-shelf models via LLM
prompting with speech and visual information (Figure 1(b))
for stepwise long VTG. Multimodal information is utilized
as long videos often include rich speech content. First, we
transcribe speeches and caption the speech- and scene-aligned
frames to generate text input retaining temporal informa-
tion for VTG. Subsequent experiments demonstrate such tex-
tual representation retains crucial localization information.
To enhance temporal reasoning, we introduce a Boundary-
Perceptive Prompting strategy with: i) multiscale denoising
Chain-of-Thought (CoT) that combines global and local se-
mantics with noise filtering, ii) validity principles for reason-
able and structured predictions, and iii) one-shot in-context
learning (ICL) to improve VTG task comprehension and
temporal reasoning.

We validate our approach first with preliminary experiments
confirming the feasibility of moment retrieval from textualized
long videos. Then we establish MM-LVTG, a long VTG
benchmark with multimodal inputs via collecting videos from
[17], showing StepVTG achieves state-of-the-art performance
over baselines. Ablation studies highlight that StepVTG ben-
efits from both textual speech and visual modalities when
handling noisy long contexts around 10K tokens, and qualita-
tive analysis illustrates the reasoning process with explainable
timestamp predictions.

We first solve long VTG with textual speech and visual
modalities inputs with LLM and design a versatile training-
free StepVTG framework.

To conclude, our contributions are as follows:
1) Introduce StepVTG, the first framework for long VTG

using LLMs with textual speech and visual modalities
in a training-free setup.

2) Propose a Boundary-Perceptive Prompting strategy en-
abling stepwise temporal reasoning in noisy long con-
texts with explainable predictions.

3) Establish MM-LVTG, a multimodal long VTG bench-
mark with speech and visual inputs, and demonstrate
StepVTG’s superiority through extensive experiments.



Query: Man sets a new cookie eating record. Searching

start time: 10:51 end time: 14:56

(a)

Moment-DETR: 6:43 - 9:10 TimeChat: 11:48 - 11:53VTG-GPT: 11:09 - 11:18 Ours: 10:53 - 13: 38

11:00 - 11:07: An athlete named David Rush in Idaho has just finally broken the record. . . . . . .(Speeches)

(b)
11:00 - 11:07: An athlete named David Rush in Idaho has just finally broken the record. (Host)
11:09 - 11:17: He's broken record for the fastest time to move a cream-filled cookie from the forehead to the mouth. (Host) ...
11:43 - 11:48: Hey there, folks, it's David Rush on vacation in the Yellowstone National Park, entering the Guinness World Challenge. (Main Character)
11:48 - 11:53: This week, I had to find some off-brand cream-filled biscuits to attempt to break this Guinness World Record. (Main Character)
11:53 - 11:58: Thanks to my son for the help. Three, two, one, go! (Main Character)
11:58 - 12:11: Eat it. Come on! (Main Character) ...
12:58 - 13:01: Now, David Rush did it at 8.8 seconds. (Host) ...
13:13 - 13:16: But now, imagine you've trained your whole life for this moment. (Host) ...
* Blue bold marks the peices of words related to the query.

Speech Modality Visual Modality

* Blue underlines marks the images content related to the query.

Fig. 1: This shows a 14-minute 57-second news-style video. We solve long VTG with visual and speech inputs and beat other
baselines significantly.

II. STEPVTG

A. Problem Formulation

Given a video V and a query Q, the method is required to
predict the start-and-end timestamps of video moments (t̂s, t̂e)
(second) that matches query Q. For our solution, the video
V with N frames is modeled as textualized representations,
i.e. speech transcriptions {(t(i)s(s), t

(i)
s(e), s

(i))}Ns
i=1 and visual

captions {(t(i)v , c(i))}Nc
i=1, where Ns, Nc are the number of

transcriptions and captions, respectively; the i-th piece of
transcription s(i) lies from time t

(i)
s(s) to t

(i)
s(e) and the i-th

piece of caption is generated on the frame sampled at time
t
(i)
v . Figure 2 shows our framework.

