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Abstract
Sampling strategies have been widely adopted in Vision-Language
Pre-training (VLP) and have achieved great success recently. How-
ever, the sampling strategies adopted by current VLP works are
limited in two ways: i) they only focus on negative sampling, ignor-
ing the importance of more informative positive samples; ii) their
sampling strategies are conducted in the local in-batch level, which
may lead to sub-optimal results. To tackle these problems, in this pa-
per, we propose a curriculum-based Global Positive-Negative Sam-
pling (GPN-S) framework for vision-language pre-training, which
conducts both positive and negative sampling in the global level,
grounded on the notion of neighborhood relationships. Addition-
ally, we incorporate curriculum learning into our sampling strategy,
progressively increasing the complexity of samples as the training
progresses. Specifically, our proposed GPN-S framework is capa-
ble of utilizing positive sampling to bring semantically equivalent
samples closer, as well as employing negative sampling to push chal-
lenging negative samples farther away. We jointly consider them
for vision-language pre-training on the global-level perspective
rather than a local-level mini-batch, which provides more infor-
mative and diverse samples. We evaluate the effectiveness of the
proposed GPN-S framework by conducting experiments on several
common downstream tasks, and the results demonstrate significant
performance improvement over the existing models.
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1 Introduction
In recent years, there has been a burgeoning interest in the field
of vision-language pre-training (VLP) within the AI community[2,
12, 25, 33, 44]. VLP aims to learn multimodal representations from
large-scale image-text pairs that can simultaneously process vi-
sual and textual data, with the goal of improving performance on
downstream tasks such as image-text retrieval and visual question
answering. [1, 15, 23, 24, 27, 28]

Multi-modal alignment is fundamental to the efficacy of VLP,
where semantically similar samples are mapped together to en-
hance representation accuracy. Recent studies[25, 33] have shown
that smart sampling strategies can significantly boost VLP model
performance. For example, CLIP[33] benefits from using large mini-
batch sizes to find hard negatives, while ALBEF[25] uses a large
negative queue to identify challenging examples, both leading to
notable performance gains. However, two limitations persist:

• Current works predominantly focus on sampling hard nega-
tives within mini-batches[2, 25, 44], a local-level approach
that yields less optimal negative samples.

• There is limited research on positive sampling strategies,
with many studies overlooking the potential of positive sam-
pling in enriching multi-modal alignment information.
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Figure 1: Our proposed sampling strategy involves leveraging
information from nearest neighbors to sample semantically
equivalent positives, as well as employing a cluster algorithm
to obtain global-level challenging negatives.

To overcome these limitations, we propose the curriculum-based
Global Positive-Negative Sampling (GPN-S) framework for VLP.
This innovative framework conducts both positive and negative
sampling on a global level, moving beyond the constraints of local-
level mini-batches. Specifically, GPN-S maps the entire dataset’s
samples into a unified embedding space and utilizes their neighbor-
hood relationships to determine which samples should be closer or
farther apart, as illustrated in Figure 1. This approach provides more
informative and diverse samples. For global positive sampling (GP-
S), we aggregate co-occurring nouns fromneighboring texts, replace
noisy web-crawled text to enhance the model’s cross-modal align-
ment ability. By incorporating curriculum learning[4, 39, 41, 47, 48],
we progressively introduces more complex and challenging sam-
ples throughout the training process[6, 7, 21, 22, 32, 45, 49, 50]. We
also mine semantically equivalent images to improve the model’s
uni-modal alignment ability. For global negative sampling (GN-S),
we employ a global cluster technique to obtain more challenging
negative samples. Notably, our method is model-agnostic and can
be applied to enhance most existing VLP models.

In brief, our contributions can be summarized as follows:
• We propose the GPN-S framework, a novel approach that
broadens the sampling strategy to encompass both positive
and negative pairs at a global level, thus significantly en-
hancing VLP model performance.

• We utilize the relationships between neighboring samples to
effectively integrate information from the embedding space,
improving the quality of representations in both cross-modal
and uni-modal scenarios.

• We conduct extensive experiments on several downstream
tasks to demonstrate that our GPN-S can significantly yield
better performance than the models trained without GPN-S.

2 Related Works
2.1 Vision and Language Pre-training
Vision-Language Pre-training (VLP) models are primarily catego-
rized into two types: dual encoder models and fusion encoder mod-
els. Dual encoder models, such as CLIP[33] and ALIGN[16], inde-
pendently encode images and texts, employing contrastive learning

to align image-text pair embeddings. While effective in retrieval
tasks, their limited interaction between modalities restricts perfor-
mance in complex tasks like Visual Question Answering (VQA).

