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Abstract
Embodied Artificial Intelligence (AI) is an intelligent system para-
digm for achieving Artificial General Intelligence (AGI), serving as 
the cornerstone for various applications and driving the evolution 
from cyberspace to physical systems. Recent breakthroughs in 
Large Language Models (LLMs) and World Models (WMs) have 
drawn significant attention for embodied AI. On the one hand, 
LLMs empower embodied AI via semantic reasoning and task de-
composition, bringing high-level natural language instructions and 
low-level natural language actions into embodied cognition. On 
the other hand, WMs empower embodied AI by building internal 
representations and future predictions of the external world, fa-
cilitating physical law-compliant embodied interactions. As such, 
this paper comprehensively explores the literature in embodied 
AI from basics to advances, covering both LLM driven and WM 
driven works. In particular, we first present the history, key tech-
nologies, key components, and hardware systems of embodied 
AI, as well as discuss its development via looking from unimodal 
to multimodal angle. We then scrutinize the two burgeoning fields 
of embodied AI, i.e., embodied AI with LLMs/multimodal LLMs 

(MLLMs) and embodied AI with WMs, meticulously delineating 
their indispensable roles in end-to-end embodied cognition and 
physical laws-driven embodied interactions. Building upon the 
above advances, we further share our insights on the necessity 
of the joint MLLM-WM driven embodied AI architecture, shedding 
light on its profound significance in enabling complex tasks within 
physical worlds. In addition, we examine representative applica-
tions of embodied AI, demonstrating its wide applicability in real-
world scenarios. Last but not least, we point out future research 
directions of embodied AI that deserve further investigation.

Index Terms—Embodied AI, LLMs, world models.

I. Introduction

Embodied Artificial Intelligence (AI) originated 
from the Embodied Turing Test by Turing [1], 
which is designed to explore whether agents can 

imitate human intelligence to achieve Artificial General 
Intelligence (AGI). Among them, agents that only solve 
abstract problems in digital world (cyberspace) are 
generally defined as disembodied AI, while those that 
also can interact with the physical world are regarded 
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as embodied AI. Embodied AI builds on foundational in-
sights from cognitive science and neuroscience [2], [3], 
which claims that intelligence emerges from the dynam-
ic coupling of perception, cognition, and interaction. As 
shown in Fig. 1, embodied AI includes three key compo-
nents in a closed-loop manner, i.e., 1) active perception 
(sensor-driven environmental observation), 2) embod-
ied cognition (historical experience-driven cognition 
updating), and 3) dynamic interaction (actuator-mediat-
ed action control). Besides, hardware embodiment [4], 
[5], [6] is also critical due to escalating computational 
and energy demands, particularly under latency and 
power constraints of devices in real-world deployment 
scenarios.

The development of embodied AI has evolved from 
unimodal to multimodal paradigm. In early stage, em-
bodied AI is primarily studied through focusing on indi-
vidual components with single modality such as vision, 
language, or action, where the perception, cognition, or 
interaction component is driven by one sensory input 
[7], [8], e.g., perception tends to be dominated by the 
visual modality [9], cognition tends to be dominated by 
the language modality [10], [11], and interaction tends to 
be dominated by the action modality [12], [13]. Although 
these methods perform well within individual compo-
nents, they are limited by the narrow scope of informa-
tion provided by each modality and the inherent gaps 
between modalities across components. The continued 
development of embodied AI witnesses the limitations 
of unimodal approaches, promoting a significant shift 
toward integration of multiple sensory modalities [14], 

[15], [16]. As such, multimodal embodied AI [17], [18] 
naturally arises to create more adaptive, flexible, and 
robust agents capable of performing complex tasks in 
dynamic environments.

Large Language Models (LLMs) empower embodied 
AI via semantic reasoning [19] and task decomposition 
[20], [21], bringing high-level natural language instruc-
tions and low-level natural language actions into embod-
ied cognition. Representative LLM driven works include 
SayCan [22], which i) provides a real-world pretrained 
natural language action library to constrain LLMs from 
proposing infeasible and contextually inappropriate ac-
tions; ii) uses LLMs to convert natural language instruc-
tions into natural language action sequences; and iii) 
utilizes value functions to verify the feasibility of natural 
language action sequences in a particular physical envi-
ronment. These works suggest that LLMs are extremely 
useful to robots which aim at acting upon high-level, 
temporally extended instructions expressed in natural 
language. However, LLMs are only a part of the entire 
embodied AI system (e.g., embodied cognition), which 
is limited by a fixed natural language action library and 
a specific physical environment, making it difficult for 
LLM driven embodied AI to achieve adaptive expansion 
for new robots and environments.

Recent breakthroughs in Multimodal LLMs (MLLMs) 
[23], [24] and World Models (WMs) [25], [26], [27] have 
opened up a new frontier in embodied AI research. 
MLLMs can act on the entire embodied AI system, 
bridging high-level multimodal inputting and low-level 
motor action sequences into end-to-end embodied ap-
plications. Semantic reasoning [28], [29], [30] lever-
ages MLLMs’ cross-modal comprehension to interpret 
semantics from visual, auditory, or tactile inputs, e.g., 
identifying objects, inferring spatial relationships, pre-
dicting environmental dynamics. Concurrently, task de-
composition [31], [32], [33] employs MLLMs’ sequential 
logic to break complex objectives into sub-tasks while 
dynamically adapting plans based on sensor feedback. 
However, MLLMs often fail to ground predictions in 
physics-compliant dynamics [34] and exhibit poor real-
time adaptation [35] to environmental feedback.

On the other hand, WMs empower embodied AI by 
building internal representations [36], [37], [38], [39], 
[40] and making future predictions [41], [42], [43], [44] 
of the external world. Such WM driven embodied AI 
is able to facilitate physical law-compliant embodied 
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Figure 1. The concept of embodied AI.
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interactions in dynamic environments. Internal repre-
sentations compress rich sensory inputs into structured 
latent spaces, capturing object dynamics, physics laws, 
and spatial structures, as well as allowing agents to rea-
son about “what exists” and “how things behave” in their 
surroundings. Simultaneously, future predictions simu-
late potential rewards of sequence actions across mul-
tiple time horizons aligned with physical laws, thereby 
preempting risky or inefficient behaviors. However, WM 
driven approaches struggle with open-ended semantic 
reasoning [45] and lack the ability of generalizable task 
decomposition [26] without explicit priors.

Building upon the above advances, we further share 
our insights on the necessity of developing a joint MLLM-
WM driven embodied AI architecture, shedding light 
on its profound significance in enabling complex tasks 
within physical worlds. MLLMs enable contextual task 
reasoning but overlook physical constraints, while WMs 
excel at physics-aware simulation but lack high-level 
semantics. The joint of MLLM and WM can bridge se-
mantic intelligence with grounded physical interaction. 
For instance, EvoAgent [46] designs an autonomous-
evolving agent with a joint MLLM-WM driven embodied 
AI architecture, which can autonomously complete vari-
ous long-horizon tasks across environments through 
self-planning, self-reflection, and self-control, without 
human intervention. We believe that designing joint 
MLLM-WM driven embodied AI architectures will domi-
nate next-generation embodied systems, bridging the 
gap between specialized AI agents and general physical 
intelligence.

We summarize the representative applications of em-
bodied AI as service robotics, rescue UAVs, industrial 
Robots, and others etc., demonstrating its wide appli-
cability in real-world scenarios. We also point out po-
tential future directions of embodied AI, including but 
not limited to autonomous embodied AI, embodied AI 
hardware, and swarm embodied AI etc.

As shown in Fig. 2, the rest of this paper is organized 
as follows. Section II introduces the history, key tech-
nologies, key components, and hardware system of em-
bodied AI, discussing the development of embodied AI 
from unimodal to multimodal angle. Section III presents 
embodied AI with LLMs/MLLMs, and Section IV pres-
ents embodied AI with WMs. Section V introduces our 
insights on designing a joint MLLM-WM driven embod-
ied AI architecture. Section VI briefly examines appli-
cations of embodied AI. Potential future directions are 
discussed in Section VII.

II. Embodied AI
This section provides a comprehensive overview of 
embodied AI. We first take a historical view to intro-
duce the development of embodied AI in Section II-A. 
Based on technological advancements in five founda-
tional areas related to embodied AI, Sections II-B and 
II-C further review the developmental trajectories of 
core modules in software algorithms and hardware 
design, respectively. Finally, Section II-E discusses an 
overall analysis of the developmental trends from uni-
modal to multimodal.

Figure 2. This paper comprehensively introduces the basics of Embodied AI (EAI) and the latest advancements of EAI with LLMs/
MLLMs and WMs. MLLMs enable contextual task reasoning but overlook physical constraints, while WMs excel at physics-aware 
simulation but lack high-level semantics. Building upon the above advances, this paper proposes a joint MLLM-WM-driven EAI 
architecture. Finally, this paper discusss applications and future directions of EAI.
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A. The Historical View
The historical evolution of embodied AI reflects succes-
sive transitions from early philosophical foundations to 
technological breakthroughs in robotics and the rise 
of learning-driven paradigms, while recent progress in 
LLMs and WMs is driving an ongoing shift toward the 
next phase of development.