B. Task Textualized Representations

To adapt the VTG task and multimodal inputs for LLMs,
we design the following pipeline. First, we align the LLM’s
behavior with VTG by explaining the task and defining input-
output formats (Section II-D(1)). Next, to help LLMs interpret
multimodal inputs (Section II-D(2-4)), we textualize speeches
and visual modalities into transcriptions and captions with
temporal markers. This process retains sufficient semantics for
localization and efficiently represents long videos, as validated
in our experiments (Section III).

Speeches are transcribed into non-overlapping sentences
using Automatic Speech Recognition (ASR). To reduce redun-
dancy in long video frames, we employ a sampling strategy:
scene changes are pre-detected, and frames are sampled in
alignment with scenes and speeches. For each transcription and
scene, we select the intermediate frame, i.e. (t(i)s(s) + t

(i)
s(e))/2

for the i-th transcription and the same for each scene, as
synchronized visual contents and speeches are complementary.
Captions are generated on these sampled frames. Finally,
transcriptions and captions, along with query text, are provided
to the LLM as task inputs. While captions can be noisy,

they still improve moment localization, as demonstrated in our
experiments.

C. Boundary-Perceptive Prompting

Mainstream LLM tasks rarely address temporal bound-
ary perception in complex long contexts, making accurate
VTG challenging. Moreover, LLMs’ free-form responses can
result in unreasonable or incomplete predictions. To tackle
these issues, we propose a Boundary-Perceptive Prompting
strategy, which includes a Multiscale Denoising Chain-of-
Thought (CoT) for step-by-step reasoning, validity principles
to regularize predictions, and one-shot In-Context Learning
(ICL) to leverage LLMs’ few-shot learning ability.

1) Multiscale Denoising Chain-of-Thought: We decompose
Multiscale Denoising CoT into the following steps: Step
1: Global Understanding. We ask LLM to summarize the
entire video (Section II-D(5)) to reduce detailed redundancy
while preserving global high-level semantics. Step 2: Noise
Evaluation. We ask LLM to assess how captions contribute
to moment localization and adaptively balance visual and
speech information gaps (Section II-D(6)). Step 3: Partition
Understanding. We ask LLM to partition the video based
on timestamps to predict and summarize each segment con-
ditioned on the query to capture query-relevant differences
among these parts (Section II-D(7)). Step 4: Prediction.
Finally, we ask LLM to predict timestamps (t̂s, t̂e) using the
reasoning from prior steps.

2) Validity Principles: We define three validity principles to
ensure reasonable and parsable predictions: Format Compli-
ance. LLMs use a JSON template for structured, parsable out-
puts (Section II-D(8)). Answer Regularization. Predictions
are constrained to ensure logical validity, e.g., t̂s < t̂e and one
moment per query (Section II-D(9)). Plagiarism Prohibition.
LLMs should imitate the reasoning process and format rather
than copying example predictions (Section II-D(10)).
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Fig. 2: Framework of our StepVTG. The task description and its speech and visual inputs are transformed into text prompts
to feed LLM. To enhance the temporal reasoning capability, a Boundary-Perceptive Prompting strategy is proposed, better
guiding the LLM to localize moments step by step and offering explainability.

3) One-Shot In-Context Learning: Providing a single ex-
ample significantly enhances temporal reasoning and format
compliance (Section II-D(11)).

D. Prompt Example

We present a prompt example in this section to better
explain the details of our prompt design.

(1) Task Description & Formulation: You can analyze
the correlations between a video and query, and locate the
video segment that matches the query. You are given: (1)
Video title (2) Query (3) Speech transcription, with temporal
information in the format of: [START-TIMESTAMP] - [END-
TIMESTAMP] : [TRANSCRIPTION] (4) Visual caption, with
temporal information in the format of: [TIMESTAMP] : [CAP-
TION]. You should give the answer in [X, Y] format where X,
Y are the start and end timestamps of the matching segment.