Fusion encoder models overcome this by integrating a fusion en-
coder to meld features from uni-modal encoders. Early iterations[10,
26, 29, 37] relied on pre-trained object detectors for visual feature ex-
traction, facing significant time overhead and capacity constraints.
ViLT[19] addressed this by directly inputting image patch features
and text token embeddings into a ViT[11] model, but this approach
lagged behind object-detector based models due to inadequate uni-
modal modeling. Subsequent developments, such as ALBEF[25],
combined the benefits of dual and fusion encoders, inspiring further
enhancements in models like TCL[44]. TCL introduced intra-modal
and global-local contrastive losses to achieve better alignment ca-
pabilities.

Our framework distinguishes itself by being model-agnostic,
compatible with a broad range of VLP models. It uniquely enhances
performance by refining the sampling strategies of these models, a
critical factor not explicitly addressed in previous approaches.

2.2 Sampling for Positive and Negative
The primary focus of representation learning lies in extracting
semantic information from data, where the representations of sim-
ilar (positive) pairs are clustered together and those of dissimilar
(negative) pairs are spread apart[3]. The sampling of positive and
negative pairs is critical in the success of VLP alignment.

Positive sampling traditionally focuses on generating semanti-
cally similar pairs, particularly through random data augmentation
in uni-modal contexts[8, 9, 38]. Approaches like NNCLR[13] have
leveraged the nearest-neighbor sample as the positive. It leverages a
queue for nearest-neighbor identification in uni-modal data, which
is notably trained on the 1000-class ImageNet dataset. In such a
clean, categorized environment, a queue suffices for identifying
similar neighbors. However, challenges emerge in web-crawled,
noisier datasets where identifying semantically similar positive
samples requires more nuanced strategies. This underscores the
need for advanced positive sampling approaches in cross-modal
scenarios, a domain less explored in previous research.

Negative sampling is aimed at identifying pairs with dissimilar
semantics yet closely embedded representations. Techniques that
incorporate hard negative sampling have shown to be beneficial.
For instance, ALBEF[25] selects the nearest sample in a mini-batch
as the hard negative. VLMo[2] extends this approach by mining
hard negatives from a broader pool, gathering training examples
across all GPUs, In contrast, GRIT-VLP[5] maintains a queue to
identify hard negatives, resulting in more significant improvements.

Our work introduces a novel unified positive-negative sampling
framework, distinct for its global-level approach. Unlike existing
methods constrained by the limited scope of mini-batches or queues,
our framework performs sampling across the entire dataset. This
comprehensive strategy enables more effective differentiation and
identification of positive and negative samples, especially in noisy,
diverse datasets, addressing gaps left by previous VLP research and
offering a significant advancement in the field.
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Figure 2: The proposed method contains two primary strategies: 1) Global Positive Sampling(GP-S), which aims to sample both
cross-modal and uni-modal data pairs that share same semantic through the neighboring information. 2) Global Negative
Sampling(GN-S), which aims to sample more challenging negative data through the clustering information.

3 Method
In this section, we present the Global Positive-Negative Sampling
(GPN-S) framework, which is designed to improve the performance
of existing VLP models by refining their sampling strategies. We
will first introduce the preliminaries about how current VLP models
align image and text.

3.1 Preliminaries
For a VLP model composed of a visual encoder 𝑓𝑉 (·), a text encoder
𝑓𝑇 (·), and a fusion encoder 𝑓𝐹 (·, ·), the unimodal representations
for an image-text pair (𝑣, 𝑡) are obtained as follows:

{vcls, v1, v2, ...} = 𝑓𝑉 (𝑣), (1)

{tcls, t1, t2, ...} = 𝑓𝑇 (𝑡), (2)

where vcls and tcls represent the embeddings of the correspond-
ing [CLS] token. The fusion representation is obtained through
𝑓𝐹 (𝑓𝑉 (𝑣), 𝑓𝑇 (𝑡)).

Training the VLP model typically involves adopting the image-
text matching objective, which introduces a predict head 𝑓𝐻 (·) to
predict the matching likelihood between the image and text. The
probability of a match between 𝑣 and 𝑡 is calculated as:

𝑝 (𝑣, 𝑡) = 𝑓𝐻 (𝑓𝐹 (𝑓𝑉 (𝑣), 𝑓𝑇 (𝑡))) . (3)

Given a batch of 𝑁 image-text pairs {(𝑣𝑖 , 𝑡𝑖 )}𝑁𝑖=1, where (𝑣𝑖 , 𝑡𝑖 ) is re-
ferred to as a positive pair and (𝑣𝑖 , 𝑡 𝑗 ),∀𝑗 ≠ 𝑖 as a negative pair. The
image-text matching loss on the positive pair (𝑣𝑖 , 𝑡𝑖 ) is calculated

using binary cross-entropy loss:

Litm (𝑣𝑖 , 𝑡𝑖 ) = −𝑙𝑜𝑔(𝑝 (𝑣𝑖 , 𝑡𝑖 )) − 𝑙𝑜𝑔(1 − 𝑝 (𝑣𝑖 , 𝑡 𝑗 )), (4)

where 𝑡 𝑗 ( 𝑗 ≠ 𝑖) is a randomly selected text from the batch. Recent
works[2, 25] introduce hard negative sampling by selecting a 𝑡 𝑗 to
maximize the dot product (vcls

𝑖
)𝑇 tcls

𝑗
within the batch. The hard

negative pairs share similar semantics but differ in fine-grained
details, thereby enhancing the model’s ability for fine-grained un-
derstanding. However, the quality of hard negatives of existing
works is constrained by the batch size 𝑁 .

Different VLP models may introduce different loss functions,
all of which are designed to align positive image-text pair (𝑣𝑖 , 𝑡𝑖 ).
Without loss of generality, we denote all other losses as Lother, and
the final training loss is expressed as:

L𝑓 (𝑣𝑖 , 𝑡𝑖 ) = Litm (𝑣𝑖 , 𝑡𝑖 ) + Lother (𝑣𝑖 , 𝑡𝑖 ). (5)

While current VLP models exhibit outstanding performance
across diverse tasks, there are still some limitations in their sam-
pling strategies for positive and negative pairs. Firstly, due to the
prohibitive cost of manual labeling, researchers have to train VLP
models with web-collected image-text pairs[30, 34]. However, these
texts may contain noise and fail to precisely describe the content of
corresponding images (e.g., an image of a dog paired with the text
“The photo is taken on Sunday” ), and such positive pairs hinder the
alignment process. Additionally, the current sampling is confined
to local-level batches with a limited number of samples, thereby
restricting the ability to sample optimal positives or negatives.
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Figure 3: Illustration of GP-S for cross-modal. We revise the
original text based on nouns that frequently appear in neigh-
boring texts.

To address these problems, we propose the Global Positive-
Negative Sampling (GPN-S) framework. As shown in Figure 2,
GPN-S utilizes a pre-trained encoder, such as CLIP[33], to map
image and text data from the entire dataset into a unified global
embedding space. Within this space, GPN-S samples optimal pos-
itives and negatives by leveraging the neighboring relationships
among samples. We will introduce how to calculate the neighboring
relationships in section 3.2. Then, in section 3.3 and section 3.4, we
respectively give the detailed description for how GPN-S samples
positives and negatives through neighboring relationships.

3.2 Neighbor Calculating
GPN-S utilizes an off-the-shelf pre-trained model that consists of
a visual encoder 𝑔𝑉 (·) and a text encoder 𝑔𝑇 (·). These encoders
are employed to map image and text from the entire dataset into a
unified global embedding space. Given a dataset with 𝐷 image-text
pairs {(𝑣𝑖 , 𝑡𝑖 )}𝐷𝑖=1, it computes the image embedding v𝑔

𝑖
= 𝑔𝑉 (𝑣𝑖 )

and text embedding t𝑔
𝑖
= 𝑔𝑇 (𝑡𝑖 ) for each pair. Then, we employ

Faiss [17] to identify the 𝑘 nearest-neighbor texts for each image
𝑣𝑖 , determined by the closest cosine distance to 𝑣𝑖 ’s embedding,
denoted as 𝑉 2𝑇𝑘 (𝑣𝑖 ):

𝑉 2𝑇𝑘 (𝑣𝑖 ) = {𝑡 𝑗 | 𝑗 ∈ top𝑘
𝑗 ′ ∈ [1, 𝐷]

{(v𝑔
𝑖
)𝑇 t𝑔

𝑗 ′ } }, (6)

where top𝑘 identifies the indices of the top 𝑘 largest values. Sim-
ilarly, we compute 𝑘 nearest-neighbor images 𝑉 2𝑉𝑘 (𝑣𝑖 ) for each
image 𝑣𝑖 , and 𝑘 nearest-neighbor images 𝑇2𝑉𝑘 (𝑡𝑖 ) for each text 𝑡𝑖 .
These cross-modal and uni-modal neighbors are crucial for guiding
our sampling strategy.

3.3 Global Positive Sampling (GP-S)
Due to textual noise, the pair (𝑣𝑖 , 𝑡𝑖 ) does not always serve as a
genuinely positive pair that conducive to alignment. We address
this issue from two perspectives. From cross-modal perspective, we
construct a refined text alignedwith 𝑣𝑖 . From uni-modal perspective,
we establish uni-modal alignment among sampled positive image
pairs, enabling the representation of 𝑣𝑖 to align with semantically
similar text through other images. This section will elaborate on the
utilization of global neighboring information for sampling positive
cross-modal and uni-modal pairs.