The theoretical roots of embodied AI trace to 1950, 
when Turing introduced the foundational idea that in-
telligence is inherently linked to physical experience 
[1]. In the 1980s, cognitive science further formalized 
this view. Lakoff and Johnson emphasized that human 
cognition arises from bodily experience rather than dis-
embodied symbolic computation [47], while Harnad’s 
symbol grounding problem highlighted the necessity of 
connecting symbolic representations to sensory-motor 
reality [48]. Technological advances in robotics during 
the late 1980s and 1990s brought these ideas into prac-
tice. Brooks proposed the subsumption architecture 
[49], [50], promoting behavior-based control through 
layered, reactive modules grounded in sensorimotor 
loops. The Cog project [51] advanced this line by con-
structing humanoid robots capable of developmental 
learning, imitation, and social interaction. Recently, the 
success of the learning-driven paradigm has driven the 
shift in embodied AI from motion control of robots to 
adaptive interaction [52]. In particular, the development 
of deep learning enables robots to learn complex nonlin-
ear mappings from raw sensor data to action policy, sig-
nificantly improving navigation and manipulation tasks 
[53], [54].

While embodied AI has made notable advances, 
achieving self-reflection intelligence in dynamic, un-
certain environments remains a key challenge. Recent 
progress in LLMs/MLLMs [23], [24] and WMs [25], [26], 
[27] have progressively shown promise in overcoming 
these challenges.

B. The Key Technologies and Components
Before discussing the ongoing changes, we systemati-
cally review the development of key technologies and 
components.

1) Key Technologies of Embodied AI: The rapid devel-
opment of embodied AI is closely tied to advances in 
foundational technological models such as Computer 
Vision (CV) models, Natural Language Processing (NLP) 
models, Reinforcement Learning (RL) models, LLMs/
MLLMs, and WMs (as shown in Fig. 3), which can signifi-
cantly enhance the capabilities of agents in perception, 
cognition and interaction.

Specifically, Classic models in computer vision, such 
as AlexNet [55], GAN [56], ResNet [57], ViT [58], DDPM 
[59], MAE [60], and SAM [61] provide the perceptual 
foundation for embodied agents to interpret high-di-
mensional sensory inputs in complex environments. In 
the field of NLP, the evolution from foundational archi-
tectures like Transformer [62], BERT [63], and T5 [64] 
to large-scale systems such as ChatGPT [65], Vicuna 
[66], and LLaMA [67], has equipped embodied agents 
with stronger capabilities in language understanding, 
task planning, and instruction following. RL offers the 
core algorithmic framework for agents to learn through 
interaction with their environments. Representative ap-
proaches include DQN [68], AlphaGo [69], PPO [70], SAC 
[71], RLHF [72], and GRPO [73].

Beyond these classical fields, one of the most prom-
ising directions in embodied AI lies in the integration 
of LLMs/MLLMs with WMs. LLMs and MLLMs (like Fla-
mingo [20], Qwen-VL [74], Gemini-1.5 [75], GPT-4o [76], 
and Deepseek-R1 [77]) provide agents with the ability 
to understand instructions, reason over multimodal in-
puts, and generalize across tasks and environments. 
In contrast, WMs (like Mental Model [26], RSSM [78], 
JEPA [27], Dreamerv3 [79], Sora [80], and Genie [36]) 
enable agents to model and predict environmental 

Figure 3. Key technological models of embodied AI. Advancements in Computer Vision (CV) models, Natural Language 
Processing (NLP) models, Reinforcement Learning (RL) models, LLMs/MLLMs, and WMs have driven progress in embodied AI.
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dynamics, supporting imagination-based planning and 
anticipatory decision-making in dynamic and uncertain 
environments.

2) Key Components of Embodied AI: Driven by ad-
vances in these key technologies, embodied AI has ex-
perienced rapid progress. In the following, we present 
a structured overview of developments in three key 
components.

a) Active Perception: Active perception refers to the 
agent selectively acquiring information from environ-
mental observations [16], [81], [82]. Existing active per-
ception methods can be roughly divided into three cate-
gories: visual SLAM, 3D scene understanding, and active 
environment exploration. To offer an effective perspec-
tive on active perception approaches, as summarized in 
Table 1, we analyze representative methods along three 
practical dimensions: sensor type, feature type, and ap-
plicable scenarios.

Visual SLAM. Simultaneous Localization and Map-
ping (SLAM) is a pivotal technology enabling agents to 
both localize themselves and construct environmental 
maps in unknown environments [9], [83]. As a founda-
tional technology of active perception, visual SLAM has 
been extensively studied [84], [85]. According to Wang 
et al. [86], existing methods fall into geometric-based 
and semantic-based categories. Geometric methods ex-
ploit spatial or temporal cues [8], such as dense scene 
flow [87], [88], triangulation consistency [89], and graph 
structure [90], [91], performing well in static settings but 
struggling with dynamic scenes. In contrast, semantic 
methods improve localization and mapping in dynam-
ic environments by leveraging high-level information. 
Representative early methods include SLAM++ [92], in-
tegrating object-level semantics, and DS-SLAM [93], ap-
plying deep learning to dynamic scene understanding. 
Recent models such as TwistSLAM [94] and GS-SLAM 

Table 1. Comparison of three categories of active perception methods including visual SLAM, 3D scene 
understanding, and active Environment exploration.

Category Method Year Sensor Type Feature Type Applicable Scenarios

Visual SLAM

CoSLAM [89] 2012 RGB-D Geometric + 
Volumetric Dynamic SLAM

SLAM++ [92] 2013 RGB-D Semantic Object-level Mapping

ORB-SLAM [8] 2015 RGB-D + Stereo Geometric Dynamic SLAM

DS-SLAM [93] 2018 RGB-D Geometric + 
Semantic Dynamic SLAM

TwistSLAM [94] 2022 RGB-D + Stereo Geometric + 
Semantic Dynamic SLAM

GS-SLAM [95] 2024 RGB-D Volumetric Object-level Mapping

3D Scene 
Understanding

Gaudi [96] 2022 RGB Volumetric General Scene Understanding

Clip2Scene [97] 2023 RGB + Point Cloud Multimodal Language-guided Scene 
Understanding

OpenScene [98] 2023 RGB + Point Cloud Multimodal General Scene Understanding

Lexicon3D [99] 2024 RGB-D Semantic Language-guided Scene 
Understanding

GraphDreamer [100] 2024 RGB Topological + 
Semantic Structured Scene Reasoning

HUGS [101] 2024 RGB-D Multimodal General Scene Understanding

RegionPLC [102] 2024 RGB + Point Cloud Multimodal Language-guided Scene 
Understanding

Active 
Environment 
Exploration

MAX [103] 2019 RGB Semantic Semantic-guided Exploration

Active Neural SLAM 
[104] 2020 RGB-D Volumetric Geometry-based Exploration

APT [105] 2021 RGB Semantic Semantic-guided Exploration

Conan [106] 2023 RGB Topological Geometry-based Exploration

DBMF-BPI [107] 2023 RGB-D Volumetric Geometry-based Exploration

ActiveRIR [108] 2024 RGB + Audio Multimodal Cross-modal Active 
Perception
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[95] further enhance robustness by combining geomet-
ric optimization with semantic or generative modeling.

3D Scene Understanding. Scene understanding fo-
cuses on enabling agents to perceive, segment, and rea-
son about complex environments in a structured and 
semantically meaningful way. Recent works have ad-
vanced this field by integrating vision-language models 
and generative priors. Early efforts like Gaudi [96] intro-
duced generative models for 3D-aware scene synthesis. 
Clip2Scene [97] and OpenScene [98] leveraged vision-
language embeddings to facilitate label-efficient and 
open-vocabulary 3D understanding. Structured scene 
understanding is further enhanced by Lexicon3D [99] 
and GraphDreamer [100], which model object-level re-
lations in 3D space through structured representations 
such as scene graphs or semantic lexicons. Meanwhile, 
region-level multimodal grounding techniques, exem-
plified by HUGS [101] and RegionPLC [102], incorporate 
prompts and spatial grounding to achieve fine-grained, 
goal-conditioned 3D perception. These methods ad-
vance holistic, language-aligned 3D understanding.