(2) Query: Habit 2: Build other people up
(3) Speech Transcriptions: 0-7: While watching clips from

my last Game of Thrones video...
(4) Visual Captions: 5: A woman with long blonde hair...
(5) Global Understanding: You summarize the video.
(6) Noise Evaluation: We note that the visual caption might

be quite NOISY. Now you comment if the visual captions are
helpful enough for localization. You can give up information
from captions if you think some of them are wrong.

(7) Partition Understanding: You analyze the video con-
tent before X, between X and Y, and after Y, respectively.
After that, you give the answer [X, Y].

(8) Format Compliance: Please use JSON format of
{“summary”:“...” (you summarize the whole video), “com-
ment”: “...” (you evaluate effectiveness of visual captions),
“query”:“...” (the query input), “before X”: “...” (you summa-
rize video before X), “between X and Y”: “...” (you summarize
video between X and Y), “after Y”: “...” (you summarize video
after Y), “answer”: [X, Y]}.

(9) Answer Regularization: We ensure there does exist
ONE moment matching the query and X is no more than Y.

(10) Plagiarism Prohibition: You MUST NOT just copy
the answer given by the example! X and Y should be replaced
by the real start and end timestamps of the moment you find
in videos.

(11) One-Shot In-Context-Learning: <INPUT>=>
...Query: Habit 2: Build other people up. Speech transcriptions:
0-7: While watching... Visual captions: 5: A woman...
<OUTPUT>=> {“summary”: “The video discusses...”,
“comment”: “These captions describe a scene where people
talk in a show, but provide limited information to understand
the video.”, “query”: “Habit 2: Build other people up”, “before
179”: “Talk about...”, “between 179 and 329”: “Talk about...”,
“after 329”: “Talk about...”, “answer”: [179, 329]}. Now you
solve the following. <INPUT>=> ... <OUTPUT>=>

III. EXPERIMENTS

A. Benchmark and Implementation

1) MM-LVTG Benchmark: Considering that MAD [18],
a long VTG dataset, only provides extracted features with-
out public raw videos, we create MM-LVTG using publicly
available videos. We source long videos from VidChapters-
7M [17], which contains 817K YouTube videos with 7M user-
generated chapter annotations. These annotations summarize
multiple activities, requiring methods to capture long-term
relationships. We collect 618 videos (average 14 minutes each)
with speech transcriptions and visual captions, sampling three
query-moment pairs per video, resulting in 1,830 pairs. This
forms our evaluation benchmark for multimodal long VTG,
MM-LVTG (Table I). Traditional VTG benchmarks are also
evaluated in supplementary materials.

2) Evaluation Metrics: We adopt the metrics “r@{m}”(%),
“mIoU”(%), and “r@{n}s”(%) widely used in VTG. Here,
r@{m} measures the percentage of predictions with an IoU
exceeding threshold m, while “mIoU” evaluates average local-
ization accuracy. To address r@{m}’s limitations with lengthy
ground truth moments, we use r@{n}s [17], which calculates
the percentage of predictions where the predicted start-time is
within n seconds of the ground truth. For LLM-based methods,
if no parsable answer is generated, IoU is set to 0.0 and the
start-time error to +inf.

3) Implementation Details: We use GPT-3.5-turbo-16k as
the LLM model. Video scenes are detected using PySceneDe-
tect, and sampled frames are captioned with BLIP [19]. Speech
transcriptions are generated via Whisper-based tools [20]



TABLE I: Statistical Comparison between our collected MM-LVTG and other short VTG benchmarks [1], [2], [11], where V, A,
and S denote visual, audio, and speech modalities, respectively. MM-LVTG focuses on evaluating the algorithm’s comprehensive
understanding of visual and speech content in longer videos.

Dataset DiDeMo Charades-STA ActivityNet Captions TACoS MM-LVTG

Ave Duration (min) 0.49 0.51 1.96 4.78 13.96
Modalities V+A V+A V+A V V+A+S

following [17]. The LLM temperature is set to 0.0 in all exper-
iments for reproducibility. Our StepVTG serves as a flexible
framework, with this being one implementation to evaluate its
effectiveness. Supplementary materials include additional im-
plementations with advanced tools (e.g., LLaVA [21], Moon-
shot, GPT-4o) to demonstrate its generality.