3.3.1 GP-S for Cross-Modal. As mentioned earlier, positive sam-
pling for cross-modal refers to constructing a refined text. We need
to extract the most crucial visual information from the image, which
pertains to the objects present in the image. We can infer the objects
through the neighboring text, as shown in Figure 3. To be specific,
we utilize SpaCy’s part-of-speech tagging tool to extract all nouns
from the dataset’s text. Subsequently, we create a set of nouns, de-
noted as 𝑆𝑛 , comprising those nouns that occur more than 10 times.
For a given image 𝑣𝑖 , if the frequency of a particular noun in its
𝑘 nearest-neighbor text surpasses a threshold 𝑝 , we conclude that
the image 𝑣𝑖 contains the object represented by that noun, denoted
as 𝑜𝑏 𝑗 (𝑣𝑖 ):

𝑜𝑏 𝑗 (𝑣𝑖 ) = {𝑛 |
∑
𝑡 𝑗 ∈𝑉 2𝑇𝑘 (𝑣𝑖 ) 1(𝑛∈𝑡 𝑗 )

𝑘
> 𝑝, 𝑛 ∈ 𝑆𝑛}, (7)

where the binary indicator 1(𝑛∈𝑡 𝑗 ) equals 1 if the noun 𝑛 appears in
text 𝑡 𝑗 and 0 otherwise. The values of 𝑘 and 𝑝 may vary depending
on the specific characteristics of the dataset, and we can confirm
these values by conducting a rapid manual check to ensure the
extraction of objects from the image.

We transform 𝑜𝑏 𝑗 (𝑣𝑖 ) by inserting spaces between the nouns,
resulting in the revised text 𝑡𝑟

𝑖
. During training, it is crucial to

determinewhich noise texts require replacement.We set a threshold
𝛼 . For image-text pairs (𝑣𝑖 , 𝑡𝑖 ) with a similarity of (v𝑔

𝑖
)𝑇 t𝑔

𝑖
≤ 𝛼 , we

replace the text 𝑡𝑖 with the corresponding revised text 𝑡𝑟
𝑖
. Inspired

by curriculum learning[4, 39, 40, 42], we progressively introduces
more complex and challenging samples throughout the training
process. Specifically, we replace all text during epoch 0, i.e., 𝛼 =

max𝑖∈[1,𝐷 ] {(v
𝑔

𝑖
)𝑇 t𝑔

𝑖
}. After half of the total training epochs, we do

not replace any text, i.e., 𝛼 ≤ min𝑖∈[1,𝐷 ] {(v
𝑔

𝑖
)𝑇 t𝑔

𝑖
}. We employ a

linear decay for 𝛼 :

𝛼 =
𝑒 − 𝐸/2
−𝐸/2 max

𝑖∈[1,𝐷 ]
{(v𝑔

𝑖
)𝑇 t𝑔

𝑖
} + 𝑒

𝐸/2 min
𝑖∈[1,𝐷 ]

{(v𝑔
𝑖
)𝑇 t𝑔

𝑖
}, (8)

where 𝐸 is the total number of epochs and 𝑒 is the number of the
current epoch. This strategy ensures that the model is not disrupted
by noise during the initial training, leading to a well-optimized
starting point. Once alignment performance is sufficiently high, the
model can gradually comprehend more complex original text.

3.3.2 GP-S for Uni-Modal. For uni-modal alignment, the focus is
to sample image pairs with both structural and semantic similarity,
we define semantic-equivalent images 𝑆𝐸𝑖 for 𝑣𝑖 as follows:

𝑆𝐸𝑖 = 𝑉 2𝑉𝑘1 (𝑣𝑖 ) ∩𝑇 2𝑉𝑘2 (𝑡𝑖 ), (9)

where 𝑘1 and 𝑘2 are parameters that control the range of neighbors.
Here, information from 𝑉 2𝑉 requires similarity in various aspects
such as composition of the images, while information from 𝑇2𝑉
places greater emphasis on the semantic similarity of the images.
When there are no positive images for 𝑣𝑖 in the dataset, the inter-
section of the two sets would be empty, and we set 𝑆𝐸𝑖 as a set
containing randomly augmented versions of 𝑣𝑖 .