Active Environment Exploration. Active exploration 
focuses on enabling agents to autonomously acquire 
informative observations through interaction with the 
environment. Early approaches relied on building ex-
plicit or implicit environmental models. Representative 
model-based methods include MAX [103] and Active 
Neural SLAM [104], which leverage predictive modeling 
and mapping to support efficient navigation in unseen 
spaces. In contrast, APT [105] and DBMF-BPI [107] focus 
on model-free exploration through direct environmen-
tal interaction to reduce reliance on explicit modeling. 
Recent efforts further enhance exploration capabilities 
by incorporating multimodal perception [108] and se-
mantic reasoning [106].

b) Embodied Cognition: Embodied cognition refers to 
the emergence of internal representations and reason-
ing capabilities during the interaction, driven by the 
agent’s self-reflection on its perception and accumulated 
experience [146, [147], [148]. This component forms the 
core of embodied AI, enabling agents to perform task 
planning [149], causal inference [150], and long-horizon 
reasoning [151], [152]. Recent studies of embodied cog-
nition primarily focus on three aspects: task-driven self-
planning, memory-driven self-reflection, and embodied 
multimodal foundation models. Table 2 presents rep-
resentative methods analyzed from four perspectives: 
input modalities, cognition type, reasoning mode, and 
output type. These dimensions reflect how embodied 
agents perceive information, form internal models and 
conduct reasoning.

Task-Driven Self-Planning. In task-driven self-plan-
ning, agents autonomously generate structured plans 

based on task goals, environmental context, and internal 
knowledge, without explicit human instructions [153], 
[154], [155]. Structured learning is a classical solution 
that develops latent planning spaces or direct policy 
mappings, achieving high efficiency within training dis-
tributions but lacking robustness to out-of-distribution 
scenarios. Representative approaches include L3P [109], 
Ego-planer [111], and ETPNav [114]. Recent advances in-
corporate LLMs or generative models into self-planning. 
LLM-Planner [110] and AutoAct [112] integrate LLMs into 
planning by grounding language-guided reasoning into 
various tasks, while RPG [113] offers a generative per-
spective, aiming to unify planning and content creation 
through multimodal reasoning.

Memory-Driven Self-Reflection. Memory-driven 
self-reflection enables agents to leverage past experi-
ences for long-horizon reasoning, error correction, 
and self-improvement [46], [156]. Early studies focus 
on memory processing, including fixed-size replay buf-
fers [157], [158], [159] and differentiable memory archi-
tectures [160], [161]. Recent advances introduce reflec-
tive mechanisms, where agents summarize or verbalize 
past experiences to guide future decisions. Reflexion 
[115] and Reflect [116] enable agents to iteratively self-
correct by integrating verbalized feedback into action 
planning, while RILA [117] extends reflective reasoning 
to multimodal semantic navigation. Beyond individual 
reflection, Optimus-1 [118] and REMAC [119] integrate 
multimodal or multi-agent memory to support long-ho-
rizon collaboration. EvoAgent [46] further advances this 
direction by coupling continual world modeling with a 
memory-driven planner, enabling fully autonomous evo-
lution across sequential tasks.

Embodied Multimodal Foundation Models. In the 
era of MLLMs, embodied multimodal foundation mod-
els [162], [163], [164] have emerged as one of the most 
promising solutions for unifying planning, reasoning, 
and other embodied cognitive capabilities. Recent prog-
ress is driven by both data construction and model 
development. Data efforts focus on constructing high-
quality benchmarks to support scalable and cognitively 
meaningful evaluation, such as MuEP [165], ECBench 
[166], MFE-ETP [167], and EmbodiedBench [18]. On the 
model side, recent advances include affordance-ground-
ed agents (e.g., SayCan [120] and GATO [121]) that align 
language understanding with embodied action spaces, 
vision-language pretraining approaches (like Embod-
iedGPT [122] and Kosmos-2 [123]) that promote scalable 
embodied reasoning, and object-centric designs (such 
as MultiPLY [124] and ManipLLM [28]) that enhance ma-
nipulation and interaction capabilities. These models 
collectively aim to build transferable and generalizable 
embodied AI.
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c) Dynamic Interaction: Dynamic interaction refers 
to the process in which an agent influences the envi-
ronment through actions or behaviors grounded in its 
perception and cognition [168], [169]. Existing research 
highlights the significance of this capability in enabling 
agents not only to respond but also to change their sur-
roundings [170], [171]. Studies on dynamic interaction 
encompass action control, behavioral interaction, and 
collaborative decision-making. To better understand ex-
isting methods, we analyze representative approaches 
from four perspectives, including input modalities, in-
teraction type, learning paradigm, and task type, as 
shown in Table 3. These dimensions reflect how agents 
sense the environment, determine the level and struc-
ture of interaction, and generate appropriate behaviors 
in dynamic multi-agent or human-in-the-loop scenarios.

Action Control. Action control generates motor com-
mands for embodied interaction. Early methods were 
based on control theory with dynamic system modeling 
[172], [173] or RL via trial and error [174], [175]. The former 
is effective for structured or repetitive tasks, while the 
latter is adaptable to high-dimensional, nonlinear prob-
lems. Recent advances mainly follow three directions. Vi-
sion-language-action (VLA) models, such as PaLM-E [14], 

RT-2 [24], OpenVLA [126], and CogAgent [127], integrate 
language-guided reasoning for flexible control and have 
been comprehensively reviewed by Ma et al. [176]. Open-
ended frameworks like MineDojo [125] promote continu-
al skill acquisition from open-world knowledge. In addi-
tion, Cross-embodiment learning, including CrossFormer 
[129], HPT [130], and Octo [128], aim to unify policy learn-
ing across diverse robots and modalities.

Behavioral Interaction. The behavior of an agent is 
composed of a sequence of actions. Compared to ac-
tion control, it emphasizes high-level control through 
meaningful action patterns, enabling agents to interact 
in a flexible and goal-directed manner. Recent advances 
mainly fall into two directions. Imitation learning, in-
cluding GAIL [131], MGAIL [132], TrafficSim [133], and 
TrajGen [134], enables efficient acquisition and simula-
tion of complex behaviors. BEHAVIOR-1K [135] provides 
a large-scale benchmark for evaluating behavior gener-
alization across 1,000 embodied tasks. Behavior-aware 
enhancement methods, such as AgentLens [136] and 
ECL [137], improve policy robustness and interpret-
ability. Despite these advances, achieving reliable long-
horizon behavioral interaction under sparse feedback 
remains challenging.

Table 2. Comparison of three categories of embodied cognition methods: task-driven self-planning, memory-driven 
self-reflection, and embodied multimodal foundation models. I, L and P indicate the image, language and point cloud 
modalities, respectively.

Category Method Year Input 
Modalities

Cognition 
Type Reasoning Mode Output

Task-driven
Self-planning

L3P [109] 2021 I + L Planner Neural + Symbolic Action

LLM-Planner [110] 2023 I + L Planner Neural + Symbolic Action

Egoplaner [111] 2023 I Planner Symbolic Action

AutoAct [112] 2024 L Planner Neural Action

RPG [113] 2024 I + L Planner Neural Policy

ETPNav [114] 2024 I + L Planner Neural + Symbolic Policy

Memory-driven
Self-reflection

Reflexion [115] 2023 L Memory Beam + Replay Policy

Reflect [116] 2023 I + L Memory Neural + Symbolic Policy

RILA [117] 2024 L Memory Neural Policy

Optimus-1 [118] 2024 I + L Memory Neural Policy

EvoAgent [46] 2025 I + L Memory Neural Policy

REMAC [119] 2025 L Memory Neural + Symbolic Policy

Embodied 
Multimodal
Foundation 
Models

SayCan [120] 2022 I + L Planner + 
Aligner Neural Answer + Action

GATO [121] 2022 I + L + P Aligner Neural Action

EmbodiedGPT [122] 2023 I + L Aligner Neural Answer + Action

Kosmos-2 [123] 2023 I + L Aligner Neural Answer

MultiPLY [124] 2024 I + L Aligner Neural Answer

ManipLLM [28] 2024 I + L Aligner Neural Answer + Action



IE
EE P

ro
of

8 	  IEEE CIRCUITS AND SYSTEMS MAGAZINE 		  FOURTH QUARTER 2025

Collaborative Decision. Collaborative decision 
focuses on coordinating multiple agents to achieve 
shared goals, which is essential for multi-agent sys-
tems and human-robot collaboration [177], [178], [179]. 
Multi-agent RL is a classical solution, with methods like 
QTRAN [139], QPLEX [140], and Qatten [138] addressing 

cooperation via centralized training with decentralized 
execution. MAT [141] reframes MARL as a sequence 
modeling problem to mitigate scalability limitations in 
multi-agent RL. Recent advances integrate LLMs and 
WMs to enhance multi-agent collaboration. MetaGPT 
[144], CoELA [142], and AgentVerse [143] leverage LLMs 

Table 3. Comparison of three categories of dynamic interaction methods including action control, behavioral 
interaction, and collaborative decision-making, across input modalities, interaction type, modeling paradigm, and 
task type. I, L, S, P, and T denote Image, Language, State, Proprioception, and Trajectory, respectively. IL denotes 
Imitation Learning.

