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Embodied Al: From LLMs to
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Embodied Artificial Intelligence (Al) is an intelligent system para-
digm for achieving Artificial General Intelligence (AGlI), serving as
the cornerstone for various applications and driving the evolution
from cyberspace to physical systems. Recent breakthroughs in
Large Language Models (LLMs) and World Models (WMs) have
drawn significant attention for embodied Al. On the one hand,
LLMs empower embodied Al via semantic reasoning and task de-
composition, bringing high-level natural language instructions and
low-level natural language actions into embodied cognition. On
the other hand, WMs empower embodied Al by building internal
representations and future predictions of the external world, fa-
cilitating physical law-compliant embodied interactions. As such,
this paper comprehensively explores the literature in embodied
Al from basics to advances, covering both LLM driven and WM
driven works. In particular, we first present the history, key tech-
nologies, key components, and hardware systems of embodied
Al, as well as discuss its development via looking from unimodal
to multimodal angle. We then scrutinize the two burgeoning fields
of embodied Al, i.e., embodied Al with LLMs/multimodal LLMs
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(MLLMs) and embodied Al with WMs, meticulously delineating
their indispensable roles in end-to-end embodied cognition and
physical laws-driven embodied interactions. Building upon the
above advances, we further share our insights on the necessity
of the joint MLLM-WM driven embodied Al architecture, shedding
light on its profound significance in enabling complex tasks within
physical worlds. In addition, we examine representative applica-
tions of embodied Al, demonstrating its wide applicability in real-
world scenarios. Last but not least, we point out future research
directions of embodied Al that deserve further investigation.
Index Terms—Embodied Al, LLMs, world models.

I. Introduction
mbodied Artificial Intelligence (Al) originated
from the Embodied Turing Test by Turing [1],
which is designed to explore whether agents can
imitate human intelligence to achieve Artificial General
Intelligence (AGI). Among them, agents that only solve
abstract problems in digital world (cyberspace) are
generally defined as disembodied Al, while those that
also can interact with the physical world are regarded
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and training of artificial intelligence and similar technologies.
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Figure 1. The concept of embodied Al.

as embodied Al. Embodied Al builds on foundational in-
sights from cognitive science and neuroscience [2], [3],
which claims that intelligence emerges from the dynam-
ic coupling of perception, cognition, and interaction. As
shown in Fig. 1, embodied Al includes three key compo-
nents in a closed-loop manner, i.e., 1) active perception
(sensor-driven environmental observation), 2) embod-
ied cognition (historical experience-driven cognition
updating), and 3) dynamic interaction (actuator-mediat-
ed action control). Besides, hardware embodiment [4],
[5], [6] is also critical due to escalating computational
and energy demands, particularly under latency and
power constraints of devices in real-world deployment
scenarios.

The development of embodied Al has evolved from
unimodal to multimodal paradigm. In early stage, em-
bodied Al is primarily studied through focusing on indi-
vidual components with single modality such as vision,
language, or action, where the perception, cognition, or
interaction component is driven by one sensory input
[7], [8], e.g., perception tends to be dominated by the
visual modality [9], cognition tends to be dominated by
the language modality [10], [11], and interaction tends to
be dominated by the action modality [12], [13]. Although
these methods perform well within individual compo-
nents, they are limited by the narrow scope of informa-
tion provided by each modality and the inherent gaps
between modalities across components. The continued
development of embodied Al witnesses the limitations
of unimodal approaches, promoting a significant shift
toward integration of multiple sensory modalities [14],

[15], [16]. As such, multimodal embodied Al [17], [18]
naturally arises to create more adaptive, flexible, and
robust agents capable of performing complex tasks in
dynamic environments.

Large Language Models (LLMs) empower embodied
Al via semantic reasoning [19] and task decomposition
[20], [21], bringing high-level natural language instruc-
tions and low-level natural language actions into embod-
ied cognition. Representative LLM driven works include
SayCan [22], which i) provides a real-world pretrained
natural language action library to constrain LLMs from
proposing infeasible and contextually inappropriate ac-
tions; ii) uses LLMs to convert natural language instruc-
tions into natural language action sequences; and iii)
utilizes value functions to verify the feasibility of natural
language action sequences in a particular physical envi-
ronment. These works suggest that LLMs are extremely
useful to robots which aim at acting upon high-level,
temporally extended instructions expressed in natural
language. However, LLMs are only a part of the entire
embodied Al system (e.g., embodied cognition), which
is limited by a fixed natural language action library and
a specific physical environment, making it difficult for
LLM driven embodied Al to achieve adaptive expansion
for new robots and environments.

Recent breakthroughs in Multimodal LLMs (MLLMs)
[23], [24] and World Models (WMs) [25], [26], [27] have
opened up a new frontier in embodied Al research.
MLLMs can act on the entire embodied Al system,
bridging high-level multimodal inputting and low-level
motor action sequences into end-to-end embodied ap-
plications. Semantic reasoning [28], [29], [30] lever-
ages MLLMs’ cross-modal comprehension to interpret
semantics from visual, auditory, or tactile inputs, e.g.,
identifying objects, inferring spatial relationships, pre-
dicting environmental dynamics. Concurrently, task de-
composition [31], [32], [33] employs MLLMs’ sequential
logic to break complex objectives into sub-tasks while
dynamically adapting plans based on sensor feedback.
However, MLLMs often fail to ground predictions in
physics-compliant dynamics [34] and exhibit poor real-
time adaptation [35] to environmental feedback.

On the other hand, WMs empower embodied Al by
building internal representations [36], [37], [38], [39],
[40] and making future predictions [41], [42], [43], [44]
of the external world. Such WM driven embodied Al
is able to facilitate physical law-compliant embodied
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interactions in dynamic environments. Internal repre-
sentations compress rich sensory inputs into structured
latent spaces, capturing object dynamics, physics laws,
and spatial structures, as well as allowing agents to rea-
son about “what exists” and “how things behave” in their
surroundings. Simultaneously, future predictions simu-
late potential rewards of sequence actions across mul-
tiple time horizons aligned with physical laws, thereby
preempting risky or inefficient behaviors. However, WM
driven approaches struggle with open-ended semantic
reasoning [45] and lack the ability of generalizable task
decomposition [26] without explicit priors.

Building upon the above advances, we further share
our insights on the necessity of developing a joint MLLM-
WM driven embodied Al architecture, shedding light
on its profound significance in enabling complex tasks
within physical worlds. MLLMs enable contextual task
reasoning but overlook physical constraints, while WMs
excel at physics-aware simulation but lack high-level
semantics. The joint of MLLM and WM can bridge se-
mantic intelligence with grounded physical interaction.
For instance, EvoAgent [46] designs an autonomous-
evolving agent with a joint MLLM-WM driven embodied
Al architecture, which can autonomously complete vari-
ous long-horizon tasks across environments through
self-planning, self-reflection, and self-control, without
human intervention. We believe that designing joint
MLLM-WM driven embodied Al architectures will domi-
nate next-generation embodied systems, bridging the
gap between specialized Al agents and general physical
intelligence.

We summarize the representative applications of em-
bodied Al as service robotics, rescue UAVs, industrial
Robots, and others etc., demonstrating its wide appli-
cability in real-world scenarios. We also point out po-
tential future directions of embodied Al, including but
not limited to autonomous embodied Al, embodied Al
hardware, and swarm embodied Al etc.

As shown in Fig. 2, the rest of this paper is organized
as follows. Section II introduces the history, key tech-
nologies, key components, and hardware system of em-
bodied Al, discussing the development of embodied Al
from unimodal to multimodal angle. Section III presents
embodied Al with LLMs/MLLMs, and Section IV pres-
ents embodied Al with WMs. Section V introduces our
insights on designing a joint MLLM-WM driven embod-
ied Al architecture. Section VI briefly examines appli-
cations of embodied Al. Potential future directions are
discussed in Section VII.

Il. Embodied Al

This section provides a comprehensive overview of
embodied Al. We first take a historical view to intro-
duce the development of embodied Al in Section II-A.
Based on technological advancements in five founda-
tional areas related to embodied Al, Sections II-B and
[I-C further review the developmental trajectories of
core modules in software algorithms and hardware
design, respectively. Finally, Section II-E discusses an
overall analysis of the developmental trends from uni-
modal to multimodal.
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Figure 2. This paper comprehensively introduces the basics of Embodied Al (EAI) and the latest advancements of EAl with LLMs/
MLLMs and WMs. MLLMs enable contextual task reasoning but overlook physical constraints, while WMs excel at physics-aware
simulation but lack high-level semantics. Building upon the above advances, this paper proposes a joint MLLM-WM-driven EAI
architecture. Finally, this paper discusss applications and future directions of EAI.
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A. The Historical View

The historical evolution of embodied Al reflects succes-
sive transitions from early philosophical foundations to
technological breakthroughs in robotics and the rise
of learning-driven paradigms, while recent progress in
LLMs and WMs is driving an ongoing shift toward the
next phase of development.