In each training epoch, we randomly select a positive image 𝑣pos
𝑖

from 𝑆𝐸𝑖 and compute the uni-modal contrastive loss defined as
follows:

Luni (𝑣𝑖 , 𝑣
pos
𝑖

) = −𝑙𝑜𝑔
exp((vcls

𝑖
)𝑇 vpos,cls

𝑖
/𝜏)∑𝑁

𝑗=1 exp((vcls𝑖 )𝑇 vcls
𝑗
/𝜏)

, (10)
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Figure 4: Illustration of GP-S for uni-modal. We identify
positive images through the intersection between 𝑇2𝑉 and
𝑉 2𝑉 , allowing more precise sampling.

where 𝜏 is a learnable temperature parameter, 𝑁 is the batch size.
For the input (𝑣𝑖 , 𝑡𝑖 , 𝑣𝑝𝑜𝑠𝑖

), the final objective L is achieved by
adding the uni-modal contrastive loss to the raw training loss of
the model L𝑓 outlined in its original paper:

L(𝑣𝑖 , 𝑡𝑖 , 𝑣pos𝑖
) = L𝑓 (𝑣𝑖 , 𝑡𝑖 ) + Luni (𝑣𝑖 , 𝑣

pos
𝑖

) . (11)

3.4 Global Negative Sampling (GN-S)
Previous works[2, 25, 33] have demonstrated the benefits of sam-
pling hard negatives in VLP. However, in-batch mining is con-
strained by the batch size. In this section, we introduce global neg-
ative sampling, enabling us to acquire more challenging negative
samples from the entire dataset.

An intuitive approach is to utilize 𝑘 nearest neighbors as hard
negatives. However, to avoid potential positives in the negative
neighbors, the value of 𝑘 needs to be set relatively high, which in
turn results in an increase in computational costs. To enhance effi-
ciency, we opt for the 𝐾-means algorithm[14] for clustering, where
any pair of samples within the same cluster serve as a hard negative
pair. Specifically, we utilize Faiss[17] to partition the dataset into 𝐾
clusters, with each image-text pair (𝑣𝑖 , 𝑡𝑖 ) represented by its image
feature v𝑔

𝑖
.

As recent VLP models have incorporated in-batch hard negative
mining, introducing our GN-S only requires placing global-level
hard negatives into the same batch. Specifically, when a batch of size
𝑁 is constructed, we randomly select 𝑐 clusters from all 𝐾 clusters
and 𝑠 samples from each cluster. The remaining 𝑁 − 𝑐 × 𝑠 samples
are randomly chosen from the entire dataset, as shown in Figure 5.
By employing this approach, the 𝑠 samples from the same cluster
act as hard negatives for each other, resulting in a notable increased
number of hard negatives compared to batches formed randomly.
We observe that the model performs best when 𝑐 × 𝑠 ≈ 𝑁 /4. This
is done to maintain diversity within the batch, with still having
3𝑁 /4 completely random samples, thus preventing the model from
having difficulty distinguishing the ‘easy’ negatives.

 (��, ��, ��
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Figure 5: Illustration of GN-S. We present an example of the
composition of a batch, where 𝑁 = 8, 𝑐 = 2, and 𝑠 = 3. Samples
within the same cluster serve as hard negative pairs for each
other.

3.5 Scalablity
Our framework is highly effective and efficient. Thanks to Faiss[17],
computations such as 500-nearest-neighbor search and 1000-means
clustering on a dataset containing 5 million image-text pairs can be
completed within 2 hours, utilizing only 2 NVIDIA GeForce RTX-
3090 GPUs. As a comparison, training the VLP model ALBEF[25]
using 8 A100 GPUs takes 60 hours. The additional computations
introduced by our framework do not exceed 10% of the train-
ing time. Regarding storage overhead, only the identifiers of the
neighbors are stored, such as filenames. The storage space required
is significantly smaller compared to that of the original image-text
pairs.

When applying our framework to a large-scale dataset, we ad-
vise dividing the dataset randomly into groups of 5 million data
pairs each and sampling neighbors only within each group. This
approach has two advantages. First, our experiments have already
demonstrated that the neighbor information computed on the 5
million dataset is already sufficient for our global positive and neg-
ative sampling, thereby obviating the need for any alteration in
hyperparameters. Second, this processing method can be extended
to datasets of any size, and the additional costs would also not
exceed 10% of the training time.

4 Experiment
4.1 Implementation Details
Our GPN-S modifies the existing VLP model’s sampling strategy
to enhance their performance. We implement GPN-S on ALBEF
[25] and TCL [44] model, referring to them as the backbone mod-
els. They share similar model architectures and pre-train datasets.
Specifically, we utilized their base-size versions. The vision encoder
in both models is a ViT-B/16 with 12 layers, and both the text
encoder and the fusion encoder are implemented using a 6-layer
transformer. The pre-training dataset includes COCO[27], Visual
Genome[20], Conceptual Captions[35] and SBU Captions[31], com-
prising approximately 4 million images and 5.1 million image-text
pairs.
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Table 1: Results on fine-tune(FT) and zero-shot(ZS) retrieval tasks.

