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Sequential recommendation, leveraging user-item interaction histories to provide personalized and timely

suggestions, has drawn significant research interest recently. With the power of exploiting spatio-temporal

dynamics, dynamic graph neural networks (DyGNNs) show great potential in sequential recommendation by

modeling the dynamic relationship between users and items. However, spatio-temporal distribution shifts

naturally exist in out-of-distribution sequential recommendation, where both user-item relationships and

temporal sequences demonstrate pattern shifts. The out-of-distribution scenarios may lead to the failure of

existing DyGNNs in handling spatio-temporal distribution shifts in sequential recommendation, given that

the patterns they exploit tend to be variant w.r.t labels under distribution shifts. In this paper, we propose

Disentangled Intervention-based Dynamic graph Attention networks with Invariance Promotion (I-DIDA) to
handle spatio-temporal distribution shifts in sequential recommendation by discovering and utilizing invariant
patterns, i.e., structures and features whose predictive abilities are stable across distribution shifts. Specifically,

we first propose a disentangled spatio-temporal attention network to capture the variant and invariant

patterns. By utilizing the disentangled patterns, we design a spatio-temporal intervention mechanism to create

multiple interventional distributions and an environment inference module to infer the latent spatio-temporal

environments, and minimize the invariance loss to leverage the invariant patterns with stable predictive

abilities under distribution shifts. Extensive experiments demonstrate the superiority of our method over

state-of-the-art sequential recommendation baselines under distribution shifts.
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1 INTRODUCTION
As the internet’s vast information continues to expand dramatically, the need for recommender

systems has become paramount in alleviating information overload across online platforms such

as e-commerce, search engines, and social media [63, 140, 159]. While conventional collaborative

filtering methods primarily focus on static user-item interactions, there is a recent surge of research

attention towards harnessing the dynamic nature of user preferences, which recognizes that user

tastes evolve over time, influenced by their historical interactions. Consequently, there’s a growing

interest in sequential recommendation techniques that exploit users’ interaction histories to deliver

more accurate predictions.

Sequential recommendation [41] involves predicting the next item a user will interact with based

on their historical interactions. Unlike traditional recommendation approaches that focus solely

on predicting users’ preferences for individual items, sequential recommendation systems take

into account the sequential nature of user-item interactions, acknowledging that user preferences

evolve over time. By leveraging sequential patterns and historical interactions, these systems aim

to provide more accurate and personalized recommendations, anticipating users’ preferences not

only based on their current interests but also on their past behaviors. With applications ranging

from e-commerce platforms to content streaming services, sequential recommendation plays a

crucial role in enhancing user engagement, satisfaction, and overall experience by delivering timely

and relevant suggestions tailored to users’ evolving preferences and needs.

Dynamic graph neural networks (DyGNNs) [9, 46, 96, 112, 162, 177], with their adeptness in

capturing temporal dependencies within user-item interaction histories, hold significant promise

for modeling sequential recommendation tasks and providing superior recommendations. Distinct

from static graphs, dynamic graphs can represent temporal structure and feature patterns, which

are more complex yet common in reality. By discovering temporal patterns effectively, they can

offer nuanced insights into user preferences and behaviors, thereby enhancing recommendation

accuracy and relevance for more personalized and better user experiences.

Nevertheless, spatio-temporal distribution shifts naturally exist in sequential recommendation

for various reasons such as survivorship bias [13], selection bias [10, 176], trending [65], etc.
Users’ interests may differ from different communities [62],i.e., distributions may shift among

users and items in the spatial dimension. For example, for visits related to anime-themed clothing,

anime enthusiasts might be interested in the clothing because of their interest in a particular

character from the anime. Consequently, their next purchase might also be related to merchandise

featuring that character. On the other hand, non-anime enthusiasts might focus more on the comfort

and appearance of the clothing and would likely continue purchasing other lifestyle products.

Users’ interests over items may shift through time in the user-item temporal sequences [131],i.e.,
distributions may also shift among items sequences in the temporal dimension. For example,

in summer, users might purchase shorts after buying a T-shirt to stay cool, whereas in winter,

they may opt for sweaters following a T-shirt purchase to keep warm. In real-world sequential

recommendation, the distribution shift could be in both spatial and temporal dimensions, leading

to more complex spatio-temporal distribution shifts. If DyGNNs highly rely on spatio-temporal

patterns which are variant under distribution shifts, they will inevitably fail to generalize well to

the unseen test distributions in sequential recommendation.

To address this issue, in this paper, we study the problem of handling spatio-temporal distri-

bution shifts in sequential recommendation through discovering and utilizing invariant patterns,
i.e., structures and features whose predictive abilities are stable across distribution shifts, which

remain unexplored in the literature. However, this problem is highly non-trivial with the following

challenges:
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• How to discover the complex variant and invariant spatio-temporal patterns in sequential

recommendation, which include both graph structures and node features varying through time?

• How to handle spatio-temporal distribution shifts in a principled manner with discovered

variant and invariant patterns?

To tackle these challenges, we propose a novel method named Disentangled Intervention-based

Dynamic Graph Attention Networks with Invariance Promotion (I-DIDA). Our proposed method

handles distribution shifts well by discovering and utilizing invariant spatio-temporal patterns with

stable predictive abilities in sequential recommendation. Specifically, we first propose a disentan-

gled spatio-temporal attention network to capture the variant and invariant patterns in dynamic

graphs, which enables each node to attend to all its historic neighbors through a disentangled

attention message-passing mechanism. Then, inspired by causal inference literatures [45, 100], we

propose a spatio-temporal intervention mechanism to create multiple intervened distributions by

sampling and reassembling variant patterns across neighborhoods and time, such that spurious

impacts of variant patterns can be eliminated. To tackle the challenges that i) variant patterns

are highly entangled across nodes and ii) directly generating and mixing up subsets of structures

and features to do intervention is computationally expensive, we approximate the intervention

process with summarized patterns obtained by the disentangled spatio-temporal attention network

instead of original structures and features. Lastly, we propose an invariance regularization term to

minimize prediction variance in multiple intervened distributions. Inspired by invariant learning

literature, we further learn invariant patterns across environments to promote invariance under

distribution shifts. However, the environments on dynamic graphs are complex and usually un-

labeled. Thus, we leverage variant patterns to enhance the invariance properties of the captured

invariant patterns in the training process, by inferring the latent spatio-temporal environments

and minimizing the prediction variance among these environments. In this way, our model can

capture and utilize invariant patterns with stable predictive abilities to make predictions under

distribution shifts. Extensive experiments on one synthetic dataset and four real-world datasets,

including node classification and link prediction tasks, demonstrate the superiority of our proposed

method over state-of-the-art baselines under distribution shifts. We also conduct experiments

on various real-world sequential recommendation datasets. This involves constructing dynamic

graphs from the sequences of user-item interactions and modeling sequential recommendation

tasks as dynamic graph link prediction problems. Our findings demonstrate that our approach

significantly outperforms state-of-the-art sequential recommendation benchmarks. This superiority

stems from our ability to harness spatio-temporal information within user-item interaction histories

and adeptly address shifts in spatio-temporal distributions. The contributions of our work are

summarized as follows:

• We propose Disentangled Intervention-based Dynamic Graph Attention Networks with Invari-

ance Promotion (I-DIDA), which can handle spatio-temporal distribution shifts in sequential

recommendation.

• We propose a disentangled spatio-temporal attention network to capture variant and invariant

graph patterns. We further design a spatio-temporal intervention mechanism to create multiple

intervened distributions and an invariance regularization term based on causal inference theory

to enable the model to focus on invariant patterns under distribution shifts.

• We further promote the invariance property by minimizing the prediction variance among the

latent environments inferred by the variant patterns.

• Experiments on one synthetic dataset and several real-world datasets show that our method

significantly improves over state-of-the-art dynamic GNN and OOD generalization baselines,

showing our method’s ability of handling spatio-temporal distribution shifts on dynamic graphs.
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• Experiments on several real-world sequential recommendation datasets demonstrate the superi-

ority of our method over state-of-the-art sequential recommendation baselines, showing that

our method is able to leverage the spatio-temporal information in user-item interaction history

and to effectively handle the spatio-temporal distribution shifts in sequential recommendation.

This manuscript is an extension of our paper published at NeurIPS 2022 [169]. Compared with the

conference version, we make significant contributions from the following aspects:

• The newly proposed I-DIDA model is able to learn invariant patterns on dynamic graphs

via enforcing sample-level and environment-level prediction invariance among the latent

spatio-temporal patterns so as to improve the generalization ability of dynamic graph neural

networks under spatio-temporal distribution shifts.

• The newly proposed environment-level invariance regularization can inherently boost the

invariance property of the invariant patterns in the training process without adding extra

time and memory complexity.

• I-DIDA jointly integrates spatio-temporal intervention mechanism and environment infer-

ence into a unified framework, so that the model can focus on invariant patterns to make

predictions.

• More extensive experiments demonstrate that I-DIDA is able to show significant improve-

ments over the state-of-the-art baseline methods and the original model proposed in the

earlier conference paper.