Category Method Year Input 
Modalities

Interaction 
Type

Learning 
Paradigm Task Type

Action
Control

MineDojo [125] 2022 I + L High-level 
Planning LLM Instruction Following

PaLM-E [14] 2023 I + L + P Low-level Control MLLM Embodied 
Manipulation

RT-2 [24] 2023 I + L Low-level Control VLA Embodied 
Manipulation

OpenVLA [126] 2024 I + L Low-level Control VLA Embodied 
Manipulation

Cogagent [127] 2024 I + L Low-level Control MLLM Instruction Following

Octo [128] 2024 I + L + P Low-level Control VLA Embodied 
Manipulation

CrossFormer 
[129] 2024 I + L Low-level Control VLA Embodied 

Manipulation

HPT [130] 2024 I + L Low-level Control VLA Embodied 
Manipulation

Behavioral 
Interaction

GAIL [131] 2016 T Behavioral IL Trajectory Learning

MGAIL [132] 2017 T Behavioral IL Trajectory Learning

TrafficSim [133] 2021 T Behavioral RL Trajectory Learning

TrajGen [134] 2022 I + T Behavioral RL Trajectory Learning

Behavior-1K 
[135] 2023 I Trajectory IL Behavior 

Understanding

AgentLens [136] 2024 I + S Trajectory IL Behavior 
Understanding

ECL [137] 2024 I + L High-level 
Planning IL Embodied 

Manipulation

Collaborative
Decision

QMIX [138] 2018 S Behavioral RL Cooperative Decision

Qtran [139] 2019 S Behavioral RL Cooperative Decision

QPLEX [140] 2019 S Behavioral RL Cooperative Decision

MAT [141] 2022 S Behavioral RL Cooperative Decision

CoELA [142] 2024 I + L Low-level Control LLM Cooperative 
Manipulation

AgentVerse 
[143] 2024 L High-level 

Planning LLM Agent Society 
Simulation

MetaGPT [144] 2024 L High-level 
Planning LLM Agent Society 

Simulation

Combo [145] 2024 L High-level 
Planning LLM Cooperative Planning
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for task reasoning and coordination, while COMBO [145] 
composes modular WMs to support scalable collabora-
tive embodied decision.

C. Hardware
As embodied AI evolves, model complexity and size 
have grown, increasing computational and energy de-
mands. Embodied systems, often operating in dynamic, 
real-world environments, face strict latency and power 
constraints—especially at the edge. Thus, develop-
ing hardware-friendly directions that maintain perfor-
mance while optimizing efficiency is crucial for enabling 
responsive, energy-aware embodied agents. Hardware 
optimization in embodied AI typically includes four 
components: hardware-aware model compression, com-
piler-level optimization, domain-specific accelerators, 
and hardware-software co-design.

1) Hardware-Aware Model Compression: Quantization 
and pruning [4] are key techniques for reducing model 
size and computational cost. In embodied agents, which 
frequently run on low-power embedded hardware, such 
techniques are vital for enabling fast and efficient infer-
ence. Quantization [180] maps weights and activations 
to lower bit-widths, while pruning [181] removes re-
dundant parameters. To support real-world embodied 
tasks, such as robotic control or visual navigation, hard-
ware efficiency metrics like power, performance, and 
area (PPA) can guide bit-width allocation or pruning ra-
tios [182], enabling task-specific trade-offs between ac-
curacy and deployability on physical platforms.

2) Compiler-Level Optimization: Compilers bridge 
high-level embodied AI models and hardware execution. 
In real-time embodied systems, compiler toolchains are 
essential for efficient processing of sensor data and de-
cision-making. TVM [5], built on LLVM [183] and CUDA, 
generates optimized code across platforms. These com-
pilers transform computational graphs through opera-
tor fusion and redundant computation elimination [184], 
enabling responsive behavior. Mapping strategies like 
loop reordering and tiling enhance data locality, paral-
lelism, and memory access [185], all of which are criti-
cal to maintaining low-latency inference in embodied 
agents.

3) Domain-Specific Accelerators: With growing compu-
tational demands, domain-specific accelerators (DSAs) 
are a promising solution for embodied AI. These sys-
tems, from robots to AR/VR agents, benefit from fast, 
energy-efficient hardware tailored for frequent opera-
tions. Google’s TPU [6], typically integrated with CPUs 
and GPUs via PCIe, accelerates key operations like ma-
trix multiplication. FPGA-based accelerators [186] allow 
reconfigurability for adapting to new tasks or changing 
workloads; CGRA accelerators [187] improve structured, 

dataflow-heavy computations common in perception or 
control. Meanwhile, ASIC-based accelerators [188] offer 
high throughput and energy efficiency, ideal for deploy-
ing high-performance embodied models in real-world 
environments.

4) Hardware-Software Co-Design: Separating algo-
rithm and hardware design can lower runtime effi-
ciency. Hardware-software co-design addresses this 
through algorithm-system and algorithm-hardware 
co-optimization. Algorithm-system co-optimization fo-
cuses on how to take full advantage of GPU resources 
like tensor cores and CUDA cores to better support the 
algorithm [198]. Algorithm-hardware co-optimization 
aims to improve deployment efficiency by tuning both 
the model and the hardware architecture. For example, 
we can perform multi-objective optimization based on 
the types of operators in the network and the configu-
ration parameters of the hardware [190]. We can also 
design different numerical quantization schemes along 
with matching hardware accelerators to better support 
embodied AI tasks [191].

D. Benchmarks and Evaluation Metrics
Standardized benchmarks and evaluation metrics are 
crucial for objectively assessing the performance of 
embodied AI systems. Widely adopted testbeds include 
Habitat [192], which provides photorealistic 3D indoor 
environments for navigation and interaction tasks, and 
ManiSkill [192], offering physics-based manipulation 
scenarios with diverse object sets. Simulation platforms 
like MuJoCo [194] enable precise control evaluation in 
continuous state-spaces, while EmbodiedBench [18] 
supports holistic evaluation of vision-driven agents 
across perception, cognition, and interaction. For UAV 
applications, AirSim [195] provides high-fidelity aerial 
environments with dynamic obstacles. These testbeds 
vary in complexity: Habitat excels in visual realism, 
ManiSkill in object diversity, MuJoCo in physical accu-
racy, and EmbodiedBench in multimodal integration. 
Domain-specific benchmarks like BEHAVIOR-1K [135] 
further enable granular evaluation of 1,000 everyday ac-
tivities under realistic constraints.

Key evaluation metrics span three critical dimen-
sions: Task Success Rate measures completion accuracy 
of goal-oriented objectives (e.g., object manipulation or 
navigation) [24]; Real-time Responsiveness quantifies 
decision latency and adaptation speed to environmental 
changes [35]; and Energy Efficiency evaluates compu-
tational cost (FLOPS) and power consumption (Watts) 
during deployment [4]. Additional metrics include Path 
Length for navigation efficiency [104], Generalization 
Score for unseen scenarios [196], and Safety Violations 
for physical compliance [170]. For multi-agent systems, 



IE
EE P

ro
of

10 	  IEEE CIRCUITS AND SYSTEMS MAGAZINE 		  FOURTH QUARTER 2025

Coordination Efficiency [177] and Communication Over-
head [197] provide critical insights. Standardized evalu-
ation protocols like those in MFE-ETP [167] ensure fair 
cross-modal comparisons, though challenges remain in 
sim-to-real transfer validation [176].

E. From Unimodal to Multimodal
The development of embodied AI has evolved from uni-
modal to multimodal systems, as shown in Fig. 4. Initial-
ly, embodied AI was primarily concerned with individu-
al modalities, such as vision, language, or action, where 
the perception, cognition, and interaction were driven 
by one sensory input [7], [8]. As the field matured, the 
limitations of unimodal embodied AI became apparent, 
and there has been a significant shift toward integrating 
multiple sensory modalities [14], [15], [16]. Multimodal 
embodied AI is now seen as crucial for creating more 
adaptive, flexible, and robust agents capable of perform-
ing complex tasks in dynamic environments [17], [18].

Unimodal embodied AI has benefited from rapid de-
velopments in fundamental areas such as computer vi-
sion, natural language processing, and reinforcement 
learning [12], [13]. These unimodal methods excel in 
dealing with a specific module in embodied AI. For ex-
ample, computer vision techniques have driven advanc-
es in visual SLAM and 3D scene understanding in the 
active perception module [9]. Natural language process-
ing techniques, especially LLM, have become popular 
solutions to address task planning and long-horizon 
reasoning in the embodied cognition module [10], [11]. 
Although unimodal embodied AI performs well in inde-
pendent modules, it always faces two inherent limita-
tions. On the one hand, the information contained in a 
single modality is limited, hindering the performance of 

perception, cognition, and interaction. For example, vi-
sual-only systems struggle to understand environments 
in dynamic or ambiguous settings, while auditory-based 
systems face challenges in real-world noise and signal 
processing [17], [198]. On the other hand, diverse and 
heterogeneous modalities hinder information transfer 
and sharing among modules. The agent’s perception of 
the environment fails to facilitate the formation of its 
cognition, while the evolution of cognition fails to facili-
tate the interaction with the environment.