Method MSCOCO-FT MSCOCO-ZS
TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 RSUM TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 RSUM

CLIP[33] - - - - - - - 58.4 81.5 88.1 37.8 62.4 72.2 400.4
ViLT[19] 61.5 86.3 92.7 42.7 72.9 83.1 439.2 56.5 82.6 89.6 40.4 70.0 81.1 420.2

UNITER[10] 64.4 87.4 93.1 50.3 78.5 87.2 460.9 64.1 87.7 93.3 48.8 76.7 85.8 456.4
CoCa[46] - - - - - - - 63.8 84.7 90.7 47.5 72.4 80.9 440.0
VLMo[2] 74.8 93.1 96.9 57.2 82.6 89.8 494.4 - - - - - - -

METER[12] 76.2 93.2 96.8 57.1 82.7 90.1 496.1 - - - - - - -

ALBEF[25] 73.1 91.4 96.0 56.8 81.5 89.2 488.0 68.7 89.5 94.7 50.1 76.4 84.5 463.9
+ours 76.0 92.9 96.7 58.5 82.7 89.6 496.4 71.8 91.1 95.2 53.8 79.3 87.1 478.3

(+2.9) (+1.5) (+0.7) (+1.7) (+1.2) (+0.4) (+8.4) (+3.1) (+1.6) (+0.5) (+3.7) (+2.9) (+2.6) (+14.4)

TCL[44] 75.6 92.8 96.7 59.0 83.2 89.9 497.2 71.4 90.8 95.4 53.5 79.0 87.1 477.2
+ours 77.3 93.7 96.8 59.9 83.6 90.2 501.5 72.5 91.8 95.7 55.3 80.5 88.0 483.8

(+1.7) (+0.9) (+0.1) (+0.9) (+0.4) (+0.3) (+4.3) (+1.1) (+1.0) (+0.3) (+1.8) (+1.5) (+0.9) (+6.6)

Table 2: Results on other vision-language tasks.

Method VQA NLVR2 SNLI-VE
test-dev test-std dev test-P val test

ViLT 71.26 - 75.70 76.13 - -
UNITER 72.70 72.91 77.18 77.85 78.59 78.28
UNIMO 73.79 74.02 - - 80.00 79.10
VLMo 76.64 76.89 82.77 83.34 - -
METER 77.68 77.64 82.33 83.05 80.86 81.19

ALBEF 74.54 74.70 80.24 80.50 80.14 80.30
+ours 75.15 75.12 80.73 80.93 80.53 80.41

(+0.61) (+0.42) (+0.49) (+0.43) (+0.39) (+0.11)

TCL 74.90 74.92 80.54 81.33 80.51 80.29
+ours 75.46 75.58 81.14 81.44 80.63 80.51

(+0.56) (+0.66) (+0.60) (+0.11) (+0.12) (+0.22)

By default, we use the backbone model as the off-the-shelf pre-
trained encoder. For instance, when applying our methods to AL-
BEF, we obtain the pre-trained checkpoint from their official GitHub
repository for neighbor calculation. We empirically set the parame-
ters as follows: 𝑘 = 10, 𝑝 = 0.3 for calculating 𝑜𝑏 𝑗 (𝑣𝑖 ), 𝑘1 = 5, 𝑘2 =
500 for selecting positive image pairs, 𝑐 = 40, 𝑠 = 3 for construct-
ing batches of size 𝑁 = 512 in GN-S, with the number of clusters
𝐾 = 1000. We maintain all settings and training details from the
original backbone models, with one modification: we train TCL
for 50 epochs, rather than 30, to achieve better convergence. All
experiments are conducted on 8 NVIDIA A100 GPUs.

4.2 Downstream Tasks
To evaluate the effectiveness of our proposed method, we adapt
the pre-trained model to various downstream vision-and-language
(V+L) tasks, ensuring consistency in all settings with those of the
backbone models[25, 44], as below:

Image-Text Retrieval. We evaluate both fine-tune and zero-shot
retrieval performance on the MSCOCO[27] dataset and employ the

widely used Karpathy split [18], which comprises 5000 images along
with their corresponding 25010 texts. We consider two tasks: image-
to-text retrieval (TR), which involves finding the corresponding text
for a given image, and text-to-image retrieval (IR), which requires
finding the corresponding image with a given text.

Visual Question Answering (VQA). VQA aims to answer natural
language questions about images. We fine-tune our model on train-
ing and development set of VQAv2[1] and Visual Genome[20] VQA
data, and evaluate on the test-dev and test-std set of VQAv2. We
follow ALBEF and TCL, employing a decoder to generate answers
from a pool of 3192 candidates.