• We further conduct experiments on several real-world sequential recommendation datasets

by constructing dynamic graphs from the user-item interaction sequences and modeling

the sequential recommendation tasks as dynamic graph link prediction problems. The re-

sults show that our method achieves significantly better performance than state-of-the-art

sequential recommendation baselines by leveraging the spatio-temporal information in user-

item interaction history and effectively handling the spatio-temporal distribution shifts in

sequential recommendation.

The rest of this paper is organized as follows. We introduce the problem formulation and

notations in Section 2. In Section 3, we describe the details of our proposed framework. We

present the experimental results on dynamic graphs in Section 4 and the results on sequential

recommendations in Section 5. We review the related work in Section 6. Finally, we conclude our

work in Section 7.

2 PROBLEM FORMULATION AND NOTATIONS
In this section, we introduce the dynamic graph and prediction tasks, and formulate the problem

of spatio-temporal distribution shift in dynamic graphs. The notations adopted in this paper are

summarized in Table 1.

2.1 Dynamic Graph
Dynamic Graph. Consider a graph G with the node setV and the edge set E. A dynamic graph can

be defined as G = ({G𝑡 }𝑇𝑡=1), where 𝑇 is the number of time stamps, G𝑡 = (V𝑡 , E𝑡 ) is the graph
slice at time stamp 𝑡 ,V =

⋃𝑇
𝑡=1V𝑡

, E =
⋃𝑇
𝑡=1 E𝑡 . We use G𝑡 to denote a random variable of G𝑡 .

2.2 Prediction Tasks
For dynamic graphs, the prediction task can be summarized as using past graphs to make predictions,

i.e.𝑝 (Y𝑡 |G1,G2, . . . ,G𝑡 ) = 𝑝 (Y𝑡 |G1:𝑡 ) , where label Y𝑡 can be node properties or occurrence of links

between nodes at time 𝑡 +1. In this paper, we mainly focus on node-level tasks, which are commonly

adopted in dynamic graph literatures [112, 177]. Following [59, 144], we factorize the distribution
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Fig. 1. The framework of our proposed method I-DIDA: 1. (Part ①) For a given dynamic graph with multiple
timestamps, the disentangled dynamic graph attention networks first obtain summarizations of high-order
invariant and variant patterns by disentangled spatio-temporal message passing. 2. (Part ②) Then the spatio-
temporal intervention mechanism creates multiple intervened distributions by sampling and reassembling
variant patterns across space and time for each node. By utilizing the samples from the intervened distribu-
tions, the sample-level invariance loss is calculated to optimize the model so that it can focus on invariant
patterns to make predictions. 3. (Part ③) Finally, the spatio-temporal environment inference module infers
the environments by clustering the variant patterns, and an environment-level invariance loss is proposed to
promote the invariance of the invariant patterns. In this way, the method can make predictions based on the
invariant spatio-temporal patterns which have stable predictive abilities across distributions, and therefore
handle the problem of distribution shifts on dynamic graphs. 4. (Part ④) We apply I-DIDA to sequential
recommendation tasks by first constructing the dynamic graphs from the user-item interaction sequences
and extract the invariant patterns on dynamic graphs to make recommendations for the target users.

of graph trajectory into ego-graph trajectories, i.e.𝑝 (Y𝑡 | G1:𝑡 ) = ∏
𝑣 𝑝 (y𝑡 | G1:𝑡

𝑣 ). An ego-graph

induced from node 𝑣 at time 𝑡 is composed of the adjacency matrix including all edges in node 𝑣 ’s
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Table 1. The summary of notations.

Notations Descriptions

G = (V, E) A graph with the node set and the edge set

G𝑡 = (V𝑡 , E𝑡 ) Graph slice at time 𝑡

G1:𝑡 , 𝑌 𝑡 ,G1:𝑡 ,Y𝑡 The graph trajectory, label and their corresponding random variable across times

G1:𝑡
𝑣 , 𝑦

𝑡 ,G1:𝑡
𝑣 , y𝑡 Ego-graph trajectory, the node’s label and their corresponding random variable

𝑓 (·), 𝑔(·) The predictor functions

𝑃, P A pattern and its corresponding random variable

𝑚(·) A function to select structures and features from ego-graph trajectories

do(·) The do-calculus in causal inference

𝜙 (·) A function to find invariant patterns

d The dimensionality of node representation

q, k, v The query, key, and value vector

N𝑡 (𝑢) The dynamic neighborhood of node 𝑢 at time 𝑡

m𝐼 ,m𝑉 ,m𝑓 The structural mask of invariant and variant patterns, and the featural mask

z𝑡
𝐼
(𝑢), z𝑡

𝑉
(𝑢) Summarizations of invariant and variant patterns for node 𝑢 at time 𝑡

Agg𝐼 (·), Agg𝑉 (·) Aggregation functions for invariant and variant patterns

h𝑡𝑢 Hidden embeddings for node 𝑢 at time 𝑡

ℓ The loss function

L,L𝑚,L𝑑𝑜 The task loss, mixed loss, sample-level invariance loss

L𝑘 ,L𝑒𝑛𝑣 The 𝑘-th environment loss and the environment-level invariance loss

𝐾 The number of environments

K, 𝑘 (𝑢𝑡 ) The environment set and the environment for the node 𝑢 at time 𝑡 .

D = {(𝑢, 𝑖, 𝑡)} the user-item interaction sequences

U User set

I Item set

S𝑢 : (S𝑢
1
,S𝑢

2
, . . . ,S𝑢|S𝑢 | ) Item sequence for user 𝑢

𝑇𝑢 : (𝑇𝑢
1
,𝑇𝑢

2
, . . . ,𝑇𝑢|S𝑢 | ) Time sequence for user 𝑢

𝐿-hop neighbors at time 𝑡 , i.e., N𝑡
𝑣 , and the features of nodes in N𝑡

𝑣 . The optimization objective is

to learn an optimal predictor with empirical risk minimization.

min

𝜃
E(𝑦𝑡 ,G1:𝑡

𝑣 )∼𝑝𝑡𝑟 (y𝑡 ,G1:𝑡
𝑣 )L(𝑓𝜃 (G

1:𝑡
𝑣 ), 𝑦𝑡 ), (1)

where 𝑓𝜃 is a learnable dynamic graph neural networks, We use G1:𝑡
𝑣 ,y𝑡 to denote the random

variable of the ego-graph trajectory and its label, and G1:𝑡
𝑣 ,𝑦𝑡 refer to the respective instances.

2.3 Spatio-Temporal Distribution Shift
However, the optimal predictor trained with the training distribution may not generalize well to the

test distribution when there exists a distribution shift problem. In the literature of dynamic graphs,

researchers are devoted to capturing laws of network dynamics which are stable in systems [57, 102,

123, 138, 175]. Following them, we assume the conditional distribution is the same 𝑝𝑡𝑟 (Y𝑡 |G1:𝑡 ) =
𝑝𝑡𝑒 (Y𝑡 |G1:𝑡 ), and only consider the covariate shift problem where 𝑝𝑡𝑟 (G1:𝑡 ) ≠ 𝑝𝑡𝑒 (G1:𝑡 ). Besides the
temporal distribution shift which naturally exists in time-varying data [37, 43, 65, 88, 126] and the

structural distribution shift in non-euclidean data [35, 144, 146], there exists a much more complex

spatio-temporal distribution shift in dynamic graphs. For example, the distribution of ego-graph

trajectories may vary across periods or communities.
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3 METHODOLOGIES
In this section, we introduce our Disentangled Intervention-based Dynamic Graph Attention Net-

works with Invariance Promotion (I-DIDA) to handle spatio-temporal distribution shift in dynamic

graphs. First, we propose a disentangled dynamic graph attention network to extract invariant

and variant spatio-temporal patterns. Then we propose a spatio-temporal intervention mechanism

to create multiple intervened data distributions, coupled with an invariance loss to minimize the

prediction variance among intervened distributions. Finally, we propose an environmental invari-

ance regularization to promote the quality of invariant patterns, and optimize the model with both

invariance regularizations to encourage the model to rely on invariant patterns to make predictions.

3.1 Handling Spatio-Temporal Distribution Shift
3.1.1 Spatio-Temporal Pattern. In recent decades of development of dynamic graphs, some scholars

endeavor to conclude insightful patterns of network dynamics to reflect how real-world networks

evolve through time [8, 69, 97, 178]. For example, the laws of triadic closure describe that two nodes

with common neighbors (patterns) tend to have future interactions in social networks [31, 58, 175].