B. Baselines

To validate the contributions of visual captions and speech
transcriptions in VTG, we design a rule-based BERT-
based [22] baseline. Additionally, we survey related VTG
technologies for long videos, categorizing them into tool-based
pipelines, video multimodal LLMs, and traditional pretrained
VTG models, and establish baselines accordingly. As our
method is tuning-free, all evaluations are conducted under
identical settings.

1) Preliminaries: We implement the following methods: (i)
Random: Randomly select (t̂s, t̂e) with t̂s < t̂e, reporting
average metrics over 10 repetitions. (ii) Complete: Use the
entire video duration (0, T ), where T is the video length.
(iii) BERT-X [22]: Generate embeddings for transcriptions,
captions, and queries using BERT. Transcriptions and captions
at the same time are concatenated when both are used.
Prediction is rule-based, selecting (t̂s, t̂e) where the highest
matching score is at t̂s and decreases by ϵ at t̂e (ϵ = 0.05 as
in [17]). Here, “X” includes {Asr, Cap, Asr+Cap}.

2) Tool-Based Pipelines: We reproduce VTG-GPT [23], a
tuning-free zero-shot VTG method that employs a propose-
and-match pipeline with tools like language models, caption
models, and proposal generators. While the official VTG-GPT
uses only video captions, we adapt it to the Asr, Cap, and
Asr+Cap settings.

3) Video Multimodal LLMs: We compare our method
with VideoChat [24], Video-ChatGPT [25], Video-
LLaMA [26], TimeChat [8], VTG-LLM [15], and Grounded-
VideoLLM [27]. For a fair comparison, all methods use video
frames and speech transcriptions, with Video-LLaMA also
analyzing raw audio. TimeChat, VTG-LLM, and Grounded-
VideoLLM, the latest multimodal LLMs, claim explicit
temporal understanding. Predictions are extracted by parsing
their free-form outputs with regular expressions. We calculate
the failure rate to predict a pair of start-and-end timestamps,
assessing their understanding of the VTG task and output
quality.

4) Traditional VTG Models: We use strong generalizable
pretrained VTG models, Moment-DETR [5], R2-Tuning [28],
and UniVTG [4], from their official repositories as baselines.

C. Empirical Results

Table II shows the benchmarked performances on MM-
LVTG, demonstrating the feasibility of retrieving moments
using textualized video representations. Our method achieves
state-of-the-art results, validating its effectiveness for VTG in
long videos.

1) Preliminaries: A simple BERT-based matching pipeline
outperforms “random” with either speeches or captions (rows
3-5), showing that both modalities provide key query-related
clues. Further, incorporating both modalities results in better
results on IoU-related metrics, indicating the compatibility of
both modalities.

2) Related Technologies: Existing GPT-involved methods,
whether tool-based ones (rows 6-8) or most multimodal
video LLMs (rows 9-14), struggle to align themselves to the
VTG task due to weak perception of temporal boundaries,
even underperforming on IoU-related metrics compared to
random selection. VideoChat, Video-ChatGPT, and Video-
LLaMA even struggle to generate a span-like answers for the
VTG task. TimeChat, VTG-LLM, and Grounded-VideoLLM
show better start-time localization but fail to handle moment
spans effectively. New multimodal LLMs underperform tool-
based VTG-GPT, underscoring the challenge of enabling video
LLMs to perform complex temporal reasoning beyond basic
content signal perception. Moment-DETR, R2-Tuning, and
UniVTG (rows 15-17) show a strong advantage over video
LLMs in IoU-related metrics but show weakness in start-
time predictions. Despite pretraining, they demonstrate limited
generalization in long-video scenarios, indicating room for
improving pretraining from strategies or data to handle long
contexts. In contrast, our tuning-free method achieves state-of-
the-art results against all baselines by great margins, especially
over 10× performances on r@0.9 and r@1s metrics.