Natural Language for Visual Reasoning for Real (NLVR2) [36].
NLVR2 presents the task of determining whether a natural language
sentence is true about a pair of images. We follow ALBEF and TCL,
extending the fusion encoder to enable reasoning over two images
and adding a fully-connected layer to predict if the sentence is true
or false.

Visual Entailment (SNLI-VE) [43]. SNLI-VE is a novel inference
task based on the Stanford Natural Language Inference corpus and
Flickr30k dataset. Given a real world image premise and a natural
language hypothesis, the goal is to determine if the hypothesis can
be concluded given the information provided by image. We follow
ALBEF and TCL, considering it as a three-classes classification
problem because the relationship could be entailment, neutral or
contradiction.

For image-text retrieval, the R@𝑛 (Recall at 𝑛) measures the
proportion of correct answers included within the top 𝑛 retrieved
results. The RSUM metric is the sum of TR@1, TR@5, TR@10,
IR@1, IR@5, and IR@10. For VQA, NLVR2 and SNLI-VE, we report
the average accuracy on the test dataset.

4.3 Main Results
This subsection compares the performance of models with and
without the GPN-S framework to demonstrate its effectiveness.
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Table 3: Performance impact of individual sampling strate-
gies on downstream tasks. For retrieval task, we report the
RSUMmetric.

Module MSCOCO VQA NLVR2 SNLI-VE
ZS FT test-dev test-P test

ALBEF 463.9 488.0 74.54 80.50 80.30
+GP-S(Uni) 474.0 492.7 74.74 80.74 80.25
+GP-S(Cross) 474.0 492.4 74.81 80.87 80.23
+GP-S(Uni+Cross) 475.1 492.8 75.07 80.91 80.36
+GN-S 475.9 493.0 75.05 80.90 80.28
+GPN-S(FULL) 478.3 496.4 75.15 80.93 80.41

TCL 477.2 497.2 74.90 81.33 80.29
+GP-S(Uni) 481.8 499.2 75.14 81.33 80.45
+GP-S(Cross) 481.7 499.3 75.21 81.35 80.52
+GP-S(Uni+Cross) 482.2 499.2 75.43 81.38 80.55
+GN-S 483.1 501.2 75.32 81.37 80.51
+GPN-S(FULL) 483.8 501.5 75.46 81.44 80.51

4.3.1 Image-Text Retrieval. We evaluate the performance of the
model in both fine-tune and zero-shot settings, with the results
shown in Table 1.

In both settings, the model incorporating GPN-S significantly
outperforms the original backbone model across all metrics. No-
tably, the improvement is more pronounced in the zero-shot setting,
with increases of +14.4(3.1%) for ALBEF and +6.6(1.4%) for TCL
in terms of RSUM metrics. This enhancement indicates that GPN-S
more effectively aligns images and text, and the more substantial
increase in R@1 compared to R@5 and R@10 suggests that GPN-S
enhances the model’s ability to discern fine-grained differences.

4.3.2 VQA, NLVR2 and SNLI-VE. We conduct fine-tuning on other
downstream tasks requiring deep image-text interaction under-
standing. Table 2 shows the experimental results. Our method con-
sistently outperforms the corresponding backbone models.

Specifically, on the VQA task, we achieve an average improve-
ment of +0.52(+0.7%) and +0.61(+0.8%) for the ALBEF and TCL
backbones, respectively. For the NLVR2 task, our method outper-
forms the backbone by an average of 0.41(+0.5%). For the SNLI-VE
task, our method yields an average improvement of 0.21(+0.3%)
over the backbone. These gains are attributed solely to the im-
proved pre-training alignment, as the fine-tuning process remains
unchanged.

4.4 Ablation Study
4.4.1 Sampling Strategies. The effectiveness of each sampling strat-
egy is validated through experiments, summarized in Table 3. Each
strategy demonstrates improvement across all tasks, except SNLI-
VE, compared to the backbone model. Combining two global pos-
itive sampling strategies yields better results than employing a
single strategy, indicating that uni-modal and cross-modal positive
samplings are complementary. Implementing all three strategies
leads to the highest performance in most metrics, confirming their
collective benefit.

4.4.2 Off-The-Shelf Encoder. We investigate the effectiveness of
various off-the-shelf models. The results on the ALBEF backbone

Table 4: Performance impact of different off-the-shelf en-
coders. For retrieval task, we report the RSUMmetric.