Besides structural information, node attributes are also an important part of the patterns, e.g., social

interactions can be also affected by gender and age [70]. Instead of manually concluding patterns,

we aim at learning the patterns using DyGNNs so that the more complex spatio-temporal patterns

with mixed features and structures can be mined in dynamic graphs. Therefore, we define the

spatio-temporal pattern used for node-level prediction as a subset of ego-graph trajectory,

𝑃𝑡 (𝑣) =𝑚𝑡
𝑣 (G1:𝑡

𝑣 ), (2)

where 𝑚𝑡
𝑣 (·) selects structures and attributes from the ego-graph trajectory. In [175], the pat-

tern can be explained as an open triad with similar neighborhood, and the model tends to make

link predictions to close the triad with 𝑦𝑡𝑢,𝑣 = 𝑓𝜃 (𝑃𝑡 (𝑢), 𝑃𝑡 (𝑣)) based on the laws of triadic clo-

sure [110]. DyGNNs aim at exploiting predictive spatio-temporal patterns to boost prediction ability.

However, the predictive power of some patterns may vary across periods or communities due to

spatio-temporal distribution shift. Inspired by the causal theory [45, 100], we make the following

assumption.

Assumption 1. For a given task, there exists a predictor 𝑓 (·), for samples (G1:𝑡
𝑣 ,𝑦𝑡 ) from any

distribution, there exists an invariant pattern 𝑃𝑡
𝐼
(𝑣) and a variant pattern 𝑃𝑡

𝑉
(𝑣) such that 𝑦𝑡 =

𝑓 (𝑃𝑡
𝐼
(𝑣)) + 𝜖 and 𝑃𝑡

𝐼
(𝑣) = G1:𝑡

𝑣 \𝑃𝑡𝑉 (𝑣), i.e., y
𝑡 ⊥ P𝑡

𝑉
(𝑣) | P𝑡

𝐼
(𝑣).

In the Assumption 1, 𝑃𝑡
𝐼
(𝑣) = G1:𝑡

𝑣 \𝑃𝑡𝑉 (𝑣) denotes that the dynamic graph is composed of the

invariant patterns and variant patterns. The assumption shows that invariant patterns P𝑡
𝐼
(𝑣) are

sufficiently predictive for label 𝑦𝑡 and can be exploited across periods and communities without

adjusting the predictor, while the influence of variant patterns P𝑡
𝑉
(𝑣) on y𝑡 is shielded by the

invariant patterns.

3.1.2 Training Objective. Our main idea is that to obtain better generalization ability, the model

should rely on invariant patterns instead of variant patterns, as the former is sufficient for prediction

while the predictivity of the latter could be variant under distribution shift. Along this, our objective

can be transformed to

min

𝜃1,𝜃2

E(𝑦𝑡 ,G1:𝑡
𝑣 )∼𝑝𝑡𝑟 (y𝑡 ,G1:𝑡

𝑣 )L(𝑓𝜃1 (𝑃
𝑡
𝐼 (𝑣)), 𝑦

𝑡 )

𝑠 .𝑡 𝜙𝜃2 (G1:𝑡
𝑣 ) = 𝑃𝑡𝐼 (𝑣), y

𝑡 ⊥ P̃𝑡𝑉 (𝑣) | P̃
𝑡
𝐼 (𝑣),

(3)

where 𝑓𝜃1 (·) make predictions based on the invariant patterns, 𝜙𝜃2 (·) aims at finding the invariant

patterns. However, the objective is challenging due to 1) the invariant and variant patterns are
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not labeled, and the model should be optimized to distinguish these patterns, 2) the properties of

invariance and sufficiency should be achieved by specially designed mechanisms so that the model

can rely on invariant patterns to make accurate predictions under distribution shifts. To this end,

we propose two invariance loss from two levels for guiding the model to find and rely on invariant

patterns, which are respectively inspired by the causal theory and invariant learning literature.

3.1.3 Sample-Level Invariance Loss. By causal theory [45, 100], Eq. (3) can be transformed into

min

𝜃1,𝜃2

E(𝑦𝑡 ,G1:𝑡
𝑣 )∼𝑝𝑡𝑟 (y𝑡 ,G1:𝑡

𝑣 )L(𝑓𝜃1 (𝜙𝜃2 (G
1:𝑡
𝑣 )), 𝑦𝑡 )+

𝜆Var𝑠∈S (E(𝑦𝑡 ,G1:𝑡
𝑣 )∼𝑝𝑡𝑟 (y𝑡 ,G1:𝑡

𝑣 |do(P𝑡𝑉 =𝑠 ) )L(𝑓𝜃1 (𝜙𝜃2 (G1:𝑡
𝑣 )), 𝑦𝑡 )),

(4)

where ‘do’ denotes do-calculas to intervene the original distribution [45, 121], S denotes the

intervention set and 𝜆 is a balancing hyperparameter. The idea can be informally described that

as in Eq. (3), variant patterns P𝑡
𝑉
have no influence on the label y𝑡 given the invariant patterns P𝑡

𝐼
,

then the prediction would not be varied if we intervene the variant patterns and keep invariant

patterns untouched. As this loss intervenes the distributions in the sample-level (i.e., nodes), and
pursues the invariance of the invariant patterns for each sample, we name the variance term in

Eq. (4) as sample-level invariance loss.

Remark 1. Minimizing the variance term in Eq. (4) help the model to satisfy the constraint of
y𝑡 ⊥ P̃𝑡

𝑉
(𝑣) | P̃𝑡

𝐼
(𝑣) in Eq. (3), i.e., 𝑝 (y𝑡 | P̃𝑡

𝐼
(𝑣), P̃𝑡

𝑉
(𝑣)) = 𝑝 (y𝑡 | P̃𝑡

𝐼
(𝑣)).

3.1.4 Environment-Level Invariance Loss. Invariant learning [3, 71, 106] is a promising research di-

rection with the goal of empowering the model with invariant predictive abilities under distribution

shifts. Environments, commonly as a critical concept for the method assumption and design in the

invariant learning literature, refer to where the observed instances are sampled from, which may

have variant correlations with labels. In road networks, for example, two traffic jams in different

places and times may happen simultaneously by chance or there can be causal relations, e.g., the

road structure let one traffic jam block other roads and inevitably lead to another traffic jam. In this

case, places and times may act as the environments which may have spurious correlations with

labels and should not be exploited by the model under distribution shifts. Inspired by invariant

learning, we propose to promote the invariance property of the invariant patterns by designing an

environment-level invariance loss,

Var𝑘∈K (E(𝑦𝑡 ,G1:𝑡
𝑣 )∼𝑝𝑡𝑟 (y𝑡 ,G1:𝑡

𝑣 |𝑘 )L(𝑓𝜃1 (𝜙𝜃2 (G
1:𝑡
𝑣 )), 𝑦𝑡 )), (5)

where 𝑘 denotes the 𝑘-th environment from the environment set K , and 𝑝𝑡𝑟 (y𝑡 ,G1:𝑡
𝑣 |𝑘) denotes the

data distribution of the 𝑘-th environment. Intuitively, minimizing the environment-level invariance

loss encourages the model to make stable predictions regardless of the environments.

Together with the sample-level invariance loss and environment-level invariance loss, we can

help the model discover the invariant and variant patterns, and rely on invariant patterns to make

predictions. We will describe how to implement these insights in an end-to-end manner in the

following sections.

3.2 Disentangled Dynamic Graph Attention Networks
3.2.1 Dynamic Neighborhood. To simultaneously consider the spatio-temporal information, we

define the dynamic neighborhood as N𝑡 (𝑢) = {𝑣 : (𝑢, 𝑣) ∈ E𝑡 }, which includes all nodes that have

interactions with node 𝑢 at time 𝑡 . For node 𝑢 at time 𝑡1, the dynamic neighborhoods N𝑡 (𝑢), 𝑡 ≤ 𝑡1
describe the historical structural information of 𝑢𝑡 , which enables different views of historical

structural information based on the current time, e.g., 𝑢𝑡2 and 𝑢𝑡3 may aggregate different messages

from N𝑡1 (𝑢) for 𝑡1 ≤ 𝑡2 ≤ 𝑡3. For example, the interest of the same user may have evolved
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through time, and the messages, even from the same neighborhood, adopted by the user to conduct

transactions also vary. The model should be designed to be aware of these evolving patterns in

the dynamic neighborhood. Note that the defined dynamic neighborhood includes only 1-order

spatial neighbors at time 𝑡 for the brevity of notations, while the concept of n-order neighbors

can be extended by considering the neighbors which can be reached by n-hop paths. Following

classical message passing networks, we take into consideration the information of the n-order

neighborhood by stacking multiple layers for message passing and aggregation.