In contrast, multimodal embodied AI has emerged 
as a more promising paradigm [18]. By integrating data 
from multiple sensing modalities, such as visual, audi-
tory, and olfactory feedback, these methods can pro-
vide a more holistic and precise understanding of the 
environment. More importantly, multimodal embodied 
AI can facilitate deeper integration among perception, 
cognition, and interaction. Recent advances in MLLMs 
and WMs enable agents to more effectively handle 
multiple modalities, promising to improve the capa-
bilities of embodied AI [44], [80], [199]. The integration 
of these models is considered a key step toward en-
abling multimodal embodied AI in dynamic, uncertain 
environments.

III. Embodied AI With LLMs/MLLMs
This section provides a comprehensive overview of em-
bodied AI with LLMs/MLLMs. We first elaborate in de-
tail how LLMs boost embodied AI in Section III-A and 
how MLLMs boost embodied AI in Section III-B. Then 
we discuss the classification of MLLMs for embodied AI 
in Section III-C.

A. LLMs Boost Embodied AI
LLMs empower embodied AI via semantic reasoning 
and task decomposition, bringing high-level natural lan-
guage instructions and low-level natural language ac-
tions into embodied cognition.

1) Semantic Reasoning: Semantic reasoning [19] 
leverages LLMs to interpret semantics from text in-
structions by analyzing linguistic patterns, contextual 
relationships, and implicit knowledge. Through trans-
former architectures [62], LLMs map input tokens to 
latent representations, enabling hierarchical abstrac-
tion of meaning across syntactic and pragmatic levels. 
They employ attention mechanisms to weigh relevant 
semantic cues while suppressing noise, facilitating logi-
cal inference and analogical reasoning. By integrating 
world knowledge from pretraining corpora with task-
specific prompts, LLMs dynamically construct con-
ceptual graphs that align textual inputs with intended 
outcomes. This process supports multi-hop reasoning 

Figure 4. Unimodal embodied AI and multimodal embod-
ied AI. (a) Unimodal methods focus on specific modules of 
embodied AI. They are limited by the narrow scope of infor-
mation provided by each modality and the inherent gaps 
between modalities across modules. (b) Multimodal embod-
ied AI methods break these limitations and enable the mutual 
enhancement of the modules.
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through probabilistic token prediction, resolving ambi-
guities by evaluating contextual coherence and seman-
tic plausibility.

2) Task Decomposition: Task decomposition [20], 
[21] employs LLMs’ sequential logic to break complex 
objectives into sub-tasks by hierarchically analyzing 
contextual dependencies and goal alignment. Leverag-
ing chain-of-thought prompting, LLMs iteratively parse 
instructions into actionable steps, prioritizing interde-
pendencies while resolving ambiguities through seman-
tic coherence checks.

Representative works like SayCan [22] first provides 
a real-world pretrained natural language actions library, 
which is used to constrain LLMs to propose both fea-
sible and contextually appropriate actions; then uses 
LLMs to convert natural language instructions into nat-
ural language action sequences; finally uses value func-
tions to verify the feasibility of natural language action 
sequences in a particular physical environment. These 
works suggest that LLMs are extremely useful to robots 
aiming to act upon high-level, temporally extended in-
structions expressed in natural language. However, 
LLMs are only a part of the entire embodied AI system, 
which is limited by a fixed natural language actions li-
brary and a specific physical environment, and it is dif-
ficult to achieve adaptive expansion in new robots and 
environments.

B. MLLMs Boost Embodied AI
MLLMs can act on the entire embodied AI system 
and can solve LLMs’ problems well by bridging high-
level multimodal inputting and low-level motor action 
sequences into end-to-end embodied applications 
(as shown in Fig. 5). Compared with LLMs, semantic 

reasoning [28], [29], [30] leverages MLLMs’ cross-modal 
comprehension to interpret semantics from visual, au-
ditory, or tactile inputs, e.g., identifying objects, infer-
ring spatial relationships, or predicting environmental 
dynamics. Concurrently, task decomposition [31], [32], 
[33] employs MLLMs’ sequential logic to break complex 
objectives into sub-tasks while dynamically adapting 
plans based on sensor feedback. MLLMs mainly include 
Vision-Language Models (VLMs) and Vision-Language-
Action models (VLAs).

1) VLMs for Embodied AI: VLMs for embodied AI in-
tegrate visual and language instruction understanding 
to enable physical or virtual agents to perceive their 
environments in goal-driven tasks. Representative 
works like PaLM-E [14] first train visual and language 
encodings end-to-end, in conjunction with a pre-trained 
large language model; then incorporate the results of 
real-world continuous sensor modalities encodings into 
VLMs and establish the link between words and per-
cepts; finally, achieve multi-task completion through 
fixed action space mapping. For navigation, ShapeNet 
[200], which fine-tunes contrastive embeddings for 3D 
spatial reasoning, greatly reduces path planning errors. 
These works suggest that VLMs can combine percep-
tion and reasoning in embodied AI to solve a large num-
ber of tasks with fixed action spaces.

2) VLAs for Embodied AI: VLAs integrate multimodal 
inputs with low-level action control through differentia-
ble pipelines. Representative works like RT-2 [24] first 
encode the robot’s current image, language instruc-
tions, and robot actions at a specific timestep and con-
vert them into text tokens; then use LLMs for semantic 
reasoning and task decomposition; finally, de-tokeniz-
es generated tokens into the final action. Octo [128] 

Figure 5. The development roadmap of MLLMs for embodied AI. This roadmap highlights the key milestones in their conceptual 
and practical development.
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pretrains on 100K robot demonstrations with language 
annotations, achieving cross-embodiment tool use. For 
dexterous manipulation, PerAct [201] utilizes 3D voxel 
representations to reach millimeter-level grasp accura-
cy. These works suggest that VLAs can act on the entire 
embodied AI system and achieve adaptive expansion in 
new robots and environments.

C. Classification of MLLMs for Embodied AI
MLLMs can empower active perception, embodied cog-
nition, and dynamic interaction of embodied AI.

1) MLLMs for Active Perception: First, MLLMs can en-
hance 3D SLAM. By grounding visual observations into 
semantic representations, MLLMs augment traditional 
SLAM pipelines with high-level contextual information 
such as object categories, spatial relations, and scene 
semantics. Representative works like SEO-SLAM [202] 
utilize MLLMs to generate more specific and descrip-
tive labels for objects, while dynamically updating a 
multiclass confusion matrix to mitigate biases in object 
detection. Second, MLLMs can enhance 3D scene un-
derstanding. Camera-based perception [30] remains the 
dominant setup in MLLM-driven embodied AI, as RGB 
inputs align naturally with the visual-language pretrain-
ing of many foundation models [203]. Representative 
works like EmbodiedGPT [122] leverage this synergy 
to map 2D visual inputs into semantically rich features 
aligned with language-based goals. Finally, MLLMs can 
enhance active environment exploration. MLLMs have 
also revolutionized how robots interact with their envi-
ronments, particularly in feedback-driven closed-loop 
interactions. Representative works like LLM3 [201] fo-
cus on structured motion-level feedback, which incor-
porates signals such as collision detections into the 
planning loop, allowing the model to iteratively revise 
symbolic action sequences. MART [204], on the other 
hand, leverages interaction feedback to improve retriev-
al quality.

2) MLLMs for Embodied Cognition: First, MLLMs can 
enhance task-driven self-planning. Embodied agents 
with MLLMs can either directly map high-level goals to 
structured action sequences [31], or adopt an intermedi-
ate planning strategy that continually interacts with the 
environment to refine their plans [32]. Representative 
works like CoT-VLA [33] predict intermediate subgoal 
images that depict the desired outcomes of subtasks, 
helping the agent visualize and reason through each 
step of a complex task. Second, MLLMs can enhance 
memory-driven self-reflecting. MLLMs allow agents 
to learn from experience using this inherent memory 
module [128]. Representative works like Reflexion [115] 
enhance agent performance through self-generated lin-
guistic feedback, which is stored in an episodic memory 

buffer and leveraged to guide future planning. Finally, 
MLLMs can enhance embodied multimodal foundation 
models. MLLMs can be adapted to the physical world 
through continued pretraining or fine-tuning in em-
bodied settings. Representative works include QwenVL 
[74] and InternVL [205], along with models supporting 
broader modality alignment, such as Qwen2.5-Omni 
[206].

3) MLLMs for Dynamic Interaction: First, MLLMs can 
enhance action control. MLLMs have ability to decom-
pose complex tasks into actionable subtasks [32]. To 
further produce continuous control signals for each 
subtask, MLLMs either generate actions autoregres-
sively in a sequential manner [126], [207] or employ 
auxiliary policy heads to further process their internal 
representations [128]. Recent advances also explore 
generating executable code with MLLMs [208], enabling 
robots to follow interpretable and adaptable control 
policies. Second, MLLMs can enhance behavioral in-
teraction. Through interaction with the environment, 
MLLMs are also capable of generating sequences of be-
havioral actions in a single step. Representative works 
like π-0 [31] combine a vision-language backbone with 
a flow-matching decoder to produce smooth, tempo-
rally extended behavioral trajectories. Finally, MLLMs 
can enhance collaborative decision-making. One line 
of research focuses on multi-agent systems that aim to 
achieve human-level coordination and adapt rapidly to 
unforeseen challenges [209]. For instance, Combo [145] 
introduces a novel framework that enhances coopera-
tion among decentralized agents operating solely with 
egocentric visual observations. Other efforts investi-
gate human-agent collaboration. VLAS [210] exemplifies 
this by aligning human verbal commands with visual 
context via a speech encoder and a LLaVA-style MLLM 
[211], enabling fluid and conversational human-agent 
interaction.