The theoretical roots of embodied Al trace to 1950,
when Turing introduced the foundational idea that in-
telligence is inherently linked to physical experience
[1]. In the 1980s, cognitive science further formalized
this view. Lakoff and Johnson emphasized that human
cognition arises from bodily experience rather than dis-
embodied symbolic computation [47], while Harnad’s
symbol grounding problem highlighted the necessity of
connecting symbolic representations to sensory-motor
reality [48]. Technological advances in robotics during
the late 1980s and 1990s brought these ideas into prac-
tice. Brooks proposed the subsumption architecture
[49], [50], promoting behavior-based control through
layered, reactive modules grounded in sensorimotor
loops. The Cog project [51] advanced this line by con-
structing humanoid robots capable of developmental
learning, imitation, and social interaction. Recently, the
success of the learning-driven paradigm has driven the
shift in embodied Al from motion control of robots to
adaptive interaction [52]. In particular, the development
of deep learning enables robots to learn complex nonlin-
ear mappings from raw sensor data to action policy, sig-
nificantly improving navigation and manipulation tasks
[53], [54].

While embodied Al has made notable advances,
achieving self-reflection intelligence in dynamic, un-
certain environments remains a key challenge. Recent
progress in LLMs/MLLMs [23], [24] and WMs [25], [26],
[27] have progressively shown promise in overcoming
these challenges.

B. The Key Technologies and Components

Before discussing the ongoing changes, we systemati-
cally review the development of key technologies and
components.

1) Key Technologies of Embodied Al: The rapid devel-
opment of embodied Al is closely tied to advances in
foundational technological models such as Computer
Vision (CV) models, Natural Language Processing (NLP)
models, Reinforcement Learning (RL) models, LLMs/
MLLMs, and WMs (as shown in Fig. 3), which can signifi-
cantly enhance the capabilities of agents in perception,
cognition and interaction.

Specifically, Classic models in computer vision, such
as AlexNet [55], GAN [56], ResNet [57], ViT [58], DDPM
[59], MAE [60], and SAM [61] provide the perceptual
foundation for embodied agents to interpret high-di-
mensional sensory inputs in complex environments. In
the field of NLP, the evolution from foundational archi-
tectures like Transformer [62], BERT [63], and T5 [64]
to large-scale systems such as ChatGPT [65], Vicuna
[66], and LLaMA [67], has equipped embodied agents
with stronger capabilities in language understanding,
task planning, and instruction following. RL offers the
core algorithmic framework for agents to learn through
interaction with their environments. Representative ap-
proaches include DQN [68], AlphaGo [69], PPO [70], SAC
[71], RLHF [72], and GRPO [73].

Beyond these classical fields, one of the most prom-
ising directions in embodied Al lies in the integration
of LLMs/MLLMs with WMs. LLMs and MLLMs (like Fla-
mingo [20], Qwen-VL [74], Gemini-1.5 [75], GPT-40 [76],
and Deepseek-R1 [77]) provide agents with the ability
to understand instructions, reason over multimodal in-
puts, and generalize across tasks and environments.
In contrast, WMs (like Mental Model [26], RSSM [78],
JEPA [27], Dreamerv3 [79], Sora [80], and Genie [36])
enable agents to model and predict environmental
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Figure 3. Key technological models of embodied Al. Advancements in Computer Vision (CV) models, Natural Language
Processing (NLP) models, Reinforcement Learning (RL) models, LLMs/MLLMs, and WMs have driven progress in embodied Al.
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dynamics, supporting imagination-based planning and
anticipatory decision-making in dynamic and uncertain
environments.

2) Key Components of Embodied Al: Driven by ad-
vances in these key technologies, embodied Al has ex-
perienced rapid progress. In the following, we present
a structured overview of developments in three key
components.

a) Active Perception: Active perception refers to the
agent selectively acquiring information from environ-
mental observations [16], [81], [82]. Existing active per-
ception methods can be roughly divided into three cate-
gories: visual SLAM, 3D scene understanding, and active
environment exploration. To offer an effective perspec-
tive on active perception approaches, as summarized in
Table 1, we analyze representative methods along three
practical dimensions: sensor type, feature type, and ap-
plicable scenarios.

Visual SLAM. Simultaneous Localization and Map-
ping (SLAM) is a pivotal technology enabling agents to
both localize themselves and construct environmental
maps in unknown environments [9], [83]. As a founda-
tional technology of active perception, visual SLAM has
been extensively studied [84], [85]. According to Wang
et al. [86], existing methods fall into geometric-based
and semantic-based categories. Geometric methods ex-
ploit spatial or temporal cues [8], such as dense scene
flow [87], [88], triangulation consistency [89], and graph
structure [90], [91], performing well in static settings but
struggling with dynamic scenes. In contrast, semantic
methods improve localization and mapping in dynam-
ic environments by leveraging high-level information.
Representative early methods include SLAM++ [92], in-
tegrating object-level semantics, and DS-SLAM [93], ap-
plying deep learning to dynamic scene understanding.
Recent models such as TwistSLAM [94] and GS-SLAM

Table 1. Comparison of three categories of active perception methods including visual SLAM, 3D scene

understanding, and active Environment exploration.

Category Method Year Sensor Type Feature Type Applicable Scenarios
Geometric + )
CoSLAM [89] 2012 RGB-D Volumetric Dynamic SLAM
SLAM++ [92] 2013 RGB-D Semantic Object-level Mapping
ORB-SLAM [8] 2015 RGB-D + Stereo Geometric Dynamic SLAM
Visual SLAM Geometric + ]
DS-SLAM [93] 2018 RGB-D Semantic Dynamic SLAM
. Geometric + 8
TwistSLAM [94] 2022 RGB-D + Stereo Semantic Dynamic SLAM
GS-SLAM [95] 2024 RGB-D Volumetric Object-level Mapping
Gaudi [96] 2022 RGB Volumetric General Scene Understanding
. . . Language-guided Scene
Clip2Scene [97] 2023 RGB + Point Cloud ~ Multimodal Understanding
OpenScene [98] 2023 RGB + Point Cloud Multimodal General Scene Understanding
3D Scene Lexicon3D [99] 2024  RGB-D Semantic b?]';%‘ﬁgfaen'gi‘r’]'ded S
Understanding Topological g
opological + .
GraphDreamer [100] 2024 RGB Semantic Structured Scene Reasoning
HUGS [101] 2024 RGB-D Multimodal General Scene Understanding
. . . Language-guided Scene
RegionPLC [102] 2024 RGB + Point Cloud ~ Multimodal Understanding
MAX [103] 2019 RGB Semantic Semantic-guided Exploration
‘[A100t|4\38 Ml S 2020 RGB-D Volumetric Geometry-based Exploration
éﬁ\tji‘:‘énmem APT [105] 2021  RGB Semantic Semantic-guided Exploration
Exploration Conan [106] 2023 RGB Topological Geometry-based Exploration
DBMF-BPI [107] 2023 RGB-D Volumetric Geometry-based Exploration
. . . Cross-modal Active
ActiveRIR [108] 2024 RGB + Audio Multimodal Percaption
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[95] further enhance robustness by combining geomet-
ric optimization with semantic or generative modeling.
3D Scene Understanding. Scene understanding fo-
cuses on enabling agents to perceive, segment, and rea-
son about complex environments in a structured and
semantically meaningful way. Recent works have ad-
vanced this field by integrating vision-language models
and generative priors. Early efforts like Gaudi [96] intro-
duced generative models for 3D-aware scene synthesis.
Clip2Scene [97] and OpenScene [98] leveraged vision-
language embeddings to facilitate label-efficient and
open-vocabulary 3D understanding. Structured scene
understanding is further enhanced by Lexicon3D [99]
and GraphDreamer [100], which model object-level re-
lations in 3D space through structured representations
such as scene graphs or semantic lexicons. Meanwhile,
region-level multimodal grounding techniques, exem-
plified by HUGS [101] and RegionPLC [102], incorporate
prompts and spatial grounding to achieve fine-grained,
goal-conditioned 3D perception. These methods ad-
vance holistic, language-aligned 3D understanding.