3.2.2 Disentangled Spatio-temporal Graph Attention Layer. To capture spatio-temporal patterns for

each node, we propose a spatio-temporal graph attention to enable each node to attend to its dynamic

neighborhood simultaneously. For a node 𝑢 at time stamp 𝑡 and its neighbors 𝑣 ∈ N𝑡 ′ (𝑢),∀𝑡 ′ ≤ 𝑡 ,
we calculate the Query-Key-Value vectors as

q𝑡𝑢 = W𝑞

(
h𝑡𝑢 | |TE(𝑡)

)
,

k𝑡
′
𝑣 = W𝑘

(
h𝑡
′
𝑣 | |TE(𝑡 ′)

)
,

v𝑡
′
𝑣 = W𝑣

(
h𝑡
′
𝑣 | |TE(𝑡 ′)

)
,

(6)

where h𝑡𝑢 denotes the representation of node 𝑢 at the time stamp 𝑡 , q, k, v represents the query, key

and value vector, respectively, and we omit the bias term for brevity. For simplicity of notations,

the vectors in this paper are represented as row vectors. TE(𝑡 ) denotes the temporal encoding

techniques to obtain embeddings of time 𝑡 so that the time of link occurrence can be considered

inherently [105, 150]. Then, we can calculate the attention scores among nodes in the dynamic

neighborhood to obtain the structural masks,

m𝐼 = Softmax( q · k
𝑇

√
𝑑
),

m𝑉 = Softmax(−q · k
𝑇

√
𝑑
),

(7)

where 𝑑 denotes feature dimension, m𝐼 and m𝑉 represent the masks of invariant and variant

structural patterns. In this way, dynamic neighbors with higher attention scores in invariant

patterns will have lower attention scores in variant ones, which means the invariant and variant

patterns have a negative correlation. To capture invariant featural pattern, we adopt a learnable

featural mask m𝑓 = Softmax(w𝑓 ) to select features from the messages of dynamic neighbors. Then

the messages of the dynamic neighborhood can be summarized with respective masks,

z𝑡𝐼 (𝑢) = Agg𝐼 (m𝐼 , v ⊙ m𝑓 ),
z𝑡𝑉 (𝑢) = Agg𝑉 (m𝑉 , v),

(8)

where Agg(·) denotes aggregating and summarizing messages from the dynamic neighborhood.

To further disentangle the invariant and variant patterns, we design different aggregation func-

tions Agg𝐼 (·) and Agg𝑉 (·) to summarize specific messages from masked dynamic neighborhood

respectively. Then the pattern summarizations are added up as hidden embeddings to be fed into

subsequent layers,

h𝑡𝑢 ← z𝑡𝐼 (𝑢) + z
𝑡
𝑉 (𝑢). (9)

3.2.3 Overall Architecture. The overall architecture is a stacking of spatio-temporal graph attention

layers. Like classic graph message-passing networks, this enables each node to access high-order

dynamic neighborhood indirectly, where z𝑡
𝐼
(𝑢) and z𝑡

𝑉
(𝑢) at 𝑙-th layer can be a summarization of
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invariant and variant patterns in 𝑙-order dynamic neighborhood. In practice, the attention can be

easily extended to multi-head attention [124] to stable the training process and model multi-faceted

graph evolution [107].

3.3 Spatio-Temporal Intervention Mechanism
3.3.1 Direct Intervention. One way of intervening the distribution of the variant pattern as Eq. (4)

is directly generating and altering the variant patterns. However, this is infeasible in practice due

to the following reasons: First, since it has to intervene the dynamic neighborhood and features

node-wisely, the computational complexity is unbearable. Second, generating variant patterns

including time-varying structures and features is another intractable problem.

3.3.2 Approximate Intervention. To tackle the problems mentioned above, we propose to approx-

imate the patterns P𝑡 with summarized patterns z𝑡 found in Sec. 3.2. As z𝑡
𝐼
(𝑢) and z𝑡

𝑉
(𝑢) act as

summarizations of invariant and variant spatio-temporal patterns for node 𝑢 at time 𝑡 , we ap-

proximate the intervention process by sampling and replacing the variant pattern summarizations

instead of altering original structures and features with generated ones. To do spatio-temporal

intervention, we collect variant patterns of all nodes at all time, from which we sample one variant

pattern to replace the variant patterns of other nodes across time. For example, we can use the

variant pattern of node 𝑣 at time 𝑡2 to replace the variant pattern of node 𝑢 at time 𝑡1 as

z𝑡1
𝐼
(𝑢), z𝑡1

𝑉
(𝑢) ← z𝑡1

𝐼
(𝑢), z𝑡2

𝑉
(𝑣). (10)

As the invariant pattern summarization is kept the same, the label should not be changed. Thanks

to the disentangled spatio-temporal graph attention, we get variant patterns across neighborhoods

and time, which can act as natural intervention samples inside data so that the complexity of the

generation problem can also be avoided. By doing Eq. (10) multiple times, we can obtain multiple

intervened data distributions for the subsequent optimization.

3.4 Spatio-Temporal Environment Inference
It is challenging to obtain environment labels on dynamic graphs, since the environments on

dynamic graphs are complex that include spatio-temporal information and may also vary by

periods or communities. For these reasons, environment labels are not available on dynamic graphs

in practice. To tackle this problem, we introduce the spatio-temporal environment inference module

in this section.

Recall that in Sec. 3.2, we obtain the summarized invariant and variant spatio-temporal patterns

z𝑡
𝐼
and z𝑡

𝑉
, which can be further exploited to infer the environment labels 𝑘 (𝑢𝑡 ) for each node 𝑢 at

time 𝑡 . Since the invariant patterns capture the invariant relationships between predictive ego-graph

trajectories and labels, the variant patterns in turn capture variant correlations under different

distributions, which could be helpful for discriminating spatio-temporal environments. Inspired

by [79, 84], we utilize the variant patterns to infer the latent environments. Specifically, to infer the

node environment labels K ∈ K𝑁×𝑇 , we adopt an off-the-shelf clustering algorithm K-means in

this paper, while other more sophisticated clustering methods can be easily incorporated,

K = K-means( [z1𝑉 , z2𝑉 , . . . , z𝑇𝑉 ]), (11)

where𝑘 (𝑢𝑡 ) ∈ K denote the corresponding environment label for each node𝑢 at time 𝑡 ,K={0,1,. . . ,𝐾 }

denotes the set of 𝐾 environments, and 𝐾 is a hyperparameter that reflects the assumption of the

number of the environments. Using K, we can partition the nodes at different time on dynamic

graphs into multiple training environments. Note that the spatio-temporal environment inference

module is unsupervised without any ground-truth environment labels, which is more practical on

real-world dynamic graphs.
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3.5 Optimization with Invariance Loss
3.5.1 Sample-Level Invariance Loss. Based on the multiple intervened data distributions with

different variant patterns, we can next optimize the model to focus on invariant patterns to make

predictions. Here, we introduce invariance loss to instantiate Eq. (4). Let z𝐼 and z𝑉 be the summarized

invariant and variant patterns, we calculate the task loss by only using the invariant patterns

L = ℓ (𝑓 (z𝐼 ), y), (12)

where 𝑓 (·) is the predictor. The task loss let the model utilize the invariant patterns to make

predictions. Then we calculate the mixed loss as

L𝑚 = ℓ (𝑔(z𝑉 , z𝐼 ), y), (13)

where another predictor 𝑔(·) makes predictions using both invariant patterns z𝑉 and variant

patterns z𝐼 . The mixed loss measures the model’s prediction ability when variant patterns are also

exposed to the model. Then the invariance loss is calculated by

L𝑑𝑜 = Var𝑠𝑖 ∈S (L𝑚 |do(P𝑡𝑉 = 𝑠𝑖 )), (14)

where ‘do’ denotes the intervention mechanism as mentioned in Section 3.3. The invariance loss

measures the variance of the model’s prediction ability under multiple intervened distributions.

3.5.2 Environment-Level Invariance Loss. After obtaining the environment labels by the spatio-

temporal environment inference module in Sec. 3.4, we have the samples from different environ-

ments and the loss of the 𝑘-th environment is calculated by

L𝑘 = ℓ (𝑓 ({z𝑡𝐼 (𝑢) : 𝑘 (𝑢
𝑡 ) = 𝑘}, y), (15)

and the environment-level invariance loss can be calculated by

L𝑒𝑛𝑣 = Var({L𝑘 }𝐾
𝑘=1
). (16)

In this way, minimizing the variance term encourages the invariance of the model predictions

among different environments, which potentially reduces the effects of spurious correlations that

may be caused by the spatio-temporal environments under distribution shifts.

3.5.3 Overall Training Objective. The final training objective is

min

𝜃
L + 𝜆𝑑𝑜L𝑑𝑜 + 𝜆𝑒L𝑒𝑛𝑣, (17)

where the task loss L is minimized to exploit invariant patterns, while the sample-level invariance

loss L𝑑𝑜 and environment-level invariance loss L𝑒𝑛𝑣 help the model to discover invariant and

variant patterns, and 𝜆𝑑𝑜 and 𝜆𝑒 are hyperparameters to balance between two objectives. After

training, we only adopt invariant patterns to make predictions in the inference stage. The overall

algorithm is summarized in Algorithm 1.