IV. Embodied AI With World Models
This section provides a comprehensive overview of em-
bodied AI with WMs. We first elaborate in detail how 
WMs boost embodied AI in Section IV-A. Then we dis-
cuss the classification of WMs for embodied AI in Sec-
tion IV-B.

A. World Models Boost Embodied AI
WMs empower embodied AI by building internal repre-
sentations and future predictions of the external world 
(as shown in Fig. 6), facilitating physical law-compliant 
embodied interactions in dynamic environments.

1) Internal Representations of the External World: In-
ternal representations compress rich sensory inputs 
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into structured latent spaces, capturing object dynam-
ics, physics laws, and spatial structures, allowing agents 
to reason about “what exists” and “how things behave” 
in their surroundings. These latent embeddings pre-
serve hierarchical relationships [212] between entities 
and environments, mirroring the compositional nature 
of reality itself. The structured nature of these represen-
tations facilitates generalization across environments, 
as abstracted principles (like gravity or object perma-
nence) transcend specific instances. Moreover, they 
support counterfactual reasoning [40] by maintaining 
disentangled variables for objects’ intrinsic properties 
[38] and extrinsic relations [39], enabling flexible men-
tal manipulation of individual components. This disen-
tanglement also enhances sample efficiency in learning, 
as agents transfer knowledge between tasks, sharing 
latent factors. World models with rich internal represen-
tations, can introspect on their own uncertainty about 
environmental states and actively seek information to 
resolve ambiguities. By encoding temporal continuity 
and spatial topology [36], these models naturally en-
force consistency constraints during planning, filtering 
physically implausible actions before execution. Ulti-
mately, such structured latent spaces act as cognitive 
scaffolding for building causal understanding [37], mir-
roring how humans develop intuitive theories about 
their world through compressed sensory experiences.

2) Future Predictions of the External World: Future 
predictions simulate potential rewards of sequence 
actions across multiple time horizons aligned with 
physical laws, thereby preempting risky or inefficient 
behaviors [41], [42]. This predictive capacity bridges 
short-term actions with long-term goals [43], filtering 

out trajectories violating physical plausibility (e.g., walk-
ing through walls) or strategic coherence (e.g., depleting 
resources prematurely). Long-horizon prediction [44] 
allows adaptive balancing of exploration-exploitation 
tradeoffs, simulating distant outcomes to avoid local 
optima while maintaining focus on actionable near-term 
steps. Crucially, these predictions incorporate uncer-
tainty quantification [41], [213], distinguishing predict-
able regularities (daily patterns) from stochastic events 
(sudden changes) to optimize risk-aware planning. The 
simulation prediction improves sample efficiency [39], 
[214], [215], [216] by replacing costly trial-and-error 
with mental rehearsal, particularly valuable in safety-
critical domains like autonomous driving or robotic sur-
gery. Furthermore, continuous prediction-error mini-
mization drives iterative model refinement [169], [217], 
[218], [219], creating self-correcting systems that align 
their internal physics simulators with observed reality. 
Such anticipatory capabilities ultimately grant artificial 
agents human-like foresight, transforming reactive re-
sponses into purposeful, future-optimized behaviors.

B. Classification of World Models for Embodied AI
Embodied AI with WMs can mainly be divided into three 
critical structures: the Recurrent State Space Model-
based (RSSM-based) WMs for embodied AI, the Joint-
Embedding Predictive Architecture-based (JEPA-based) 
WMs for embodied AI, and the Transformer-based WMs 
for embodied AI. Hierarchical-based WMs [220] and dif-
fusion-based WMs [221] are similar to other structures 
and are shown in Fig. 6.

1) RSSM-based WMs for Embodied AI: RSSM consti-
tutes the fundamental architecture underpinning the 

Figure 6. The development roadmap of WMs for embodied AI. This roadmap highlights the key milestones in their conceptual 
and practical development.
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Dreamer algorithm family [41], [42], [43], [44]. This 
framework enhances predictive capabilities in latent 
representations by acquiring temporal environment 
dynamics through visual inputs, subsequently enabling 
action selection via latent trajectory optimization. 
Through orthogonal decomposition of hidden states 
into probabilistic and deterministic components, the 
architecture explicitly accounts for both systematic pat-
terns and environmental uncertainties. Its demonstrat-
ed effectiveness in robotic motion control applications 
has inspired numerous derivative studies building upon 
its theoretical framework.

2) JEPA-Based WMs for Embodied AI: JEPA [27] pro-
vides a structure for developing autonomous machine 
intelligence systems. This architecture establishes 
mapping relationships between input data and an-
ticipated outcomes through representation learning. 
Diverging from conventional generative approaches, 
JEPA operates in abstract latent spaces rather than 
producing pixel-wise reconstructions, thereby pri-
oritizing semantic feature extraction over low-level 
signal synthesis. A key methodological foundation of 
JEPA [213] involves self-supervised training paradigms 
where neural networks learn to infer occluded or unob-
served data segments. Such pretraining on extensive 
unlabeled datasets enables transfer learning across 
downstream applications, demonstrating enhanced 
generalization capabilities for both visual [222], [223] 
and non-visual domains [224].

3) Transformer-Based WMs for Embodied AI: Origi-
nating in natural language processing research, the 
Transformer structure [62] fundamentally relies on 
attention mechanisms to process input sequences 
through parallelized context weighting. This design 
allows simultaneous computation of interelement de-
pendencies, overcoming the sequential processing 
constraints inherent in Recurrent Neural Networks 
(RNNs). Empirical evidence demonstrates superior 
performance in domains requiring persistent mem-
ory retention and explicit memory addressing for 
cognitive reasoning [225], which has propelled its 
adoption in reinforcement learning research since 
2020. Existing advancements have successfully imple-
mented WMs using Transformer variants [38], [40], 
[226], outperforming RSSM architectures in memory-
intensive interactive scenarios [37]. Notably, Google’s 
Genie framework [36] employs the Spatial-Temporal 
Transformer (ST-Transformer) [227] to create syn-
thetic interactive environments through large-scale 
self-supervised video pretraining. This breakthrough 
establishes novel paradigms for actionable world 
modeling, revealing transformative potential for WMs 
development trajectories.

V. Embodied AI With MLLMs and WMs
This section provides a comprehensive overview of 
embodied AI with MLLMs and WMs. We first elaborate 
in detail on the limitations of MLLMs and WMs for em-
bodied AI and explain how MLLMs boost WMs reason-
ing, and how WMs boost MLLMs interaction in Section 
V-A. Then we design a joint MLLM-WM-driven embod-
ied AI architecture in Section V-B. Finally, we discuss 
the advantages and challenges of new architecture in 
Section V-C.

A. MLLMs and WMs
MLLMs enable contextual task reasoning but overlook 
physical constraints, while WMs excel at physics-aware 
simulation but lack high-level semantics. Their joint 
bridges semantic intelligence with grounded physical 
interaction.

1) The Limitations of MLLMs for Embodied AI (Without 
WMs): MLLMs exhibit two critical limitations in embod-
ied AI applications. First, they often fail to ground pre-
dictions [34] in physics-compliant dynamics, leading to 
impractical plans. For example, ignoring friction or ma-
terial properties when manipulating objects may cause 
slippage or task failure. Second, their poor real-time 
adaptation to environmental feedback limits respon-
siveness [35]. While MLLMs excel at semantic task de-
composition, they struggle to adaptively adjust actions 
when the environment changes dramatically. These lim-
itations stem from their reliance on static, pre-trained 
knowledge rather than continuous physical interaction.

2) The Limitations of WMs for Embodied AI (Without 
LLMs/MLLMs): WMs face limitations in abstract reason-
ing and generalization. They struggle with open-end-
ed semantic tasks [45] due to their focus on physical 
simulation rather than contextual understanding. Ad-
ditionally, WMs lack generalizable task decomposition 
[26] without explicit priors. For example, a WM model 
trained on rigid-object manipulation may fail to adapt 
to deformable materials without extensive retraining. 
Their predictive accuracy heavily depends on domain-
specific interaction records, hindering scalability across 
diverse environments.