D. Ablation Analysis

We perform ablation studies (Table III) to evaluate key
components of our method. Rows 3-5 remove the three steps
of CoT in Section II-C1 (w/o CoT) or instruct LLM to answer
without one-shot examples (w/o ICL). Rows 6-7 exclude
speech transcriptions or visual captions from both the one-
shot example and test sample to assess reliance on multimodal
information.

1) Effect of Boundary-Perceptive Prompting: Rows 3-5
highlight the effectiveness of Boundary-Perception Prompt-
ing, achieving 40- and 125-fold gains in r@0.7 and r@0.9
when both CoT and ICL are used. CoT enhances accuracy
and adds explainability. LLM struggles to predict meaningful
timestamps without CoT and ICL, performing worse than



TABLE II: Comparison on MM-LVTG. A, V, and S are short for audio, visual, and speech modalities, which are the input
modalities from videos at inference. The number in bottom-right (·) denotes the proportion that the method does not generate
a parsable answer. The smaller, the better. The best and second are highlighted by bold and underline.

Methods Modalities r@0.3 r@0.5 r@0.7 r@0.9 mIoU r@1s r@3s r@5s r@10s

Random - 13.10 5.36 1.67 0.19 10.31 0.37 0.83 1.38 2.52
Complete - 12.62 3.77 1.04 0.16 15.94 10.11 10.16 10.27 11.04

BERT-Asr S 16.07 6.89 3.39 0.87 13.76 1.64 3.83 5.46 7.05
BERT-Cap V 16.28 6.89 2.73 0.87 14.06 0.44 1.48 2.79 4.64
BERT-Asr+Cap V+S 17.43 7.38 3.72 1.15 14.61 0.55 3.55 5.25 7.05

VTG-GPT-Asr S 5.23 2.09 0.83 0.22 6.86 8.31 11.61 14.03 19.48
VTG-GPT-Cap V 3.07 1.21 0.55 0.27 3.58 2.63 5.10 6.64 9.65
VTG-GPT-Asr+Cap V+S 4.86 1.69 0.38 0.00 5.93 7.27 10.77 13.50 19.51
VideoChat(43.84) V+S 1.20 0.38 0.05 0.00 1.48 3.61 4.27 4.76 6.24
Video-ChatGPT(46.72) V+S 1.20 0.60 0.05 0.05 1.21 2.57 3.01 3.55 4.32
Video-LLaMA(52.81) A+V+S 0.60 0.24 0.12 0.06 1.16 2.60 3.50 3.98 5.25
TimeChat V+S 0.87 0.38 0.00 0.00 2.03 7.87 9.23 10.66 15.25
VTG-LLM V+S 2.95 1.26 0.49 0.16 2.66 5.30 5.57 5.79 6.83
Grounded-VideoLLM V+S 3.83 1.42 0.44 0.11 3.69 9.89 10.27 10.49 11.53
Moment-DETR V 14.59 6.34 2.30 0.33 11.68 1.15 2.51 3.28 5.08
R2-Tuning V 10.55 3.99 1.37 0.27 7.54 0.93 1.69 1.86 3.55
UniVTG V 18.74 8.74 3.50 0.55 14.19 1.20 3.11 4.81 8.31

StepVTG V+S 34.81 22.95 14.92 6.28 26.81 17.60 25.41 32.02 39.73

TABLE III: Ablation Studies on MM-LVTG. The best and the second are highlighted by bold and underline, respectively.