3.6 Discussions
3.6.1 Complexity Analysis. We analyze the computational complexity of I-DIDA as follows.

Denote |𝑉 | and |𝐸 | as the total number of nodes and edges in the graph, respectively, and 𝑑

as the dimensionality of the hidden representation. The spatio-temporal aggregation has a time

complexity of 𝑂 ( |𝐸 |𝑑 + |𝑉 |𝑑2). The disentangled component adds a constant multiplier 2, which

does not affect the time complexity of aggregation. Denote |𝐸𝑝 | as the number of edges to predict

and |𝑆 | as the size of the intervention set. Denote𝐾 as the number of environments,𝑇 as the number

of iterations for the K-means algorithm. Our intervention mechanism has a time complexity of

𝑂 ( |𝐸𝑝 | |𝑆 |𝑑) and the environment inference module has a time complexity of𝑂 (𝐾 |𝑉 |𝑇𝑑) in training.
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Algorithm 1 Training pipeline for I-DIDA
Require: Training epochs 𝐿, number of intervention samples 𝑆 , number of environments 𝐾 ,

hyperparameters 𝜆𝑑𝑜 and 𝜆𝑒 .

1: for 𝑙 = 1, . . . , 𝐿 do
2: Obtain z𝑡

𝑉
, z𝑡
𝐼
for each node and time as described in Section 3.2

3: Calculate task loss and mixed loss as Eq. (12) and Eq. (13)

4: Sample 𝑆 variant patterns from collections of z𝑡
𝑉
, to construct intervention set S

5: for 𝑠 in S do
6: Replace the nodes’ variant pattern summarizations with 𝑠 as Section 3.3

7: Calculate mixed loss as Eq. (13)

8: end for
9: Calculate the sample-level invariance loss as Eq. (14)

10: Infer the environment labels as Eq. (11)

11: for 𝑘 = 1, . . . , 𝐾 do
12: Calculate the 𝑘-th environment loss as Eq. (15)

13: end for
14: Calculate the environment-level invariance loss as Eq. (16)

15: Update the model according to Eq. (17)

16: end for

Moreover, these modules do not put extra time complexity in inference, since they are only adopted

in the training state.

Therefore, the overall time complexity of I-DIDA is𝑂 ( |𝐸 |𝑑 + |𝑉 |𝑑2 + |𝐸𝑝 | |𝑆 |𝑑 +𝐾 |𝑉 |𝑇𝑑). Notice
that |𝑆 | is a hyper-parameter and is usually set as a small constant. In summary, I-DIDA has a

linear time complexity with respect to the number of nodes and edges, which is on par with the

existing dynamic GNNs.

3.6.2 Background of Assumption 1. It is widely adopted in out-of-distribution generalization

literature [1, 3, 18, 43, 95, 104, 146] about the assumption that the relationship between labels and

some parts of features is invariant across data distributions, and these subsets of features with such

properties are called invariant features. In this paper, we use invariant patterns P𝐼 to denote the

invariant structures and features.

From the causal perspective, we can formulate the data-generating process in dynamic graphs

with a structural causal model (SCM) [45, 100], P𝑉 → G ← P𝐼 → y and P𝑉 ← P𝐼 , where the
arrow between variables denotes casual relationship, and the subscript 𝑣 and superscript 𝑡 are

omitted for brevity. P𝑉 → G ← P𝐼 denotes that variant and invariant patterns construct the

ego-graph trajectories observed in the data, while P𝐼 → y denotes that invariant patterns determine

the ground truth label y, no matter how the variant patterns change inside data across different

distributions.

Sometimes, the correlations between variant patterns and labels may be built by some exogenous

factors like periods and communities. In some distributions, P𝑉 ← P𝐼 would open a backdoor

path [45] P𝑉 ← P𝐼 → y so that variant patterns P𝑉 and labels y are correlated statistically, and

this correlation is also called spurious correlation.

If the model highly relies on the relationship between variant patterns and labels, it will fail

under distribution shift, since such relationship varies across distributions. Hence, we propose to

help the model focus on invariant patterns to make predictions and thus handle distribution shift.
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3.6.3 Connections in Remark 1. To eliminate the spurious correlation between variant patterns and

labels, one way is to block the backdoor path by using do-calculus to intervene the variant patterns.

By applying do-calculus on one variable, all in-coming arrows(causal relationship) to it will be

removed [45] and the intervened distributions will be created. In our case, the operator do(P𝑉 )
will cut the causal relationship from invariant patterns to variant patterns, i.e., disabling P𝑉 ← P𝐼
and then blocking the backdoor path P𝑉 ← P𝐼 → y. Hence, the model can learn the direct causal

effects from invariant patterns to labels in the intervened distributions 𝑝 (y,G|do(P𝑉 )), and the risks
should be the same across these intervened distributions. Therefore we can minimize the variance of

empirical risks under different intervened distributions to help the model focus on the relationship

between invariant patterns and labels. On the other hand, if we have the optimal predictor 𝑓 ∗
𝜃1

and

pattern finder 𝜙∗
𝜃2

according to Eq.(3), then the variance term in Eq.(4) is minimized as the variant

patterns will not affect the predictions of 𝑓 ∗
𝜃1
◦ 𝜙∗

𝜃2
across different intervened distributions.

In this paper, we refer I-DIDA as our method Disentangled Intervention-based Dynamic Graph

Attention Networks with Invariance Promotion, and DIDA as a special case where 𝜆𝑒 = 0.

3.7 Application to Sequential Recommendation
In this section, we apply I-DIDA to the sequential recommendation task. Note that in the context

of sequential recommendation, the invariant patterns in the assumption 1 refer to the user interests,

including both the recent and long-term interests, which determine the next item bought by the

users. Models may exploit variant patterns, like popular items for specific communities or periods,

to make predictions, while neglecting the user interests, and thus have deteriorated performance

under distribution shifts. We first introduce the problem setting and then describe the dynamic

graph construction and algorithm pipeline for sequential recommendation.

3.7.1 Sequential Recommendation Dynamic Graph Construction. Suppose we have the user-item
interaction sequences D = {(𝑢, 𝑖, 𝑡)}, where 𝑢 ∈ U denotes the user, 𝑖 ∈ I denotes the item, and 𝑡

denotes the discrete timestamp which means the year of the interaction in the dataset. We construct

the dynamic graph G1:𝑇
as follows. Denote 𝑢 ∈ U to be the user node 𝑣𝑖 , 𝑖 ∈ 0, . . . , |U| − 1, and

𝑖 ∈ I to be the item node 𝑣 |U |+𝑖 , 𝑖 ∈ 0, . . . , |I | − 1. For each time 𝑡 , we construct the static graph G𝑡
by using the user-item pairs (𝑢, 𝑖, 𝑡) in the interaction sequence D. Then we stack the static graphs

G𝑡 for 𝑡 = 1, 2, . . . ,𝑇 to obtain the dynamic graph G1:𝑇
. For the datasets without node features,

we randomly initialize the user and item node features, which does not introduce any additional

information compared to the baselines.

3.7.2 Algorithm pipeline for Sequential Recommendation. For sequential recommendation tasks,

modeling the historical item sequence for each user holds great significance. The original I-DIDA
emphasizes discovering invariant patterns on the dynamic graphs of user-item interactions. It

implicitly considers the historical item sequence through multiple hops of user-item interactions

rather than explicitly modeling. In implementing I-DIDA for sequential recommendation tasks,

we enhance I-DIDA to explicitly model historical item sequence. We achieve this by using self-

attention to directly learn weights and aggregate information among items. For simplicity, we adopt

the self-attention from SASRec to explicitly model historical item sequence, while this module can

be extended to other similar models. To this end, our training for sequential recommendation tasks

can be divided into two stages, where in the first stage, we adopt I-DIDA to obtain the invariant

patterns over user-item interactions, and in the second stage, we adopt SASRec to model item

sequence to predict the next item for each user.

Next, we introduce the implementation details of each stage. In the first stage, we train the

I-DIDA model to obtain the invariant and variant patterns for each user and item at different
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times z𝑉 , z𝐼 ∈ R𝑇×|𝑉 |×𝑑 , where 𝑇 is the number of timestamps, |𝑉 | is the number of nodes, and

𝑑 is the dimensionality of the hidden representation. In the second stage, we utilize the self-

attention blocks in SASRec to model the historical item sequences and calculate the item embedding

z𝑠𝑎𝑠 ∈ R | I |×𝑑 . For each user𝑢, we have the item sequenceS𝑢 : (S𝑢
1
,S𝑢

2
, . . . ,S𝑢|S𝑢 | ) and corresponding

time sequence 𝑇𝑢 : (𝑇𝑢
1
,𝑇𝑢

2
, . . . ,𝑇𝑢|S𝑢 | ) representing the time when the user interacts with items.