3) MLLMs Boosting WMs Reasoning: By leverag-
ing cross-modal alignment and semantic grounding, 
MLLMs enable WMs to process complex environments 
dynamically, improving semantic reasoning, task de-
composition, and human-robot interaction. 1) MLLMs 
can enrich WMs by fusing visual, auditory, and tex-
tual data into unified semantic representations. For in-
stance, CLIP-based architectures [228] enable agents to 
align visual scenes with linguistic cues, reducing ambi-
guity in object recognition [229]. 2) MLLMs can augment 
WM’s task decomposition capacity by decomposing 
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high-level goals into executable sub-tasks. Models like 
GPT-4V [65] generate step-by-step plans using environ-
mental context stored in WM. For robotic manipulation, 
Code-as-Policies [230] translates natural language in-
structions into code snippets, leveraging WM to track 
intermediate states. 3) MLLMs enable WMs to refine 
internal representations through human feedback. 
Techniques like Reinforcement Learning with Human 
Feedback (RLHF) [72] allow agents to update WM pri-
ors based on corrective inputs [115]. Those works in 
this section are all possible ways for MLLMs to boost 
WMs reasoning, which is not achieved in existing works. 
4) WMs Boosting MLLMs Interaction: WMs can play a piv-
otal role in refining MLLMs by providing physical laws, 
spatio-temporal relationships, and closed-loop interac-
tion experiences. WMs can mitigate MLLMs’ inherent 
limitations in temporal coherence and environmental 
grounding, enabling more robust decision-making in 
dynamic embodied tasks. 1) WMs can provide MLLMs 
with explicit representations of physical laws (e.g., grav-
ity, friction) and commonsense rules to constrain ac-
tion proposals. For example, Physion++ [231] integrating 
WM-stored biomechanical models can be used to filter 
MLLM-generated robotic motions violating torque lim-
its; RoboGuide [232] injects spatial occupancy maps 
into MLLM planners, preventing collisions during navi-
gation. 2) WMs can stabilize MLLMs reasoning by main-
taining spatio-temporal context during multimodal pro-
cessing. For instance, MemPrompt [233] can use WM 
buffers to align visual object trajectories with linguistic 
descriptions, resolving ambiguities in cluttered envi-
ronments; RoboMem [234] can leverage WM-prioritized 
attention to filter irrelevant sensory noise, improving 
MLLM-based scene understanding. 3) WMs can enable 

iterative refinement of MLLM outputs through closed-
loop interaction. Reflexion [115] can store task-execu-
tion histories in WM, allowing MLLMs to correct kine-
matic errors using failure patterns [230]. Those works 
in this section are all possible ways for WMs to boost 
MLLMs’ decisions, which has not been achieved in exist-
ing works.

B. Joint MLLM-WM-Driven Embodied AI Architecture
We propose a joint MLLM-WM-driven embodied AI ar-
chitecture (as shown in Fig. 7), shedding light on their 
profound significance in enabling complex tasks within 
physical worlds. The specific workflow is as follows, 
with arrows highlighting the data exchange process.

1) Robots → Self-State Inputing → MLLMs/WMs → 
Hardware Embodiment → Robots: The process initiates 
with self-state inputting tracking proprioceptive met-
rics, such as degrees of freedom, number of sensors, 
etc. These metrics feed into both WMs and MLLMs: 
WMs use them to build internal representations of the 
agent’s physical state, while MLLMs contextualize these 
states for task alignment. Hardware embodiment is fo-
cused on implementing WMs and MLLMs into physical 
devices to solve sim-to-real problems. This bidirection-
al flow ensures actions respect both mechanical limits 
and high-level goals.

2) MLLMs → Task Planning → WMs → Memory Up-
dating → MLLMs: MLLMs decompose abstract instruc-
tions into subtasks. A forward arrow delivers this plan 
to WMs, which predict outcomes based on existing en-
vironmental modeling. During execution, WMs log out-
comes into memory. A vertical arrow transmits these 
logs to memory updating modules, which structure 
memory into experiences, represent the forgetting of 

Figure 7. Embodied AI with MLLMs and WMs. MLLMs can enhance WMs by injecting semantic knowledge for task decomposi-
tion and long-horizon reasoning, while WMs can assist MLLMs by building the physical world’s internal representations and future 
predictions, making joint MLLM-WM a promising architecture for embodied systems.
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past task memories, the renewal of current task memo-
ries, and the prediction of future task memories. These 
are then fed back to MLLMs via an arrow, enriching their 
knowledge base. This enables lifelong learning, where 
past failures directly inform future planning.

3) Environments → Active Perception → MLLMs/WMs 
→ Dynamic Interaction → Environments: WMs first drive 
active perception by predicting key environmental 
changes. Multimodal inputs are then used to construct 
an internal representation of the external world through 
WMs and semantic reasoning through MLLMs. Then, the 
task decomposition of MLLMs and future prediction of 
WMs enable action selection and environmental interac-
tion. Adaptive perception and interaction of dynamic en-
vironments are achieved through continuous iteration.

C. Discussions
Joint MLLM-WM offer a promising architecture for em-
bodied AI. As shown in Table 4, MLLMs excel in semantic 
reasoning, enabling high-level task decomposition, con-
textual understanding, and adaptive planning by leverag-
ing multimodal inputs. Meanwhile, WMs provide ground-
ed, physics-based simulations of environments, ensuring 
actions align with real-world constraints. This synergy 
allows agents to balance abstract reasoning with real-
time physical interactions, enhancing decision-making 

in dynamic settings. For instance, MLLMs can generate 
task plans while WMs validate feasibility, enabling itera-
tive refinement. Additionally, joint architectures support 
cross-modal generalization, improving robustness in 
partially observable or novel scenarios by bridging sym-
bolic knowledge and sensorimotor experiences.

The challenges of joint MLLM-WM-driven embodied AI 
architecture include 1) real-time synchronization between 
MLLMs’ high-latency semantic processing and WMs’ 
physics-based representation, often leading to delayed 
responses in dynamic environments; 2) semantic-physical 
misalignment, where MLLM-generated plans violate un-
modeled physical constraints; and 3) scalable memory 
management, as continuous updates to WM’s internal 
states risk overwhelming MLLMs with irrelevant context. 
Additionally, training such systems requires vast multi-
modal datasets covering rare edge cases, while ensuring 
robustness against sensor noise and partial observabil-
ity remains unsolved. These challenges need lightweight 
MLLMs inference, tighter feedback loops, and dynamic 
context-filtering mechanisms to minimize latency.

VI. Embodied AI Applications
This section overviews the application of embodied AI 
in service robots, rescue robots, and other domains, 

Table 4. Qualitative comparison of MLLM-only, WM-only, and joint MLLM-WM architectures in embodied AI. Low , 
Medium , High .

Performance LLM/MLLM-only WM-only Joint MLLM-WM

Semantic 
Understanding

Advantages in contextual 
task reasoning and natural 
language understanding

Limited in open-ended 
semantic understanding

Combines high-level semantic 
abstraction with grounded 
contextual alignment

Task 
Decomposition

Sequential logic enables 
sub-task planning via 
language prompts

Lacks generalizable task 
decomposition mechanisms

Semantic plans refined through 
physical feasibility via joint 
planning-execution loop

Physics 
Compliance

Ignores physical 
constraints and dynamics 
in real-world interaction

Physics-aware simulation 
with temporal consistency

Enforces semantic-physical 
alignment for safe and executable 
plans

Future 
Prediction

Lacks imagination-based 
reasoning

Long-horizon multi-step 
prediction with uncertainty 
modeling

Combines symbolic foresight and 
physically grounded imagination

Real-time 
Interaction

Poor responsiveness to 
environmental feedback 
and significant reasoning 
latency

Supports real-time 
predictive control via future 
state simulation

Enables online adaptation through 
iterative plan refinement and 
memory updating

Memory 
Structure

Sparse and unstructured 
memory

Structured latent space 
encodes object dynamics 
and causal relationships

Integrates semantic memory 
and world modeling for lifelong 
learning and reflection

Scalability Limited to pre-trained task 
space

Poor transfer to unseen 
tasks without retraining

Cross-task, cross-domain 
generalization through symbolic 
and sensorimotor synergy
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highlighting trends in joint MLLMs and WMs to advance 
active perception, embodied cognition and dynamic 
interaction.

A. Service Robotics
Embodied AI is becoming an important technology in the 
service field. It helps service robots go beyond fixed rules 
and perform tasks in a flexible way using different types 
of information. Recent research highlights its flexible 
applications across various fields. In domestic settings, 
systems such as RT-2 [207] and SayCan [120] combine 
language instructions with robot control, allowing robots 
to do tasks such as stacking dishes or cooking. Few-shot 
learning methods like AED [235] acquire new skills from 
limited demonstrations. In healthcare, robots with multi-
ple types of input can help with reminders, rehabilitation, 
and companionship. [236], [237]. In public environments, 
platforms like Habitat [192] and RT-X [238] support navi-
gation and item delivery, even in changing environments, 
without needing special training for each task. This 
makes the system more general and useful in real life.

However, current approaches remain limited in han-
dling long-horizon tasks. As illustrated in Fig. 7, the joint 
of WMs and MLLMs is emerging as a key strategy for 
enhancing the autonomy and long-term reasoning capa-
bilities of service robots. The WM maintains an evolving 
environment model for planning and simulation, while 
the MLLM grounds commands like “clean up the living 
room” into adaptive subtasks. This collaboration sup-
ports flexible reasoning, goal adaptation, and robust 
real-world execution.