Active Environment Exploration. Active exploration
focuses on enabling agents to autonomously acquire
informative observations through interaction with the
environment. Early approaches relied on building ex-
plicit or implicit environmental models. Representative
model-based methods include MAX [103] and Active
Neural SLAM [104], which leverage predictive modeling
and mapping to support efficient navigation in unseen
spaces. In contrast, APT [105] and DBMF-BPI [107] focus
on model-free exploration through direct environmen-
tal interaction to reduce reliance on explicit modeling.
Recent efforts further enhance exploration capabilities
by incorporating multimodal perception [108] and se-
mantic reasoning [106].

b) Embodied Cognition: Embodied cognition refers to
the emergence of internal representations and reason-
ing capabilities during the interaction, driven by the
agent’s self-reflection on its perception and accumulated
experience [146, [147], [148]. This component forms the
core of embodied Al, enabling agents to perform task
planning [149], causal inference [150], and long-horizon
reasoning [151], [152]. Recent studies of embodied cog-
nition primarily focus on three aspects: task-driven self-
planning, memory-driven self-reflection, and embodied
multimodal foundation models. Table 2 presents rep-
resentative methods analyzed from four perspectives:
input modalities, cognition type, reasoning mode, and
output type. These dimensions reflect how embodied
agents perceive information, form internal models and
conduct reasoning.

Task-Driven Self-Planning. In task-driven self-plan-
ning, agents autonomously generate structured plans

IEEE CIRCUITS AND SYSTEMS MAGAZINE

based on task goals, environmental context, and internal
knowledge, without explicit human instructions [153],
[154], [155]. Structured learning is a classical solution
that develops latent planning spaces or direct policy
mappings, achieving high efficiency within training dis-
tributions but lacking robustness to out-of-distribution
scenarios. Representative approaches include L3P [109],
Ego-planer [111], and ETPNav [114]. Recent advances in-
corporate LLMs or generative models into self-planning.
LLM-Planner [110] and AutoAct [112] integrate LLMs into
planning by grounding language-guided reasoning into
various tasks, while RPG [113] offers a generative per-
spective, aiming to unify planning and content creation
through multimodal reasoning.

Memory-Driven Self-Reflection. Memory-driven
self-reflection enables agents to leverage past experi-
ences for long-horizon reasoning, error correction,
and self-improvement [46], [156]. Early studies focus
on memory processing, including fixed-size replay buf-
fers [157], [158], [159] and differentiable memory archi-
tectures [160], [161]. Recent advances introduce reflec-
tive mechanisms, where agents summarize or verbalize
past experiences to guide future decisions. Reflexion
[115] and Reflect [116] enable agents to iteratively self-
correct by integrating verbalized feedback into action
planning, while RILA [117] extends reflective reasoning
to multimodal semantic navigation. Beyond individual
reflection, Optimus-1 [118] and REMAC [119] integrate
multimodal or multi-agent memory to support long-ho-
rizon collaboration. EvoAgent [46] further advances this
direction by coupling continual world modeling with a
memory-driven planner, enabling fully autonomous evo-
lution across sequential tasks.

Embodied Multimodal Foundation Models. In the
era of MLLMs, embodied multimodal foundation mod-
els [162], [163], [164] have emerged as one of the most
promising solutions for unifying planning, reasoning,
and other embodied cognitive capabilities. Recent prog-
ress is driven by both data construction and model
development. Data efforts focus on constructing high-
quality benchmarks to support scalable and cognitively
meaningful evaluation, such as MuEP [165], ECBench
[166], MFE-ETP [167], and EmbodiedBench [18]. On the
model side, recent advances include affordance-ground-
ed agents (e.g., SayCan [120] and GATO [121]) that align
language understanding with embodied action spaces,
vision-language pretraining approaches (like Embod-
iedGPT [122] and Kosmos-2 [123]) that promote scalable
embodied reasoning, and object-centric designs (such
as MultiPLY [124] and ManipLLM [28]) that enhance ma-
nipulation and interaction capabilities. These models
collectively aim to build transferable and generalizable
embodied Al
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Table 2. Comparison of three categories of embodied cognition methods: task-driven self-planning, memory-driven

self-reflection, and embodied multimodal foundation models. I, L and P indicate the image, language and point cloud

modalities, respectively.

Category Method Year :\;Ilggzllities .?;3:'"0" Reasoning Mode Output

L3P [109] 2021 l+L Planner Neural + Symbolic Action

LLM-Planner [110] 2023 [+L Planner Neural + Symbolic Action
Task-driven Egoplaner [111] 2023 | Planner Symbolic Action
Self-planning AutoAct [112] 2024 L Planner Neural Action

RPG [113] 2024 [+L Planner Neural Policy

ETPNav [114] 2024 [+L Planner Neural + Symbolic Policy

Reflexion [115] 2023 L Memory Beam + Replay Policy

Reflect [116] 2023 [+L Memory Neural + Symbolic Policy
Memory-driven  RILA[117] 2024 L Memory Neural Policy
Self-reflection Optimus-1 [118] 2024 [+L Memory Neural Policy

EvoAgent [46] 2025 l+L Memory Neural Policy

REMAC [119] 2025 L Memory Neural + Symbolic Policy

SayCan [120] 2022 l+L /li)\:iagnnneerr * Neural Answer + Action
Embodied GATO [121] 2022 l+L+P Aligner Neural Action
%ﬂﬂé’;‘t’gﬂ EmbodiedGPT [122] 2023  I+L Aligner Neural Answer + Action
Models Kosmos-2 [123] 2023 l+L Aligner Neural Answer

MultiPLY [124] 2024 l+L Aligner Neural Answer

ManipLLM [28] 2024 l+L Aligner Neural Answer + Action

¢) Dynamic Interaction: Dynamic interaction refers
to the process in which an agent influences the envi-
ronment through actions or behaviors grounded in its
perception and cognition [168], [169]. Existing research
highlights the significance of this capability in enabling
agents not only to respond but also to change their sur-
roundings [170], [171]. Studies on dynamic interaction
encompass action control, behavioral interaction, and
collaborative decision-making. To better understand ex-
isting methods, we analyze representative approaches
from four perspectives, including input modalities, in-
teraction type, learning paradigm, and task type, as
shown in Table 3. These dimensions reflect how agents
sense the environment, determine the level and struc-
ture of interaction, and generate appropriate behaviors
in dynamic multi-agent or human-in-the-loop scenarios.

Action Control. Action control generates motor com-
mands for embodied interaction. Early methods were
based on control theory with dynamic system modeling
[172], [173] or RL via trial and error [174], [175]. The former
is effective for structured or repetitive tasks, while the
latter is adaptable to high-dimensional, nonlinear prob-
lems. Recent advances mainly follow three directions. Vi-
sion-language-action (VLA) models, such as PaLM-E [14],

FOURTH QUARTER 2025

RT-2 [24], OpenVLA [126], and CogAgent [127], integrate
language-guided reasoning for flexible control and have
been comprehensively reviewed by Ma et al. [176]. Open-
ended frameworks like MineDojo [125] promote continu-
al skill acquisition from open-world knowledge. In addi-
tion, Cross-embodiment learning, including CrossFormer
[129],HPT [130], and Octo [128], aim to unify policy learn-
ing across diverse robots and modalities.

Behavioral Interaction. The behavior of an agent is
composed of a sequence of actions. Compared to ac-
tion control, it emphasizes high-level control through
meaningful action patterns, enabling agents to interact
in a flexible and goal-directed manner. Recent advances
mainly fall into two directions. Imitation learning, in-
cluding GAIL [131], MGAIL [132], TrafficSim [133], and
TrajGen [134], enables efficient acquisition and simula-
tion of complex behaviors. BEHAVIOR-1K [135] provides
a large-scale benchmark for evaluating behavior gener-
alization across 1,000 embodied tasks. Behavior-aware
enhancement methods, such as AgentLens [136] and
ECL [137], improve policy robustness and interpret-
ability. Despite these advances, achieving reliable long-
horizon behavioral interaction under sparse feedback
remains challenging.
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Table 3. Comparison of three categories of dynamic interaction methods including action control, behavioral
interaction, and collaborative decision-making, across input modalities, interaction type, modeling paradigm, and

task type. I, L, S, P, and T denote Image, Language, State, Proprioception, and Trajectory, respectively. IL denotes
Imitation Learning.