Denote the next item to be predicted S𝑢𝑗 as 𝑖 , where 𝑗 = 1, 2, . . . , |S𝑢 |. We merge z𝑠𝑎𝑠 (𝑖) for item 𝑖

with the item’s corresponding invariant pattern z𝑡
𝐼
(𝑖), where 𝑡 = 𝑇𝑢𝑖 , i.e.,

z𝑚𝑒𝑟 (𝑖) = F𝑖𝑡𝑒𝑚 (z𝑠𝑎𝑠 (𝑖) | |z𝑡𝐼 (𝑖)), (18)

where F𝑖𝑡𝑒𝑚 is a linear layer, | | is a concatenation operation and z𝑚𝑒𝑟 (𝑖) is the merged item

embedding considering both user-item interactions and historical item sequence. We also obtain

one part of user embeddings via summarizing the historical item sequences, i.e.,

𝑧𝑢𝑗 = 𝑓 (z𝑠𝑎𝑠 (S𝑢1 ), z𝑠𝑎𝑠 (S𝑢2 ), . . . , z𝑠𝑎𝑠 (S𝑢𝑗−1)), (19)

where 𝑓 (·) is a self-attention mechanism. We merge z𝑢𝑗 with the user’s corresponding invariant

pattern z𝑡
𝐼
(𝑢), where 𝑡 = 𝑇𝑢𝑖 , i.e.,

z𝑚𝑒𝑟 (𝑢) = F𝑢𝑠𝑒𝑟 (z𝑢𝑗 | |z𝑡𝐼 (𝑢)), (20)

where F𝑢𝑠𝑒𝑟 is a linear layer and z𝑚𝑒𝑟 (𝑢) is the merged user embedding considering both user-item

interactions and historical item sequence. We then use the merged user embedding z𝑚𝑒𝑟 (𝑢) and
the merged item embedding z𝑚𝑒𝑟 (𝑖) to calculate the task loss, i.e.,

L = ℓ (𝑔(z𝑚𝑒𝑟 (𝑢), z𝑚𝑒𝑟 (𝑖)), y), (21)

where 𝑔 is the linear predictor to predict the interactions between users and items, and ℓ is a

cross-entropy loss function. The overall training pipeline for sequential recommendation tasks is

summarized in Algorithm 2.

3.7.3 Complexity Analysis. The time complexity of the first stage is 𝑂 ( |𝐸 |𝑑 + |𝑉 |𝑑2 + |𝐸𝑝 | |𝑆 |𝑑 +
𝐾 |𝑉 |𝑇𝑑), which is the same as the overall time complexity of I-DIDA. Here, |𝐸 | represents the
number of interactions in the user-item dynamic graph, |𝑉 | is the sum of user and item nodes, 𝑑

denotes the dimensionality of the hidden representation, |𝐸𝑝 | is the number of edges to predict, |𝑆 | is
the size of the intervention set, 𝐾 is the number of environments, and 𝑇 is the number of iterations

for the K-means algorithm. The time complexity of the second stage is𝑂 ( |U|𝑁𝐿2𝑑 + |U|𝐿𝑑2). The
former term, 𝑂 ( |U|𝑁𝐿2𝑑), is the time complexity of the self-attention mechanism, where |U| is
the number of users, 𝑁 is the number of layers of self-attention blocks, 𝐿 is the sequence length,

and 𝑑 is the dimensionality of the hidden representation. The latter term, 𝑂 ( |U|𝐿𝑑2), is the time

complexity of the feed-forward network. The overall time complexity of the training pipeline on

the sequential recommendation task is 𝑂 ( |𝐸 |𝑑 + |𝑉 |𝑑2 + |𝐸𝑝 | |𝑆 |𝑑 + 𝐾 |𝑉 |𝑇𝑑 + |U|𝑁𝐿2𝑑 + |U|𝐿𝑑2),
which is comparable to the baselines.

4 EXPERIMENTS ON DYNAMIC GRAPHS
In this section, we conduct extensive experiments to verify that our framework can handle spatio-

temporal distribution shifts by discovering and utilizing invariant patterns.

4.1 Baselines
We adopt several representative GNNs and Out-of-Distribution (OOD) generalization methods as

our baselines. The first group of these methods is static GNNs, including:
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Algorithm 2 Training pipeline for I-DIDAon sequential recommendation tasks

Require: Training epochs of I-DIDA 𝐿𝐷 , training epochs of SASRec 𝐿𝑆 , iteration number 𝐿𝐼 ,

number of intervention samples 𝑆 , number of environments 𝐾 , hyperparameters 𝜆𝑑𝑜 and 𝜆𝑒 .

1: for 𝑙 = 1, . . . , 𝐿𝐷 do
2: Obtain z𝑡

𝑉
, z𝑡
𝐼
for each user and item at different times from I-DIDA

3: Calculate sample-level invariance loss and environment-level invariance loss as in Algo-
rithm 1

4: Update the I-DIDA model

5: end for
6: Obtain z𝐼 ∈ R | I |×𝑑 for each user and item at different times from I-DIDA
7: for 𝑙 = 1, . . . , 𝐿𝑆 do
8: for 𝑖 = 1, . . . , 𝐿𝐼 do
9: Sample a mini-batch from the training dataset

10: Obtain z𝑠𝑎𝑠 ∈ R | I |×𝑑 for each item from SASRec

11: Merge z𝑠𝑎𝑠 (𝑖) in items sequence of user 𝑢 with z𝑡
𝐼
(𝑖) for each item 𝑖 = S𝑢𝑗 , 𝑗 = 1, 2, . . . , |S𝑢 |

in the sequence at time 𝑇𝑢𝑖 to obtain 𝑧𝑚𝑒𝑟 (𝑖)
12: Calculate user embedding z𝑢𝑗 = 𝑓 (z𝑠𝑎𝑠 (S𝑢1 ), z𝑠𝑎𝑠 (S𝑢2 ), . . . , z𝑠𝑎𝑠 (S𝑢𝑗−1)) for each user 𝑢

13: Merge z𝑢𝑗 with z𝑡
𝐼
(𝑢) for each user 𝑢 at time 𝑇𝑢𝑖 to obtain 𝑧𝑚𝑒𝑟 (𝑢)

14: Calculate task loss as Eq.21

15: Update the SASRec

16: end for
17: end for

• GAE [67] is a representative static graph neural network with a stack of graph convolutions

to capture the information of structures and attributes on graphs.

• VGAE [67] further introduces variational variables into GAE to obtain more robust and

generalized graph representations.

The second group of these methods includes the following dynamic GNNs:

• GCRN [108] is a representative dynamic GNN that first adopts a GCN[67] to obtain node

embeddings and then a GRU [30] to model the network evolution.

• EvolveGCN [98] adopts an LSTM [54] or GRU [30] to flexibly evolve the GCN [67] parameters

instead of directly learning the temporal node embeddings, which is applicable to frequent

change of the node set on dynamic graphs.

• DySAT [107] aggregates neighborhood information at each graph snapshot using structural

attention and models network dynamics with temporal self-attention so that the weights can

be adaptively assigned for the messages from different neighbors in the aggregation.

And the third group of these methods consists of OOD generalization methods:

• IRM [3] aims at learning an invariant predictor which minimizes the empirical risks for all

training domains to achieve out-of-distribution generalization.

• GroupDRO [106] puts more weight on training domains with larger errors when minimizing

empirical risk to minimize worst-group risks across training domains.

• VREx [71] reduces differences in risk across training domains to reduce themodel’s sensitivity

to distributional shifts.

These representative OOD generalization methods aim at improving the robustness and general-

ization ability of models against distribution shift, which requires explicit environment labels to

calculate the loss. For fair comparisons, we randomly split the samples into different domains, as the
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Table 2. Summarization of dataset statistics. Evolving features denote whether the node features vary through
time. Unseen nodes denote whether the test nodes are partially or fully unseen in the past.

Dataset COLLAB Yelp Synthetic OGBN-Arxiv Aminer

# Timestamps 16 24 16 20 17

# Nodes 23,035 13,095 23,035 168,195 43,141

# Links 151,790 65,375 151,790 3,127,274 851,527

Temporal Granularity Year Month Year Year Year

Feature Dimension 32 32 64 128 128

Evolving Features No No Yes No No

Unseen Nodes Partial Partial Partial Full Full

Classification Tasks Link Link Link Node Node

field information is unknown to all methods. Since they are general OOD generalization methods

and are not specifically designed for dynamic graphs, we adopt the best-performed DyGNN on the

training datasets as their backbones.

4.2 Real-world Link Prediction Datasets
4.2.1 Experimental Settings. We use two real-world dynamic graph datasets, including COLLAB

and Yelp. We adopt the challenging inductive future link prediction task, where the model exploits

past graphs to make link prediction in the next time step. Each dataset can be split into several partial

dynamic graphs based on its field information. For brevity, we use ‘w/ DS’ and ‘w/o DS’ to represent

test data with and without distribution shift respectively. To measure models’ performance under

spatio-temporal distribution shift, we choose one field as ‘w/ DS’ and the left others are further

split into training, validation and test data (‘w/o DS’) chronologically. Note that the ‘w/o DS’ is a

merged dynamic graph without field information and ‘w/ DS’ is unseen during training, which is

more practical and challenging in real-world scenarios. Here we briefly introduce the real-world

datasets as follows:

• COLLAB [119]
1
is an academic collaboration dataset with papers that were published during

1990-2006. Node and edge represent author and coauthorship respectively. Based on the field of

co-authored publication, each edge has the field information including "DataMining", "Database",

"Medical Informatics", "Theory" and "Visualization". The time granularity is year, including

16 time slices in total. We use "Data Mining" as ‘w/ DS’ and the left as ‘w/o DS’. We use

word2vec [93] to extract 32-dimensional features from paper abstracts and average to obtain

author features. We use 10,1,5 chronological graph slices for training, validation and testing

respectively. The dataset includes 23,035 nodes and 151,790 links in total.