B. Rescue UAVs
Embodied AI technology is changing the way drones are 
used in disaster situations. Traditional drones are either 
manually controlled or rely on pre-built maps when in 
use, which leads to their inability to adapt to the envi-
ronment independently. However, embodied drones 
can sense the environment in real time and respond to 
sudden changes. This ability makes them very useful 
in dangerous places like earthquake zones, forest fires, 
or floods. Recent studies show that embodied drones 
can perform many complex tasks. For instance, with the 
help of language models, they can understand and fol-
low human voice instructions, helping drones quickly 
change their actions and enhancing their responses 
in emergency situations, such as “search near the col-
lapsed bridge” [114], [239], [240], [241], [242]. Secondly, 
some work use world models to simulate dangerous en-
vironments, which helps them avoid danger and plan a 
safer path [243], [244]. Other studies explore how multi-
ple drones can work together to find survivors and map 
damaged areas [197], [245].

However, despite these advancements, current ap-
proaches remain limited in handling long-horizon rea-
soning and autonomous decision-making under uncer-
tainty. As illustrated in Fig. 7, jointing WMs and MLLMs 
has emerged as a key strategy for further enhancing 
UAV autonomy. The WM maintain a continuously evolv-
ing spatiotemporal representation of the environment, 
supporting planning and risk prediction even in GPS-
denied conditions. The MLLM grounds commands into 
structured subtasks based on the UAV’s belief state. 
This coordination improves generalization, long-hori-
zon reasoning, and high-level autonomy in mission-crit-
ical conditions.

C. Industrial Robots
Embodied AI is changing the way robots work in fac-
tories. With embodied AI, industrial robots can make 
smarter decisions based on their surroundings. Tradi-
tional industrial robots are usually fixed in one place. 
They use special sensors and tools and are required to 
complete tasks with very high accuracy. Because of this, 
they are better at doing jobs that need the same move-
ments again and again.

However, with embodied AI, these robots can do 
more than repeat actions. By combining MLLMs and 
WMs, industrial robots can adjust how hard they hold 
fragile objects, or find a new path when they meet an 
obstacle. This has already been used in real life. For ex-
ample, robots in Tesla’s factory can find and fix parts 
that are not lined up, without help from people. At JD, 
robots [246], [247] use different sensors to sort pack-
ages by size and address. In Tmall’s warehouse [248], 
robots use thermal cameras, LiDAR, and RGB sensors 
to check for problems in the inventory and send alerts 
when something is wrong. These examples show that 
embodied AI is helping robots become more flexible, re-
liable, and smart in factories.

D. Other Applications
In addition to its use in homes, healthcare, and rescue 
missions, embodied AI is also being applied in educa-
tional, virtual, and space environments. In smart man-
ufacturing, it supports robots that can work together 
with humans, perform accurate assembly tasks, and 
adapt their actions based on changes in the workspace 
or human behavior. With the help of visual and touch 
feedback, these robots can safely handle fragile items 
[249], [250]. In education, embodied AI is used in social 
robots that adjust their speech, gaze, and gestures ac-
cording to the student’s focus and emotions. This helps 
create a more personalized learning experience and 
builds long-term trust between students and robots 
[251], [252]. In virtual environments, embodied agents 
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learn to move, interact with objects, and complete tasks 
that require several steps. They also develop memory 
over time to improve their performance [253]. In space 
exploration, where conditions are unknown and com-
munication with Earth is delayed, embodied AI allows 
robots to make decisions on their own and adapt to new 
surroundings [254]. These examples show that embod-
ied AI is becoming more flexible and useful across many 
fields, helping machines see, act, and learn in both real 
and virtual worlds.

VII. Future Directions
As embodied AI moves from simulation to real-world de-
ployment, future research must prioritize the develop-
ment of unified and reliable systems across several core 
domains. Key directions include autonomous embodied 
AI, embodied AI hardware, swarm embodied AI, and 
evaluation benchmark.

A. Autonomous Embodied AI
The purpose of autonomous embodied AI is to enable 
agents to operate independently for a long time in a 
dynamic and open environment. Future research is ex-
pected to develop along several key directions. First, 
adaptive perception can give the system the ability to 
autonomously select input data, which can be achieved 
by dynamically choosing and integrating information 
from different sensory modalities. Second, Building on 
this foundation, building environmental awareness is es-
sential. Environmental awareness helps agents quickly 
adapt to changes, predict the consequences of their ac-
tions, and transfer their behavior to new environments. 
It requires memory architectures that can capture spa-
tiotemporal patterns and model causal relationships. 
Third, future systems should combine MLLMs with real-
time physical interaction, which allows agents to bridge 
high-level language instructions with low-level control, 
and accurately model the real physical world.

B. Embodied AI Hardware
Future research in embodied AI hardware is expect-
ed to advance in the following four directions. First, 
hardware-aware model compression will continue to 
integrate techniques such as quantization and prun-
ing with hardware performance metrics, enabling pre-
cise control over the trade-off between model accuracy 
and deployment efficiency. Second, graph-level compi-
lation optimization will play a key role in bridging the 
gap between high-level embodied models and low-level 
hardware execution, which will focus on more effective 
operator fusion, scheduling strategies, and memory ac-
cess efficiency to reduce execution overhead. Third, 

domain-specific accelerators will be increasingly tai-
lored to the computational characteristics of embod-
ied tasks. Reconfigurable architectures such as FPGA 
and CGRA offer flexibility and adaptability, while ASIC-
based designs provide high efficiency and performance. 
Fourth, hardware-software co-design will become es-
sential for eliminating mismatches between algorithm 
behavior and hardware architecture. Joint optimization 
of model structures and hardware architecture will be 
critical to achieving real-time, energy-efficient execu-
tion in embodied systems.

C. Swarm Embodied AI
Swarm embodied AI refers to the collaborative percep-
tion and decision-making of multiple agents. Refers to 
the collaborative perception and decision-making of 
multiple agents. Because multiple agents can exhibit 
stronger capabilities when cooperating than a single 
agent, this kind of “collective intelligence” has aroused 
the interest of many researchers and is also regarded 
as an important step for agents to approach humans. 
First of all, to enable multiple agents to cooperate 
smoothly, it is necessary to develop collaborative WMs. 
This model can establish a shared and dynamic envi-
ronmental representation based on the observations 
of each agent, forming the basis of collective under-
standing. Secondly, multi-agent representation learning 
is very important. It can help the agent understand its 
own state and also comprehend the situations of other 
agents. This is the basis for communication and coop-
eration among agents. In addition, modeling social be-
havior among agents is also crucial. Role allocation and 
group decision-making can be better achieved through 
behavioral modeling. Finally, to seamlessly integrate 
into real-world applications, it is also important to de-
sign natural human-swarm interaction interfaces. It may 
include multimodal language foundations and get-based 
control methods, making it easier for humans to direct 
and guide the entire agent group.

D. Explainability and Trustworthiness Embodied AI
Explainability and trustworthiness represent a critical 
frontier for Embodied AI, essential for its safe, ethical, 
and widespread real-world deployment as agents in-
creasingly interact physically with humans and dynam-
ic environments. Future research must address several 
key challenges: Firstly, designing benchmarks that pro-
vide real-time, human-understandable justifications for 
agent actions, particularly during unexpected situations 
or failures, is crucial for user trust and debugging. Sec-
ondly, establishing robust mechanisms to ensure agents 
adhere to ethical principles and human values during 
autonomous decision-making, especially in morally 
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ambiguous scenarios common in rescue or healthcare 
applications, requires significant advancement. Thirdly, 
creating verifiable safety guarantees and certification 
standards for agents operating in unstructured physi-
cal settings, mitigating risks associated with unpredict-
able interactions, remains an open problem. Finally, en-
hancing robustness against adversarial attacks, sensor 
noise, and distribution shifts, ensuring reliable perfor-
mance despite uncertainties inherent in the real world, 
is fundamental for trustworthy operation. Addressing 
these multifaceted research problems in explainability 
and trustworthiness is paramount, as progress in this 
direction will unlock the full potential of Embodied AI by 
fostering user confidence, enabling responsible innova-
tion, and facilitating regulatory acceptance.

E. Other Directions
Several new directions may influence the future devel-
opment of embodied AI. One important direction is life-
long learning. Agents need to continuously learn new 
skills without forgetting what they have already learned. 
Only in this way can they adapt to the dynamic envi-
ronment and maintain the accuracy of the previously 
completed tasks. Another key direction is human-in-
the-loop learning. Human feedback is very important su-
pervisory information. A small amount of feedback can 
significantly improve the performance of an agent and 
make it more human-like. To achieve this goal, we need 
better methods to enable agents to understand human 
goals and preferences. Finally, as agents become more 
autonomous, moral decision-making becomes increas-
ingly important. Future systems should learn to careful-
ly identify moral hazard and follow human values. This 
will help ensure that the embedded artificial intelligence 
is both safe and reliable.
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