Input Interaction Learning
Category Method Year Modalities  Type Paradigm Task Type
. . High-level . .
MineDojo [125] 2022 I+L Planning LLM Instruction Following
PaLM-E [14] 2023 I+L+P Low-level Control ~ MLLM Amseelie
Manipulation
RT-2 [24] 2023 I+l Low-level Control VLA Eei ot
Manipulation
Act OpenVLA[126] 2024  I+L Low-level Control VLA Al
Cgﬂml Manipulation
Cogagent [127] 2024 I+L Low-level Control MLLM Instruction Following
Embodied
Octo [128] 2024 I+L+P Low-level Gontrol VLA Manipulation
CrossFormer Embodied
[129] 2024 I+L Low-level Control VLA Manipulation
HPT [130] 2024 4L Low-level Control VLA et et
Manipulation
GAIL [131] 2016 T Behavioral IL Trajectory Learning
MGAIL [132] 2017 T Behavioral IL Trajectory Learning
TrafficSim [133] 2021 T Behavioral RL Trajectory Learning
TrajGen [134] 2022 I+T Behavioral RL Trajectory Learning
Behavioral ; .
. Behavior-1K 3 Behavior
Interaction [135] 2023 ' Trajectory IL Understanding
. Behavior
AgentLens [136] 2024 I+S Trajectory IL Understanding
High-level Embodied
2L ] 20 5L Planning i Manipulation
QMIX [138] 2018 S Behavioral RL Cooperative Decision
Qtran [139] 2019 S Behavioral RL Cooperative Decision
QPLEX [140] 2019 S Behavioral RL Cooperative Decision
MAT [141] 2022 S Behavioral RL Cooperative Decision
Cooperative
gou?lborative CoELA [142] 2024 I+L Low-level Control LLM Manipulation
ecision . .
AgentVerse High-level Agent Society
[143] A0 L Planning LLY Simulation
High-level Agent Society
MetaGPT [144] 2024 L Planning LLM Simulation
High-level . .
Combo [145] 2024 L Planning LLM Cooperative Planning

Collaborative Decision. Collaborative decision cooperation via centralized training with decentralized
focuses on coordinating multiple agents to achieve execution. MAT [141] reframes MARL as a sequence
shared goals, which is essential for multi-agent sys- modeling problem to mitigate scalability limitations in
tems and human-robot collaboration [177], [178], [179]. multi-agent RL. Recent advances integrate LLMs and
Multi-agent RL is a classical solution, with methods like WMs to enhance multi-agent collaboration. MetaGPT
QTRAN [139], QPLEX [140], and Qatten [138] addressing  [144], CoELA [142], and AgentVerse [143] leverage LLMs
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for task reasoning and coordination, while COMBO [145]
composes modular WMs to support scalable collabora-
tive embodied decision.

C. Hardware

As embodied Al evolves, model complexity and size
have grown, increasing computational and energy de-
mands. Embodied systems, often operating in dynamic,
real-world environments, face strict latency and power
constraints—especially at the edge. Thus, develop-
ing hardware-friendly directions that maintain perfor-
mance while optimizing efficiency is crucial for enabling
responsive, energy-aware embodied agents. Hardware
optimization in embodied Al typically includes four
components: hardware-aware model compression, com-
piler-level optimization, domain-specific accelerators,
and hardware-software co-design.

1) Hardware-Aware Model Compression: Quantization
and pruning [4] are key techniques for reducing model
size and computational cost. In embodied agents, which
frequently run on low-power embedded hardware, such
techniques are vital for enabling fast and efficient infer-
ence. Quantization [180] maps weights and activations
to lower bit-widths, while pruning [181] removes re-
dundant parameters. To support real-world embodied
tasks, such as robotic control or visual navigation, hard-
ware efficiency metrics like power, performance, and
area (PPA) can guide bit-width allocation or pruning ra-
tios [182], enabling task-specific trade-offs between ac-
curacy and deployability on physical platforms.

2) Compiler-Level Optimization: Compilers bridge
high-level embodied Al models and hardware execution.
In real-time embodied systems, compiler toolchains are
essential for efficient processing of sensor data and de-
cision-making. TVM [5], built on LLVM [183] and CUDA,
generates optimized code across platforms. These com-
pilers transform computational graphs through opera-
tor fusion and redundant computation elimination [184],
enabling responsive behavior. Mapping strategies like
loop reordering and tiling enhance data locality, paral-
lelism, and memory access [185], all of which are criti-
cal to maintaining low-latency inference in embodied
agents.

3) Domain-Specific Accelerators: With growing compu-
tational demands, domain-specific accelerators (DSAs)
are a promising solution for embodied Al. These sys-
tems, from robots to AR/VR agents, benefit from fast,
energy-efficient hardware tailored for frequent opera-
tions. Google’s TPU [6], typically integrated with CPUs
and GPUs via PCle, accelerates key operations like ma-
trix multiplication. FPGA-based accelerators [186] allow
reconfigurability for adapting to new tasks or changing
workloads; CGRA accelerators [187] improve structured,
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dataflow-heavy computations common in perception or
control. Meanwhile, ASIC-based accelerators [188] offer
high throughput and energy efficiency, ideal for deploy-
ing high-performance embodied models in real-world
environments.

4) Hardware-Software Co-Design: Separating algo-
rithm and hardware design can lower runtime effi-
ciency. Hardware-software co-design addresses this
through algorithm-system and algorithm-hardware
co-optimization. Algorithm-system co-optimization fo-
cuses on how to take full advantage of GPU resources
like tensor cores and CUDA cores to better support the
algorithm [198]. Algorithm-hardware co-optimization
aims to improve deployment efficiency by tuning both
the model and the hardware architecture. For example,
we can perform multi-objective optimization based on
the types of operators in the network and the configu-
ration parameters of the hardware [190]. We can also
design different numerical quantization schemes along
with matching hardware accelerators to better support
embodied Al tasks [191].

D. Benchmarks and Evaluation Metrics

Standardized benchmarks and evaluation metrics are
crucial for objectively assessing the performance of
embodied Al systems. Widely adopted testbeds include
Habitat [192], which provides photorealistic 3D indoor
environments for navigation and interaction tasks, and
ManiSkill [192], offering physics-based manipulation
scenarios with diverse object sets. Simulation platforms
like MuJoCo [194] enable precise control evaluation in
continuous state-spaces, while EmbodiedBench [18]
supports holistic evaluation of vision-driven agents
across perception, cognition, and interaction. For UAV
applications, AirSim [195] provides high-fidelity aerial
environments with dynamic obstacles. These testbeds
vary in complexity: Habitat excels in visual realism,
ManiSkill in object diversity, MuJoCo in physical accu-
racy, and EmbodiedBench in multimodal integration.
Domain-specific benchmarks like BEHAVIOR-1K [135]
further enable granular evaluation of 1,000 everyday ac-
tivities under realistic constraints.

Key evaluation metrics span three critical dimen-
sions: Task Success Rate measures completion accuracy
of goal-oriented objectives (e.g., object manipulation or
navigation) [24]; Real-time Responsiveness quantifies
decision latency and adaptation speed to environmental
changes [35]; and Energy Efficiency evaluates compu-
tational cost (FLOPS) and power consumption (Watts)
during deployment [4]. Additional metrics include Path
Length for navigation efficiency [104], Generalization
Score for unseen scenarios [196], and Safety Violations
for physical compliance [170]. For multi-agent systems,
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Figure 4. Unimodal embodied Al and multimodal embod-
ied Al. (@) Unimodal methods focus on specific modules of
embodied Al. They are limited by the narrow scope of infor-
mation provided by each modality and the inherent gaps
between modalities across modules. (b) Multimodal embod-
ied Al methods break these limitations and enable the mutual
enhancement of the modules.

Coordination Efficiency [177] and Communication Over-
head [197] provide critical insights. Standardized evalu-
ation protocols like those in MFE-ETP [167] ensure fair
cross-modal comparisons, though challenges remain in
sim-to-real transfer validation [176].

E. From Unimodal to Multimodal
The development of embodied Al has evolved from uni-
modal to multimodal systems, as shown in Fig. 4. Initial-
ly, embodied Al was primarily concerned with individu-
al modalities, such as vision, language, or action, where
the perception, cognition, and interaction were driven
by one sensory input [7], [8]. As the field matured, the
limitations of unimodal embodied Al became apparent,
and there has been a significant shift toward integrating
multiple sensory modalities [14], [15], [16]. Multimodal
embodied Al is now seen as crucial for creating more
adaptive, flexible, and robust agents capable of perform-
ing complex tasks in dynamic environments [17], [18].
Unimodal embodied Al has benefited from rapid de-
velopments in fundamental areas such as computer vi-
sion, natural language processing, and reinforcement
learning [12], [13]. These unimodal methods excel in
dealing with a specific module in embodied Al. For ex-
ample, computer vision techniques have driven advanc-
es in visual SLAM and 3D scene understanding in the
active perception module [9]. Natural language process-
ing techniques, especially LLM, have become popular
solutions to address task planning and long-horizon
reasoning in the embodied cognition module [10], [11].
Although unimodal embodied Al performs well in inde-
pendent modules, it always faces two inherent limita-
tions. On the one hand, the information contained in a
single modality is limited, hindering the performance of
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perception, cognition, and interaction. For example, vi-
sual-only systems struggle to understand environments
in dynamic or ambiguous settings, while auditory-based
systems face challenges in real-world noise and signal
processing [17], [198]. On the other hand, diverse and
heterogeneous modalities hinder information transfer
and sharing among modules. The agent’s perception of
the environment fails to facilitate the formation of its
cognition, while the evolution of cognition fails to facili-
tate the interaction with the environment.