• Yelp [107]
2
is a business review dataset, containing customer reviews on the business. Node and

edge represent customer/business and review behavior respectively. We consider interactions

in five categories of business including "Pizza", "American (New) Food", "Coffee & Tea ", "Sushi

Bars" and "Fast Food" from January 2019 to December 2020. The time granularity is month,

including 24 time slices in total. We use "Pizza" as ‘w/ DS’ and the left as ‘w/o DS’. We use

word2vec [93] to extract 32-dimensional features from reviews and averages to obtain user and

business features. We select users and items with interactions of more than 10. We use 15, 1, 8

1
https://www.aminer.cn/collaboration

2
https://www.yelp.com/dataset
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Table 3. Results (AUC%) of different methods on real-world link prediction datasets. The best results are in
bold and the second-best results are underlined. ‘w/o DS’ and ‘w/ DS’ denote test data with and without
distribution shift.

Model \ Dataset COLLAB Yelp

Test Data w/o DS w/ DS w/o DS w/ DS

GAE 77.15±0.50 74.04±0.75 70.67±1.11 64.45±5.02
VGAE 86.47±0.04 74.95±1.25 76.54±0.50 65.33±1.43
GCRN 82.78±0.54 69.72±0.45 68.59±1.05 54.68±7.59
EGCN 86.62±0.95 76.15±0.91 78.21±0.03 53.82±2.06
DySAT 88.77±0.23 76.59±0.20 78.87±0.57 66.09±1.42
IRM 87.96±0.90 75.42±0.87 66.49±10.78 56.02±16.08
VREx 88.31±0.32 76.24±0.77 79.04±0.16 66.41±1.87

GroupDRO 88.76±0.12 76.33±0.29 79.38±0.42 66.97±0.61

DIDA 91.97±0.05 81.87±0.40 78.22±0.40 75.92±0.90
I-DIDA 92.17±0.40 82.40±0.70 78.17±0.76 76.90±1.87

chronological graph slices for training, validation and test respectively. The dataset includes

13,095 nodes and 65,375 links in total.

4.2.2 Experimental Results. Based on the results on real-world link prediction datasets in Table 3,

we have the following observations:

• Baselines fail dramatically under distribution shift: 1) Although DyGNN baselines perform well

on test data without distribution shift, their performance drops greatly under distribution shift.

In particular, the performance of DySAT, which is the best-performed DyGNN in ‘w/o DS’,

drops by nearly 12%, 12% and 5% in ‘w/ DS’. In Yelp, GCRN and EGCN even underperform static

GNNs, GAE and VGAE. This phenomenon shows that the existing DyGNNs may exploit variant

patterns and thus fail to handle distribution shift. 2) Moreover, as generalization baselines are

not specially designed to consider spatio-temporal distribution shift in dynamic graphs, they

only have limited improvements in Yelp. In particular, they rely on ground-truth environment

labels to achieve OOD generalization, which are unavailable for real dynamic graphs. The

inferior performance indicates that they cannot generalize well without accurate environment

labels, which verifies that lacking environmental labels is also a key challenge for handling

distribution shifts of dynamic graphs.

• Our method can better handle distribution shift than the baselines, especially in stronger distri-

bution shift. I-DIDA improves significantly over all baselines in ‘w/ DS’ for all datasets. Note

that Yelp has stronger temporal distribution shift since COVID-19 happens in the midway,

strongly affecting consumers’ behavior in business, while I-DIDA outperforms the most com-

petitive baseline GroupDRO by 9% in ‘w/ DS’. In comparison to similar field information in

Yelp (all restaurants), COLLAB has stronger spatial distribution shift since the fields are more

different to each other, while I-DIDA outperforms the most competitive baseline DySAT by 5%

in ‘w/ DS’.

4.3 Real-world Node Classification Datasets
4.3.1 Experimental Settings. Weuse 2 real-world dynamic graph datasets, includingOGBN-Arxiv [56]

and Aminer [111, 120]. The two datasets are both citation networks, where nodes represent papers,
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Table 4. Results (ACC%) of different methods on real-world node classification datasets. The best results are
in bold and the second-best results are underlined.

Model \ Dataset OGBN-Arxiv Aminer

Split 2015-2016 2017-2018 2019-2020 2015 2016 2017

GRCN 46.77±2.03 45.89±3.41 46.61±3.29 47.96±1.12 51.33±0.62 42.93±0.71
EGCN 48.70±2.12 47.31±3.45 46.93±5.17 44.14±1.12 46.28±1.84 37.71±1.84
DySAT 48.83±1.07 47.24±1.24 46.87±1.37 48.41±0.81 49.76±0.96 42.39±0.62
IRM 49.57±1.02 48.28±1.51 46.76±3.52 48.44±0.13 50.18±0.73 42.40±0.27
VREx 48.21±2.44 46.09±4.13 46.60±5.02 48.70±0.73 49.24±0.27 42.59±0.37

GroupDRO 49.51±2.32 47.44±4.06 47.10±4.39 48.73±0.61 49.74±0.26 42.80±0.36

DIDA 51.46±1.25 49.98±2.04 50.91±2.88 50.34±0.81 51.43±0.27 44.69±0.06
I-DIDA 51.53±1.22 50.44±1.83 51.87±2.01 51.12±0.33 52.35±0.82 45.09±0.23

and edges from 𝑢 to 𝑣 with timestamp 𝑡 denote the paper 𝑢 published at year 𝑡 cites the paper 𝑣 .

The node classification task on dynamic graphs is challenging since the nodes come in the future,

e.g., new papers are published in the future, so that the model should exploit the spatio-temporal

information to classify the nodes. Following [144], we also use the inductive learning settings,

i.e., the test nodes are strictly unseen during training, which is more practical and challenging in

real-world dynamic graphs. Here, we briefly introduce the real-world datasets as follows.

• OGBN-Arxiv [56] is a citation network between all Computer Science (CS) arXiv papers

indexed byMAG [129]. Each paper has a 128-dimensional feature vector obtained by averaging

the embeddings of words in its title and abstract, where the embeddings of individual words

are computed by running the skip-gram model [94] over the MAG corpus. The task is to

predict the 40 subject areas of arXiv CS papers, e.g., cs.AI, cs.LG, and cs.OS. We train on

papers published between 2001 - 2011, validate on those published in 2012-2014, and test

on those published since 2015. With the volume of scientific publications doubling every

12 years over the past century, spatio-temporal distribution shifts naturally exist on these

dynamic graphs. The dataset has 168,195 nodes and 3,127,274 links in total.

• Aminer [111, 120] is a citation network extracted from DBLP, ACM, MAG, and other sources.

We use word2vec [93] to extract 128-dimensional features from paper abstracts and average

to obtain paper features. We select the top 20 venues, and the task is to predict the venues

of the papers. Similar to the OGBN-Arxiv dataset, we train on papers published between

2001 - 2011, validate on those published in 2012-2014, and test on those published since 2015.

As the test nodes are not seen during training, the model is tested to exploit the invariant

spatio-temporal patterns and make stable predictions under distribution shifts. The dataset

has 43,141 nodes and 851,527 links in total.

4.3.2 Experimental Results. Based on the results on real-world node classification datasets in Table

4, we have the following observations:

• Most baselines have significant performance drops as time goes. On OGBN-Arxiv, for example,

EGCN gradually drops from 48.70% to 46.93% from 2015 to 2020. This phenomenon may

result from the spatio-temporal distribution shifts on dynamic graphs as time goes, e.g.,

there has been a significant increase in the quantity of academic papers being published, and

topics as well as the citation patterns might be different from the past. Moreover, general

out-of-distribution baselines have performance improvement over the DyGNN baselines,
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while the improvements are far from satisfactory since they are not specially designed for

handling the complex spatio-temporal distribution shifts on dynamic graphs.

• Our method significantly alleviates the performance drop as time goes. On OGBN-Arxiv,

for example, I-DIDA has a performance improvement of 2%, 2%, 4% from 2015 to 2020 in

comparisons with the best baselines, which verifies that our method can capture the invariant

and variant spatio-temporal patterns inside data and exploit the invariant patterns to make

predictions under distribution shifts. Moreover, our method has less variance in most cases,

which may be due to that the sample-level and environment-level invariance loss can reduce

the effects of the spurious correlations to obtain better performance under distribution shifts.