Methods r@0.3 r@0.5 r@0.7 r@0.9 mIoU r@1s r@3s r@5s r@10s

Random 13.10 5.36 1.67 0.19 10.31 0.37 0.83 1.38 2.52
Complete 12.62 3.77 1.04 0.16 15.94 10.11 10.16 10.27 11.04

Ours

CoT ICL
✘ ✘ 2.40 1.26 0.38 0.05 4.37 12.84 18.85 23.50 29.89
! ✘ 12.73 6.99 3.33 0.98 11.56 16.39 23.61 29.62 37.27
✘ ! 21.69 13.06 7.32 2.24 17.24 16.39 23.44 27.60 34.32

Speech Visual
! ✘ 28.25 18.42 11.37 4.70 21.84 16.78 23.93 29.34 36.12
✘ ! 20.22 10.49 5.14 1.15 15.17 5.90 10.27 12.40 15.68

! ! 34.81 22.95 14.92 6.28 26.81 17.60 25.41 32.02 39.73

“random” and “complete” on r@{m} and mIoU (row 3).
CoT and ICL improve temporal coverage by better aligning
start and end timestamps rather than single-point localization,
proving both are crucial for VTG understanding. While CoT
and ICL achieve comparable r@{n}s, ICL nearly doubles
r@{m} performance, showing LLM’s strength in example-
driven understanding (rows 4-5).

Fig. 3: A Cook long video case.

2) Effect of Multimodal Information: Rows 6-8 demon-
strate the importance of combining speech and visual modal-
ities, significantly outperforming single-modality setups. (i)
Removing speech reduces r@0.9 by 5.13%, and removing
captions leads to a 1.58% drop, confirming the need for both.
(ii)Start time prediction is close to the optimal only with
speeches (row 6), but captions enhance IoU accuracy when
combined (row 8), highlighting the importance of multimodal
information for VTG in long videos. (iii) Despite noise and

information loss in sparse captions, LLM benefits from vi-
sual data, leveraging Boundary-Perceptive Prompting to filter
irrelevant content and extract meaningful insights for VTG.

E. Qualitative Analysis

Figure 3 showcases the reasoning process of StepVTG,
which enhances the explainability of its prediction. Additional
cases, along with speech and visual inputs, are provided in the
supplementary materials.

a) Query: BBQ Sandwiches
b) Ground Truth: (38, 160)
c) Prediction: {“summary”: “The video demonstrates

how to make barbecued chicken sandwiches. The recipe
includes using chicken breasts, Worcestershire sauce, Italian
dressing, brown sugar, and barbecue sauce. The chicken is
cooked in a crockpot for six hours and then shredded. The
video also shows how to make coleslaw as a side dish. The
coleslaw is made with pre-mixed carrots and cabbage, salad
dressing, mayonnaise, sugar, and vinegar. The video concludes
with the final dish of barbecued chicken sandwiches and
coleslaw.”, “comment”: “The visual captions provide helpful



information about the ingredients and cooking process, making
it easier to follow along with the video. They are helpful for
localization.”, “query”: “BBQ Sandwiches”, “before 38”: “talk
about the introduction and the quick and easy meals featured
in the video.”, “between 38 and 80”: “talk about the recipe and
ingredients for the barbecued chicken sandwiches.”, “between
80 and 160”: “talk about cooking the chicken in the crockpot
and preparing the coleslaw.”, “after 160”: “talk about the final
dish and conclude the video.”, “answer”: [38, 160] }

IV. CONCLUSION

We propose StepVTG, a framework for Video Temporal
Grounding (VTG) in long videos using multimodal speech
and visual inputs in a step-by-step, tuning-free manner. Our
Boundary-Perceptive Prompting improves long-range tempo-
ral reasoning and boundary detection in noisy contexts up
to 10K tokens. Addressing the limitations of existing VTG
benchmarks focused on short videos and neglecting speech, we
establish the MM-LVTG benchmark for long VTG with visual
and speech inputs. Experiments show that StepVTG outper-
forms baselines while providing explainable predictions. By
reformulating VTG as a long-textual task, we showcase LLMs’
potential for complex temporal video tasks. While speech and
visual inputs offer key clues for long VTG, they cannot fully
represent videos, as captions act as lossy visual compressions.
Comprehensive video understanding requires integrating more
modalities and efficient representations. Future work could
explore extracting task-specific information, such as guiding
captioning models with text queries to focus on VTG-relevant
content.
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