In contrast, multimodal embodied Al has emerged
as a more promising paradigm [18]. By integrating data
from multiple sensing modalities, such as visual, audi-
tory, and olfactory feedback, these methods can pro-
vide a more holistic and precise understanding of the
environment. More importantly, multimodal embodied
Al can facilitate deeper integration among perception,
cognition, and interaction. Recent advances in MLLMs
and WMs enable agents to more effectively handle
multiple modalities, promising to improve the capa-
bilities of embodied Al [44], [80], [199]. The integration
of these models is considered a key step toward en-
abling multimodal embodied Al in dynamic, uncertain
environments.

1ll. Embodied Al With LLMs/MLLMs
This section provides a comprehensive overview of em-
bodied Al with LLMs/MLLMs. We first elaborate in de-
tail how LLMs boost embodied Al in Section III-A and
how MLLMs boost embodied Al in Section IlI-B. Then
we discuss the classification of MLLMs for embodied Al
in Section III-C.

A. LLMs Boost Embodied Al

LLMs empower embodied Al via semantic reasoning
and task decomposition, bringing high-level natural lan-
guage instructions and low-level natural language ac-
tions into embodied cognition.

1) Semantic Reasoning: Semantic reasoning [19]
leverages LLMs to interpret semantics from text in-
structions by analyzing linguistic patterns, contextual
relationships, and implicit knowledge. Through trans-
former architectures [62], LLMs map input tokens to
latent representations, enabling hierarchical abstrac-
tion of meaning across syntactic and pragmatic levels.
They employ attention mechanisms to weigh relevant
semantic cues while suppressing noise, facilitating logi-
cal inference and analogical reasoning. By integrating
world knowledge from pretraining corpora with task-
specific prompts, LLMs dynamically construct con-
ceptual graphs that align textual inputs with intended
outcomes. This process supports multi-hop reasoning
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through probabilistic token prediction, resolving ambi-
guities by evaluating contextual coherence and seman-
tic plausibility.

2) Task Decomposition: Task decomposition [20],
[21] employs LLMs’ sequential logic to break complex
objectives into sub-tasks by hierarchically analyzing
contextual dependencies and goal alignment. Leverag-
ing chain-of-thought prompting, LLMs iteratively parse
instructions into actionable steps, prioritizing interde-
pendencies while resolving ambiguities through seman-
tic coherence checks.

Representative works like SayCan [22] first provides
areal-world pretrained natural language actions library,
which is used to constrain LLMs to propose both fea-
sible and contextually appropriate actions; then uses
LLMs to convert natural language instructions into nat-
ural language action sequences; finally uses value func-
tions to verify the feasibility of natural language action
sequences in a particular physical environment. These
works suggest that LLMs are extremely useful to robots
aiming to act upon high-level, temporally extended in-
structions expressed in natural language. However,
LLMs are only a part of the entire embodied Al system,
which is limited by a fixed natural language actions li-
brary and a specific physical environment, and it is dif-
ficult to achieve adaptive expansion in new robots and
environments.

B. MLLMs Boost Embodied Al

MLLMs can act on the entire embodied Al system
and can solve LLMs’ problems well by bridging high-
level multimodal inputting and low-level motor action
sequences into end-to-end embodied applications
(as shown in Fig. 5). Compared with LLMs, semantic

reasoning [28], [29], [30] leverages MLLMs’ cross-modal
comprehension to interpret semantics from visual, au-
ditory, or tactile inputs, e.g., identifying objects, infer-
ring spatial relationships, or predicting environmental
dynamics. Concurrently, task decomposition [31], [32],
[33] employs MLLMs’ sequential logic to break complex
objectives into sub-tasks while dynamically adapting
plans based on sensor feedback. MLLMs mainly include
Vision-Language Models (VLMs) and Vision-Language-
Action models (VLASs).

1) VLMs for Embodied AI: VLMs for embodied Al in-
tegrate visual and language instruction understanding
to enable physical or virtual agents to perceive their
in goal-driven tasks. Representative
works like PaLM-E [14] first train visual and language
encodings end-to-end, in conjunction with a pre-trained
large language model; then incorporate the results of
real-world continuous sensor modalities encodings into
VLMs and establish the link between words and per-
cepts; finally, achieve multi-task completion through
fixed action space mapping. For navigation, ShapeNet
[200], which fine-tunes contrastive embeddings for 3D
spatial reasoning, greatly reduces path planning errors.
These works suggest that VLMs can combine percep-
tion and reasoning in embodied Al to solve a large num-
ber of tasks with fixed action spaces.

2) VLAs for Embodied Al: VLAs integrate multimodal
inputs with low-level action control through differentia-
ble pipelines. Representative works like RT-2 [24] first
encode the robot’s current image, language instruc-
tions, and robot actions at a specific timestep and con-
vert them into text tokens; then use LLMs for semantic
reasoning and task decomposition; finally, de-tokeniz-
es generated tokens into the final action. Octo [128]

environments
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Figure 5. The development roadmap of MLLMs for embodied Al. This roadmap highlights the key milestones in their conceptual
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pretrains on 100K robot demonstrations with language
annotations, achieving cross-embodiment tool use. For
dexterous manipulation, PerAct [201] utilizes 3D voxel
representations to reach millimeter-level grasp accura-
cy. These works suggest that VLAs can act on the entire
embodied Al system and achieve adaptive expansion in
new robots and environments.

C. Classification of MLLMs for Embodied Al
MLLMs can empower active perception, embodied cog-
nition, and dynamic interaction of embodied Al.

1) MLLMs for Active Perception: First, MLLMs can en-
hance 3D SLAM. By grounding visual observations into
semantic representations, MLLMs augment traditional
SLAM pipelines with high-level contextual information
such as object categories, spatial relations, and scene
semantics. Representative works like SEO-SLAM [202]
utilize MLLMs to generate more specific and descrip-
tive labels for objects, while dynamically updating a
multiclass confusion matrix to mitigate biases in object
detection. Second, MLLMs can enhance 3D scene un-
derstanding. Camera-based perception [30] remains the
dominant setup in MLLM-driven embodied Al, as RGB
inputs align naturally with the visual-language pretrain-
ing of many foundation models [203]. Representative
works like EmbodiedGPT [122] leverage this synergy
to map 2D visual inputs into semantically rich features
aligned with language-based goals. Finally, MLLMs can
enhance active environment exploration. MLLMs have
also revolutionized how robots interact with their envi-
ronments, particularly in feedback-driven closed-loop
interactions. Representative works like LLM? [201] fo-
cus on structured motion-level feedback, which incor-
porates signals such as collision detections into the
planning loop, allowing the model to iteratively revise
symbolic action sequences. MART [204], on the other
hand, leverages interaction feedback to improve retriev-
al quality.

2) MLLMs for Embodied Cognition: First, MLLMs can
enhance task-driven self-planning. Embodied agents
with MLLMs can either directly map high-level goals to
structured action sequences [31], or adopt an intermedi-
ate planning strategy that continually interacts with the
environment to refine their plans [32]. Representative
works like CoT-VLA [33] predict intermediate subgoal
images that depict the desired outcomes of subtasks,
helping the agent visualize and reason through each
step of a complex task. Second, MLLMs can enhance
memory-driven self-reflecting. MLLMs allow agents
to learn from experience using this inherent memory
module [128]. Representative works like Reflexion [115]
enhance agent performance through self-generated lin-
guistic feedback, which is stored in an episodic memory
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buffer and leveraged to guide future planning. Finally,
MLLMs can enhance embodied multimodal foundation
models. MLLMs can be adapted to the physical world
through continued pretraining or fine-tuning in em-
bodied settings. Representative works include QwenVL
[74] and InternVL [205], along with models supporting
broader modality alignment, such as Qwen2.5-Omni
[206].

3) MLLMs for Dynamic Interaction: First, MLLMs can
enhance action control. MLLMs have ability to decom-
pose complex tasks into actionable subtasks [32]. To
further produce continuous control signals for each
subtask, MLLMs either generate actions autoregres-
sively in a sequential manner [126], [207] or employ
auxiliary policy heads to further process their internal
representations [128]. Recent advances also explore
generating executable code with MLLMs [208], enabling
robots to follow interpretable and adaptable control
policies. Second, MLLMs can enhance behavioral in-
teraction. Through interaction with the environment,
MLLMs are also capable of generating sequences of be-
havioral actions in a single step. Representative works
like 7-0 [31] combine a vision-language backbone with
a flow-matching decoder to produce smooth, tempo-
rally extended behavioral trajectories. Finally, MLLMs
can enhance collaborative decision-making. One line
of research focuses on multi-agent systems that aim to
achieve human-level coordination and adapt rapidly to
unforeseen challenges [209]. For instance, Combo [145]
introduces a novel framework that enhances coopera-
tion among decentralized agents operating solely with
egocentric visual observations. Other efforts investi-
gate human-agent collaboration. VLAS [210] exemplifies
this by aligning human verbal commands with visual
context via a speech encoder and a LLaVA-style MLLM
[211], enabling fluid and conversational human-agent
interaction.