Encoder MSCOCO VQAv2 NLVR2 SNLI-VE
ZS FT test-dev test-P test

- 463.9 488.0 74.54 80.50 80.30
CLIP 477.1 496.4 75.27 81.11 80.23
ALBEF 478.3 496.4 75.15 80.93 80.41
TCL 479.1 496.3 75.12 81.20 80.22
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Figure 6: The RSUM metric for zero-shot retrieval on the
MSCOCO dataset at each epoch during the training process
(x-axis represents the number of training epochs). The 0%
line represents the original ALBEFmodel. The 10% line shows
a fixed 𝛼 scenarios where text is replaced if its similarity with
the image falls within the lowest 10% of the dataset. The 100%
line represents that all text is replaced. The curriculum line
illustrates our curriculum-based scheduling for 𝛼 .

are detailed in Table 4. By default, we use the backbone model
that is not trained by our framework as the off-the-shelf model (so
‘ALBEF’ in the table denotes the default method). For comparison,
we also utilize CLIP ViT-B/32 and TCL models as alternative off-the-
shelf encoders, sourced from their official repositories. Our findings
indicate that higher-performing off-the-shelf models yield better
results in zero-shot retrieval tasks, while maintaining similar levels
of performance in other downstream tasks. Given the significant
improvements observed across all models, it is advisable to choose
the best available off-the-shelf encoder for applying the GPN-S
framework.

4.5 GP-S for Cross-modal on Noisier Dataset
The GP-S method was proposed to address the impact of textual
noise. However, in previous sections, we used relatively clean aca-
demic datasets for a fair comparison. In this section, we replace the
pre-training dataset with a noisier random 3M subset of CC12M and
use GP-S for cross-modal techniques without modifying the param-
eters 𝑘 and 𝑝 . We report the RSUM metric for zero-shot retrieval
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Person takes control of the ball 
from person saturday afternoon 
as the teams met.

A man jumping over an edge of a 
boat skating.                  

A group of soccer player fighting 
for the ball.

Person -- works to control the 
ball against defenders during 
game .

Girl kneeling down next to a 
soccer ball on the grass.

A boy kicking a soccer ball near 
a walking girl while others 
watch.

There is a skate boarder that is 
riding a red pole.

A man is about to snowboard 
across a platform.

Group shot of people at a skiing 
outing with one person jumping.

A snowboarder in the air with 
a treeline in the background.

Positive Samples Negative Samples
Uni-Modal

Revised:  boy soccer field

Cross-Modal
Revised: man skating snow

Figure 7: Two examples are shown for visualization. The first column displays the original image-text pairs, while the following
columns present the positive and negative samples obtained via our sampling strategy.

on the MSCOCO dataset, as shown in Figure 6. We observe that, on
this dataset, we achieve a better improvement (RSUM improvement
from 354.6 to 382.6, a 7.9% increase). In contrast to a fixed 𝛼 , cur-
riculum learning for scheduling 𝛼 proves to be the most effective
approach. We believe that curriculum training, progressing from
easy to hard, prevents the model from getting stuck in local optima.

As pre-training datasets in practical applications continue to
grow, they will inevitably contain more noise. As the first work
to introduce positive sampling in VLP, we hope this experiment
demonstrates the importance of positive sampling in VLP.

4.6 Visualization of Positives and Negatives
For a clearer understanding of our sampling strategy, we provide
visualizations of the positive and negative samples identified by
GPN-S, as illustrated in Figure 7.

In the first example (first row), the text mentions “saturday af-
ternoon” which is not visually represented in the image. We obtain
information through neighbors and revise the text accordingly.
Moreover, We found neighbor images with similar semantic in-
formation and encouraged them to be close to each other in the
embedding space. To distinguish hard negative samples within the
same cluster, themodel is required to fully comprehend the sentence
“takes control of the ball from people,” rather than solely recognizing
“people” and “ball”. In the second example, cross-modal positive
sampling successfully captures the key information “snow” which
is not explicitly mentioned in the original text. All positive images
contain the information “skating over a red platform” while nega-
tive samples lack certain shared features with the anchor, yet are

sufficiently challenging to enable the model to achieve fine-grained
discrimination.

5 Conclusion
This paper introduces the curriculum-basedGlobal Positive-Negative
Sampling (GPN-S) framework, a novel approach that enhances the
sampling strategy of Vision-Language Pre-training (VLP) models
by including both positive and negative pairs at a global level. The
GPN-S framework leverages curriculum learning to progressively
introduce more complex and informative samples during train-
ing. This process identifies globally semantically similar neighbors
as positive samples, thereby improving the quality of representa-
tions in both cross-modal and uni-modal scenarios. Simultaneously,
it encourages the model to differentiate more challenging nega-
tive samples within the same cluster. Experimental results validate
the effectiveness of the GPN-S framework, demonstrating signif-
icant improvements across various VLP models on widely used
benchmarks, and highlighting the potential of sampling methods
in advancing the state-of-the-art in vision-language pre-training.
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