IV. Embodied Al With World Models
This section provides a comprehensive overview of em-
bodied Al with WMs. We first elaborate in detail how
WDMs boost embodied Al in Section [V-A. Then we dis-
cuss the classification of WMs for embodied Al in Sec-
tion [V-B.

A. World Models Boost Embodied Al
WMs empower embodied Al by building internal repre-
sentations and future predictions of the external world
(as shown in Fig. 6), facilitating physical law-compliant
embodied interactions in dynamic environments.

D) Internal Representations of the External World: In-
ternal representations compress rich sensory inputs
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Figure 6. The development roadmap of WMs for embodied Al. This roadmap highlights the key milestones in their conceptual

into structured latent spaces, capturing object dynam-
ics, physics laws, and spatial structures, allowing agents
to reason about “what exists” and “how things behave”
in their surroundings. These latent embeddings pre-
serve hierarchical relationships [212] between entities
and environments, mirroring the compositional nature
of reality itself. The structured nature of these represen-
tations facilitates generalization across environments,
as abstracted principles (like gravity or object perma-
nence) transcend specific instances. Moreover, they
support counterfactual reasoning [40] by maintaining
disentangled variables for objects’ intrinsic properties
[38] and extrinsic relations [39], enabling flexible men-
tal manipulation of individual components. This disen-
tanglement also enhances sample efficiency in learning,
as agents transfer knowledge between tasks, sharing
latent factors. World models with rich internal represen-
tations, can introspect on their own uncertainty about
environmental states and actively seek information to
resolve ambiguities. By encoding temporal continuity
and spatial topology [36], these models naturally en-
force consistency constraints during planning, filtering
physically implausible actions before execution. Ulti-
mately, such structured latent spaces act as cognitive
scaffolding for building causal understanding [37], mir-
roring how humans develop intuitive theories about
their world through compressed sensory experiences.
2) Future Predictions of the External World: Future
predictions simulate potential rewards of sequence
actions across multiple time horizons aligned with
physical laws, thereby preempting risky or inefficient
behaviors [41], [42]. This predictive capacity bridges
short-term actions with long-term goals [43], filtering
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out trajectories violating physical plausibility (e.g., walk-
ing through walls) or strategic coherence (e.g., depleting
resources prematurely). Long-horizon prediction [44]
allows adaptive balancing of exploration-exploitation
tradeoffs, simulating distant outcomes to avoid local
optima while maintaining focus on actionable near-term
steps. Crucially, these predictions incorporate uncer-
tainty quantification [41], [213], distinguishing predict-
able regularities (daily patterns) from stochastic events
(sudden changes) to optimize risk-aware planning. The
simulation prediction improves sample efficiency [39],
[214], [215], [216] by replacing costly trial-and-error
with mental rehearsal, particularly valuable in safety-
critical domains like autonomous driving or robotic sur-
gery. Furthermore, continuous prediction-error mini-
mization drives iterative model refinement [169], [217],
[218], [219], creating self-correcting systems that align
their internal physics simulators with observed reality.
Such anticipatory capabilities ultimately grant artificial
agents human-like foresight, transforming reactive re-
sponses into purposeful, future-optimized behaviors.

B. Classification of World Models for Embodied Al
Embodied Al with WMs can mainly be divided into three
critical structures: the Recurrent State Space Model-
based (RSSM-based) WMs for embodied Al, the Joint-
Embedding Predictive Architecture-based (JEPA-based)
WNMs for embodied Al, and the Transformer-based WMs
for embodied Al. Hierarchical-based WMs [220] and dif-
fusion-based WMs [221] are similar to other structures
and are shown in Fig. 6.

1) RSSM-based WMs for Embodied AI: RSSM consti-
tutes the fundamental architecture underpinning the
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Dreamer algorithm family [41], [42], [43], [44]. This
framework enhances predictive capabilities in latent
representations by acquiring temporal environment
dynamics through visual inputs, subsequently enabling
action selection via latent trajectory optimization.
Through orthogonal decomposition of hidden states
into probabilistic and deterministic components, the
architecture explicitly accounts for both systematic pat-
terns and environmental uncertainties. Its demonstrat-
ed effectiveness in robotic motion control applications
has inspired numerous derivative studies building upon
its theoretical framework.

2) JEPA-Based WMs for Embodied Al: JEPA [27] pro-
vides a structure for developing autonomous machine
intelligence systems. This architecture establishes
mapping relationships between input data and an-
ticipated outcomes through representation learning.
Diverging from conventional generative approaches,
JEPA operates in abstract latent spaces rather than
producing pixel-wise reconstructions, thereby pri-
oritizing semantic feature extraction over low-level
signal synthesis. A key methodological foundation of
JEPA [213] involves self-supervised training paradigms
where neural networks learn to infer occluded or unob-
served data segments. Such pretraining on extensive
unlabeled datasets enables transfer learning across
downstream applications, demonstrating enhanced
generalization capabilities for both visual [222], [223]
and non-visual domains [224].

3) Transformer-Based WMs for Embodied Al Origi-
nating in natural language processing research, the
Transformer structure [62] fundamentally relies on
attention mechanisms to process input sequences
through parallelized context weighting. This design
allows simultaneous computation of interelement de-
pendencies, overcoming the sequential processing
constraints inherent in Recurrent Neural Networks
(RNNs). Empirical evidence demonstrates superior
performance in domains requiring persistent mem-
ory retention and explicit memory addressing for
cognitive reasoning [225], which has propelled its
adoption in reinforcement learning research since
2020. Existing advancements have successfully imple-
mented WMs using Transformer variants [38], [40],
[226], outperforming RSSM architectures in memory-
intensive interactive scenarios [37]. Notably, Google’s
Genie framework [36] employs the Spatial-Temporal
Transformer (ST-Transformer) [227] to create syn-
thetic interactive environments through large-scale
self-supervised video pretraining. This breakthrough
establishes novel paradigms for actionable world
modeling, revealing transformative potential for WMs
development trajectories.
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V. Embodied Al With MLLMs and WMs

This section provides a comprehensive overview of
embodied Al with MLLMs and WMs. We first elaborate
in detail on the limitations of MLLMs and WMs for em-
bodied Al and explain how MLLMs boost WMs reason-
ing, and how WMs boost MLLMs interaction in Section
V-A. Then we design a joint MLLM-WM-driven embod-
ied Al architecture in Section V-B. Finally, we discuss
the advantages and challenges of new architecture in
Section V-C.

A. MLLMs and WMs

MLLMs enable contextual task reasoning but overlook
physical constraints, while WMs excel at physics-aware
simulation but lack high-level semantics. Their joint
bridges semantic intelligence with grounded physical
interaction.

1) The Limitations of MLLMs for Embodied Al (Without
WMs): MLLMs exhibit two critical limitations in embod-
ied Al applications. First, they often fail to ground pre-
dictions [34] in physics-compliant dynamics, leading to
impractical plans. For example, ignoring friction or ma-
terial properties when manipulating objects may cause
slippage or task failure. Second, their poor real-time
adaptation to environmental feedback limits respon-
siveness [35]. While MLLMs excel at semantic task de-
composition, they struggle to adaptively adjust actions
when the environment changes dramatically. These lim-
itations stem from their reliance on static, pre-trained
knowledge rather than continuous physical interaction.

2) The Limitations of WMs for Embodied Al (Without
LLMs/MLLMs): WMs face limitations in abstract reason-
ing and generalization. They struggle with open-end-
ed semantic tasks [45] due to their focus on physical
simulation rather than contextual understanding. Ad-
ditionally, WMs lack generalizable task decomposition
[26] without explicit priors. For example, a WM model
trained on rigid-object manipulation may fail to adapt
to deformable materials without extensive retraining.
Their predictive accuracy heavily depends on domain-
specific interaction records, hindering scalability across
diverse environments.

3) MLLMs Boosting WMs Reasoning: By leverag-
ing cross-modal alignment and semantic grounding,
MLLMs enable WMs to process complex environments
dynamically, improving semantic reasoning, task de-
composition, and human-robot interaction. 1) MLLMs
can enrich WMs by fusing visual, auditory, and tex-
tual data into unified semantic representations. For in-
stance, CLIP-based architectures [228] enable agents to
align visual scenes with linguistic cues, reducing ambi-
guity in object recognition [229]. 2) MLLMs can augment
WM'’s task decomposition capacity by decomposing
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high-level goals into executable sub-tasks. Models like
GPT-4V [65] generate step-by-step plans using environ-
mental context stored in WM. For robotic manipulation,
Code-as-Policies [230] translates natural language in-
structions into code snippets, leveraging WM to track
intermediate states. 3) MLLMs enable WMs to refine
internal representations through human feedback.
Techniques like Reinforcement Learning with Human
Feedback (RLHF) [72] allow agents to update WM pri-
ors based on corrective inputs [115]. Those works in
this section are all possible ways for MLLMs to boost
WDMs reasoning, which is not achieved in existing works.
4) WMs Boosting MLLMs Interaction: WMs can play a piv-
otal role in refining MLLMs by providing physical laws,
spatio-temporal relationships, and closed-loop interac-
tion experiences. WMs can mitigate MLLMs’ inherent
limitations in temporal coherence and environmental
grounding, enabling more robust decision-making in
dynamic embodied tasks. 1) WMs can provide MLLMs
with explicit representations of physical laws (e.g., grav-
ity, friction) and commonsense rules to constrain ac-
tion proposals. For example, Physion++ [231] integrating
WM-stored biomechanical models can be used to filter
MLLM-generated robotic motions violating torque lim-
its; RoboGuide [232] injects spatial occupancy maps
into MLLM planners, preventing collisions during navi-
gation. 2) WMs can stabilize MLLMs reasoning by main-
taining spatio-temporal context during multimodal pro-
cessing. For instance, MemPrompt [233] can use WM
buffers to align visual object trajectories with linguistic
descriptions, resolving ambiguities in cluttered envi-
ronments; RoboMem [234] can leverage WM-prioritized
attention to filter irrelevant sensory noise, improving
MLLM-based scene understanding. 3) WMs can enable

iterative refinement of MLLM outputs through closed-
loop interaction. Reflexion [115] can store task-execu-
tion histories in WM, allowing MLLMs to correct kine-
matic errors using failure patterns [230]. Those works
in this section are all possible ways for WMs to boost
MLLMs’ decisions, which has not been achieved in exist-
ing works.

B. Joint MLLM-WM-Driven Embodied Al Architecture
We propose a joint MLLM-WM-driven embodied Al ar-
chitecture (as shown in Fig. 7), shedding light on their
profound significance in enabling complex tasks within
physical worlds. The specific workflow is as follows,
with arrows highlighting the data exchange process.

1) Robots — Self-State Inputing — MLLMs/WMs —
Hardware Embodiment — Robots: The process initiates
with self-state inputting tracking proprioceptive met-
rics, such as degrees of freedom, number of sensors,
etc. These metrics feed into both WMs and MLLMs:
WNMs use them to build internal representations of the
agent’s physical state, while MLLMs contextualize these
states for task alignment. Hardware embodiment is fo-
cused on implementing WMs and MLLMs into physical
devices to solve sim-to-real problems. This bidirection-
al flow ensures actions respect both mechanical limits
and high-level goals.

2) MLLMs — Task Planning — WMs — Memory Up-
dating — MLLMs: MLLMs decompose abstract instruc-
tions into subtasks. A forward arrow delivers this plan
to WMs, which predict outcomes based on existing en-
vironmental modeling. During execution, WMs log out-
comes into memory. A vertical arrow transmits these
logs to memory updating modules, which structure
memory into experiences, represent the forgetting of

— Joint MLLM-WM-driven Embodied AI

Task Planning

.
.
.
¢ Hardware N Active
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Figure 7. Embodied Al with MLLMs and WMs. MLLMs can enhance WMs by injecting semantic knowledge for task decomposi-
tion and long-horizon reasoning, while WMs can assist MLLMs by building the physical world’s internal representations and future
predictions, making joint MLLM-WM a promising architecture for embodied systems.
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past task memories, the renewal of current task memo-
ries, and the prediction of future task memories. These
are then fed back to MLLMs via an arrow, enriching their
knowledge base. This enables lifelong learning, where
past failures directly inform future planning.

3) Environments — Active Perception — MLLMs/WMs
— Dynamic Interaction — Environments: WMs first drive
active perception by predicting key environmental
changes. Multimodal inputs are then used to construct
an internal representation of the external world through
WDMs and semantic reasoning through MLLMs. Then, the
task decomposition of MLLMs and future prediction of
WNMs enable action selection and environmental interac-
tion. Adaptive perception and interaction of dynamic en-
vironments are achieved through continuous iteration.

C. Discussions

Joint MLLM-WM offer a promising architecture for em-
bodied Al. As shown in Table 4, MLLMs excel in semantic
reasoning, enabling high-level task decomposition, con-
textual understanding, and adaptive planning by leverag-
ing multimodal inputs. Meanwhile, WMs provide ground-
ed, physics-based simulations of environments, ensuring
actions align with real-world constraints. This synergy
allows agents to balance abstract reasoning with real-
time physical interactions, enhancing decision-making

in dynamic settings. For instance, MLLMs can generate
task plans while WMs validate feasibility, enabling itera-
tive refinement. Additionally, joint architectures support
cross-modal generalization, improving robustness in
partially observable or novel scenarios by bridging sym-
bolic knowledge and sensorimotor experiences.

The challenges of joint MLLM-WM-driven embodied Al
architecture include 1) real-time synchronization between
MLLMs’ high-latency semantic processing and WMs’
physics-based representation, often leading to delayed
responses in dynamic environments; 2) semantic-physical
misalignment, where MLLM-generated plans violate un-
modeled physical constraints; and 3) scalable memory
management, as continuous updates to WM'’s internal
states risk overwhelming MLLMs with irrelevant context.
Additionally, training such systems requires vast multi-
modal datasets covering rare edge cases, while ensuring
robustness against sensor noise and partial observabil-
ity remains unsolved. These challenges need lightweight
MLLMs inference, tighter feedback loops, and dynamic
context-filtering mechanisms to minimize latency.

VI. Embodied Al Applications
This section overviews the application of embodied Al
in service robots, rescue robots, and other domains,

Low

Medium || High
Performance LLM/MLLM-only
. Advantages in contextual
Semantic

Understanding

Task
Decomposition

task reasoning and natural
language understanding

Sequential logic enables
sub-task planning via
language prompts

Ignores physical

Physics . .
Compliance ponstramts ar_ld dyna_mlcs
in real-world interaction
Future Lacks imagination-based
Prediction reasoning
Poor responsiveness to
Real-time environmental feedback
Interaction and significant reasoning
latency
Memory Sparse and unstructured
Structure memory
Scalability Limited to pre-trained task

space
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WM-only

Limited in open-ended
semantic understanding

Lacks generalizable task
decomposition mechanisms

Physics-aware simulation
with temporal consistency

Long-horizon multi-step
prediction with uncertainty
modeling

Supports real-time
predictive control via future
state simulation

Structured latent space
encodes object dynamics
and causal relationships

Poor transfer to unseen
tasks without retraining

Joint MLLM-WM

Combines high-level semantic
abstraction with grounded
contextual alignment

Semantic plans refined through
physical feasibility via joint
planning-execution loop

Enforces semantic-physical
alignment for safe and executable
plans

Combines symbolic foresight and
physically grounded imagination

Enables online adaptation through
iterative plan refinement and
memory updating

Integrates semantic memory
and world modeling for lifelong
learning and reflection

Cross-task, cross-domain
generalization through symbolic
and sensorimotor synergy
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highlighting trends in joint MLLMs and WMs to advance
active perception, embodied cognition and dynamic
interaction.

A. Service Robotics
Embodied Al is becoming an important technology in the
service field. It helps service robots go beyond fixed rules
and perform tasks in a flexible way using different types
of information. Recent research highlights its flexible
applications across various fields. In domestic settings,
systems such as RT-2 [207] and SayCan [120] combine
language instructions with robot control, allowing robots
to do tasks such as stacking dishes or cooking. Few-shot
learning methods like AED [235] acquire new skills from
limited demonstrations. In healthcare, robots with multi-
ple types of input can help with reminders, rehabilitation,
and companionship. [236], [237]. In public environments,
platforms like Habitat [192] and RT-X [238] support navi-
gation and item delivery, even in changing environments,
without needing special training for each task. This
makes the system more general and useful in real life.
However, current approaches remain limited in han-
dling long-horizon tasks. As illustrated in Fig. 7, the joint
of WMs and MLLMs is emerging as a key strategy for
enhancing the autonomy and long-term reasoning capa-
bilities of service robots. The WM maintains an evolving
environment model for planning and simulation, while
the MLLM grounds commands like “clean up the living
room” into adaptive subtasks. This collaboration sup-
ports flexible reasoning, goal adaptation, and robust
real-world execution.

B. Rescue UAVs

Embodied Al technology is changing the way drones are
used in disaster situations. Traditional drones are either
manually controlled or rely on pre-built maps when in
use, which leads to their inability to adapt to the envi-
ronment independently. However, embodied drones
can sense the environment in real time and respond to
sudden changes. This ability makes them very useful
in dangerous places like earthquake zones, forest fires,
or floods. Recent studies show that embodied drones
can perform many complex tasks. For instance, with the
help of language models, they can understand and fol-
low human voice instructions, helping drones quickly
change their actions and enhancing their responses
in emergency situations, such as “search near the col-
lapsed bridge” [114], [239], [240], [241], [242]. Secondly,
some work use world models to simulate dangerous en-
vironments, which helps them avoid danger and plan a
safer path [243], [244]. Other studies explore how multi-
ple drones can work together to find survivors and map
damaged areas [197], [245].
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However, despite these advancements, current ap-
proaches remain limited in handling long-horizon rea-
soning and autonomous decision-making under uncer-
tainty. As illustrated in Fig. 7, jointing WMs and MLLMs
has emerged as a key strategy for further enhancing
UAV autonomy. The WM maintain a continuously evolv-
ing spatiotemporal representation of the environment,
supporting planning and risk prediction even in GPS-
denied conditions. The MLLM grounds commands into
structured subtasks based on the UAV’s belief state.
This coordination improves generalization, long-hori-
zon reasoning, and high-level autonomy in mission-crit-
ical conditions.

C. Industrial Robots

Embodied Al is changing the way robots work in fac-
tories. With embodied Al, industrial robots can make
smarter decisions based on their surroundings. Tradi-
tional industrial robots are usually fixed in one place.
They use special sensors and tools and are required to
complete tasks with very high accuracy. Because of this,
they are better at doing jobs that need the same move-
ments again and again.

However, with embodied Al, these robots can do
more than repeat actions. By combining MLLMs and
WNMs, industrial robots can adjust how hard they hold
fragile objects, or find a new path when they meet an
obstacle. This has already been used in real life. For ex-
ample, robots in Tesla’s factory can find and fix parts
that are not lined up, without help from people. At ID,
robots [246], [247] use different sensors to sort pack-
ages by size and address. In Tmall’s warehouse [248],
robots use thermal cameras, LiDAR, and RGB sensors
to check for problems in the inventory and send alerts
when something is wrong. These examples show that
embodied Al is helping robots become more flexible, re-
liable, and smart in factories.

D. Other Applications

In addition to its use in homes, healthcare, and rescue
missions, embodied Al is also being applied in educa-
tional, virtual, and space environments. In smart man-
ufacturing, it supports robots that can work together
with humans, perform accurate assembly tasks, and
adapt their actions based on changes in the workspace
or human behavior. With the help of visual and touch
feedback, these robots can safely handle fragile items
[249], [250]. In education, embodied Al is used in social
robots that adjust their speech, gaze, and gestures ac-
cording to the student’s focus and emotions. This helps
create a more personalized learning experience and
builds long-term trust between students and robots
[251], [252]. In virtual environments, embodied agents
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learn to move, interact with objects, and complete tasks
that require several steps. They also develop memory
over time to improve their performance [253]. In space
exploration, where conditions are unknown and com-
munication with Earth is delayed, embodied Al allows
robots to make decisions on their own and adapt to new
surroundings [254]. These examples show that embod-
ied Al is becoming more flexible and useful across many
fields, helping machines see, act, and learn in both real
and virtual worlds.

VII. Future Directions
As embodied Al moves from simulation to real-world de-
ployment, future research must prioritize the develop-
ment of unified and reliable systems across several core
domains. Key directions include autonomous embodied
Al, embodied Al hardware, swarm embodied Al, and
evaluation benchmark.

A. Autonomous Embodied Al

The purpose of autonomous embodied Al is to enable
agents to operate independently for a long time in a
dynamic and open environment. Future research is ex-
pected to develop along several key directions. First,
adaptive perception can give the system the ability to
autonomously select input data, which can be achieved
by dynamically choosing and integrating information
from different sensory modalities. Second, Building on
this foundation, building environmental awareness is es-
sential. Environmental awareness helps agents quickly
adapt to changes, predict the consequences of their ac-
tions, and transfer their behavior to new environments.
It requires memory architectures that can capture spa-
tiotemporal patterns and model causal relationships.
Third, future systems should combine MLLMs with real-
time physical interaction, which allows agents to bridge
high-level language instructions with low-level control,
and accurately model the real physical world.

B. Embodied AI Hardware

Future research in embodied Al hardware is expect-
ed to advance in the following four directions. First,
hardware-aware model compression will continue to
integrate techniques such as quantization and prun-
ing with hardware performance metrics, enabling pre-
cise control over the trade-off between model accuracy
and deployment efficiency. Second, graph-level compi-
lation optimization will play a key role in bridging the
gap between high-level embodied models and low-level
hardware execution, which will focus on more effective
operator fusion, scheduling strategies, and memory ac-
cess efficiency to reduce execution overhead. Third,
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domain-specific accelerators will be increasingly tai-
lored to the computational characteristics of embod-
ied tasks. Reconfigurable architectures such as FPGA
and CGRA offer flexibility and adaptability, while ASIC-
based designs provide high efficiency and performance.
Fourth, hardware-software co-design will become es-
sential for eliminating mismatches between algorithm
behavior and hardware architecture. Joint optimization
of model structures and hardware architecture will be
critical to achieving real-time, energy-efficient execu-
tion in embodied systems.

C. Swarm Embodied Al

Swarm embodied Al refers to the collaborative percep-
tion and decision-making of multiple agents. Refers to
the collaborative perception and decision-making of
multiple agents. Because multiple agents can exhibit
stronger capabilities when cooperating than a single
agent, this kind of “collective intelligence” has aroused
the interest of many researchers and is also regarded
as an important step for agents to approach humans.
First of all, to enable multiple agents to cooperate
smoothly, it is necessary to develop collaborative WMs.
This model can establish a shared and dynamic envi-
ronmental representation based on the observations
of each agent, forming the basis of collective under-
standing. Secondly, multi-agent representation learning
is very important. It can help the agent understand its
own state and also comprehend the situations of other
agents. This is the basis for communication and coop-
eration among agents. In addition, modeling social be-
havior among agents is also crucial. Role allocation and
group decision-making can be better achieved through
behavioral modeling. Finally, to seamlessly integrate
into real-world applications, it is also important to de-
sign natural human-swarm interaction interfaces. It may
include multimodal language foundations and get-based
control methods, making it easier for humans to direct
and guide the entire agent group.

D. Explainability and Trustworthiness Embodied Al
Explainability and trustworthiness represent a critical
frontier for Embodied Al, essential for its safe, ethical,
and widespread real-world deployment as agents in-
creasingly interact physically with humans and dynam-
ic environments. Future research must address several
key challenges: Firstly, designing benchmarks that pro-
vide real-time, human-understandable justifications for
agent actions, particularly during unexpected situations
or failures, is crucial for user trust and debugging. Sec-
ondly, establishing robust mechanisms to ensure agents
adhere to ethical principles and human values during
autonomous decision-making, especially in morally
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ambiguous scenarios common in rescue or healthcare
applications, requires significant advancement. Thirdly,
creating verifiable safety guarantees and certification
standards for agents operating in unstructured physi-
cal settings, mitigating risks associated with unpredict-
able interactions, remains an open problem. Finally, en-
hancing robustness against adversarial attacks, sensor
noise, and distribution shifts, ensuring reliable perfor-
mance despite uncertainties inherent in the real world,
is fundamental for trustworthy operation. Addressing
these multifaceted research problems in explainability
and trustworthiness is paramount, as progress in this
direction will unlock the full potential of Embodied Al by
fostering user confidence, enabling responsible innova-
tion, and facilitating regulatory acceptance.

E. Other Directions

Several new directions may influence the future devel-
opment of embodied Al. One important direction is life-
long learning. Agents need to continuously learn new
skills without forgetting what they have already learned.
Only in this way can they adapt to the dynamic envi-
ronment and maintain the accuracy of the previously
completed tasks. Another key direction is human-in-
the-loop learning. Human feedback is very important su-
pervisory information. A small amount of feedback can
significantly improve the performance of an agent and
make it more human-like. To achieve this goal, we need
better methods to enable agents to understand human
goals and preferences. Finally, as agents become more
autonomous, moral decision-making becomes increas-
ingly important. Future systems should learn to careful-
ly identify moral hazard and follow human values. This
will help ensure that the embedded artificial intelligence
is both safe and reliable.
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