4.4 Synthetic Datasets
4.4.1 Experimental Settings. To evaluate the model’s generalization ability under spatio-temporal

distribution shift, following [144], we introduce manually designed shifts in dataset COLLAB with

all fields merged. Denote original features and structures as X𝑡
1
∈ R𝑁×𝑑 and A𝑡 ∈ {0, 1}𝑁×𝑁 . For

each time 𝑡 , we uniformly sample 𝑝 (𝑡) |E𝑡+1 | positive links and (1 − 𝑝 (𝑡)) |E𝑡+1 | negative links

in A𝑡+1. Then they are factorized into variant features X𝑡
2
∈ R𝑁×𝑑 with a property of structural

preservation. Two portions of features are concatenated as X𝑡 = [X𝑡
1
,X𝑡

2
] as input node features

for training and inference. The sampling probability 𝑝 (𝑡) = clip(𝑝 + 𝜎𝑐𝑜𝑠 (𝑡), 0, 1) refers to the

intensity of shifts, where the variant features X𝑡
2
constructed with higher 𝑝 (𝑡) will have stronger

correlations with future link A𝑡+1. We set 𝑝𝑡𝑒𝑠𝑡 = 0.1, 𝜎𝑡𝑒𝑠𝑡 = 0, 𝜎𝑡𝑟𝑎𝑖𝑛 = 0.05 and vary 𝑝𝑡𝑟𝑎𝑖𝑛 in from

0.4 to 0.8 for evaluation. Since the correlations between X𝑡
2
and label A𝑡+1 vary through time and

neighborhood, patterns include X𝑡
2
are variant under distribution shifts. As static GNNs can not

support time-varying features, we omit their results.

Here, we detail the construction of variant features X𝑡
2
. We use the same features as X𝑡

1
and struc-

tures asA𝑡 in COLLAB, and introduce featuresX𝑡
2
with variable correlation with supervision signals.

X𝑡
2
are obtained by training the embeddings X2 ∈ R𝑁×𝑑 with reconstruction loss ℓ (X2X𝑇2 , Ã

𝑡+1),
where Ã𝑡+1 refers to the sampled links, and ℓ refers to cross-entropy loss function. The embeddings

X𝑡
2
are trained with Adam optimizer, learning rate 1e-1, weight decay 1e-5 and earlystop patience

50. In this way, we empirically find that the inner product predictor can achieve results of over 99%

AUC by using X𝑡
2
to predict the sampled links Ã𝑡+1, so that the generated features can have strong

correlations with the sampled links. By controlling the 𝑝 mentioned in Section 4.2, we can control

the correlations of X𝑡 and labels A𝑡+1 to vary in training and test stage.

4.4.2 Experimental Results. Based on the results on the synthetic dataset in Table. 5, we have the

following observations:

• Our method can better handle distribution shift than the baselines. Although the baselines

achieve high performance when training, their performance drops drastically in the test stage,

which shows that the existing DyGNNs fail to handle distribution shifts. In terms of test results,

I-DIDA consistently outperforms DyGNN baselines by a significantly large margin. In particular,

I-DIDA surpasses the best-performed baseline by nearly 13%/10%/5% in test results for different

shift levels. For the general OOD baselines, they reduce the variance in some cases while their

improvements are not significant. Instead, I-DIDA is specially designed for dynamic graphs

and can exploit the invariant spatio-temporal patterns to handle distribution shift.

• Our method can exploit invariant patterns to consistently alleviate harmful effects of variant

patterns under different distribution shift levels. As shift level increases, almost all baselines

increase in train results and decline in test results. This phenomenon shows that as the rela-

tionship between variant patterns and labels goes stronger, the existing DyGNNs become more

dependent on the variant patterns when training, causing their failure in the test stage. Instead,
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Table 5. Results (AUC%) of different methods on the synthetic dataset. The best results are in bold and the
second-best results are underlined. Larger 𝑝 denotes higher distribution shift level.

Model \𝑝 0.4 0.6 0.8

Split Train Test Train Test Train Test

GCRN 69.60±1.14 72.57±0.72 74.71±0.17 72.29±0.47 75.69±0.07 67.26±0.22
EGCN 78.82±1.40 69.00±0.53 79.47±1.68 62.70±1.14 81.07±4.10 60.13±0.89
DySAT 84.71±0.80 70.24±1.26 89.77±0.32 64.01±0.19 94.02±1.29 62.19±0.39
IRM 85.20±0.07 69.40±0.09 89.48±0.22 63.97±0.37 95.02±0.09 62.66±0.33
VREx 84.77±0.84 70.44±1.08 89.81±0.21 63.99±0.21 94.06±1.30 62.21±0.40

GroupDRO 84.78±0.85 70.30±1.23 89.90±0.11 64.05±0.21 94.08±1.33 62.13±0.35

DIDA 87.92±0.92 85.20±0.84 91.22±0.59 82.89±0.23 92.72±2.16 72.59±3.31
I-DIDA 88.50±0.46 85.27±0.06 92.27±1.02 83.00±1.08 94.23±0.23 74.87±1.59

COLLAB Yelp Synthetic
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Fig. 2. Ablation studies on the environment inference, intervention mechanism and disentangled attention,
where ’w/o I’ removes the spatio-temporal environment inference module, ’w/o I&I’ further removes the
spatio-temporal intervention mechanism and ’w/o I&I&D’ further removes disentangled attention. (Best
viewed in color)

the rise in train results and drop in test results of I-DIDA are significantly lower than baselines,

which demonstrates that I-DIDA can exploit invariant patterns and alleviate the harmful effects

of variant patterns under distribution shift.

4.5 Ablation Studies
In this section, we conduct ablation studies to verify the effectiveness of the proposed spatio-

temporal environment inference, spatio-temporal intervention mechanism and disentangled graph

attention in I-DIDA.
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Fig. 3. Average neighbor degrees in the graph slice as time goes.

4.5.1 Spatio-Temporal Environment Inference. We remove the environment inference module

mentioned in Sec. 3.4. From Figure 2, we can see that without the spatio-temporal environment

inference module, the model has a performance drop especially in the Yelp dataset, which verifies

that our environment-level invariance loss helps the model to promote the invariance properties of

the invariant patterns.

4.5.2 Spatio-Temporal Intervention Mechanism. We remove the intervention mechanismmentioned

in Sec. 3.3. From Figure 2, we can see that without spatio-temporal intervention, the model’s per-

formance drop significantly especially in the synthetic dataset, which verifies that our intervention

mechanism helps the model to focus on invariant patterns to make predictions.

4.5.3 Disentangled Dynamic Graph Attention. We further remove the disentangled attention men-

tioned in Sec 3.2. From Figure 2, we can see that disentangled attention is a critical component in

the model design, especially in Yelp dataset. Moreover, without disentangled module, the model is

unable to obtain variant and invariant patterns for the subsequent intervention.

4.6 Additional Experiments
4.6.1 Distribution Shifts in Real-world Datasets. We illustrate the distribution shifts in the real-

world datasets with two statistics, number of links and average neighbor degrees [6]. Figure 3 shows
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Fig. 4. Number of links in the graph slice as time goes.

that the average neighbor degrees are lower in test data compared to training data. Lower average

neighbor degree indicates that the nodes have less affinity to connect with high-degree neighbors.

Moreover, in COLLAB, the test data has less history than training data, i.e., the graph trajectory

is not always complete in training and test data distribution. This phenomenon of incomplete

history is common in real-world scenarios, e.g. not all the users join the social platforms at the

same time. Figure 4 shows that the number of links and its trend also differ in training and test

data. In COLLAB, #links of test data has a slower rising trend than training data. In Yelp, #links

of training and test data both have a drop during time 13-15 and rise again thereafter, due to the

outbreak of COVID-19, which strongly affected the consumers’ behavior. Similarly, Figure 3 and

Figure 4 show that the number of links and the average neighbor degrees have a drastic increase in

the test split on the Aminer and OGBN-Arxiv datasets, leading that the recent patterns on dynamic

graphs might be significantly different from the past.

4.6.2 Spatial or Temporal Intervention. We compare two other versions of I-DIDA , where I-DIDA-

S only uses spatial intervention and I-DIDA-T only uses temporal intervention. For I-DIDA-S, we

put the constraint that the variant patterns used to intervene must come from the same timestamp

in Eq.(9) so that the variant patterns across time are forbidden for intervention. Similarly, we put the

constraint that the variant patterns used to intervene must come from the same node in Eq.(9) for

I-DIDA-T. Figure 5a shows that I-DIDA improves significantly over the other two ablated versions,
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viewed in color)
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Fig. 6. Sensitivity of hyperparameter 𝜆𝑑𝑜 on different datasets. The area shows the average AUC and standard
deviations in the test stage. The dashed line represents the average AUC of the best-performed baseline.

which verifies that it is important to take into consideration both the spatial and temporal aspects

of distribution shifts.

4.6.3 Efficiency of Intervention. For I-DIDA and I-DIDA without intervention mechanism, we

compare their training time for each epoch on COLLAB dataset. As shown in Figure 5b, the

intervention mechanism adds few costs in training time (lower than 5%). Moreover, as I-DIDA
does not use the intervention mechanism in the test stage, it does not add extra computational

costs in the inference time.

4.6.4 Hyperparameter Sensitivity. We analyze the sensitivity of hyperparameter 𝜆𝑑𝑜 in I-DIDA
for each dataset. From Figure 6, we can see that as 𝜆𝑑𝑜 is too small or too large, the model’s

performance drops in most datasets. It shows that 𝜆𝑑𝑜 acts as a balance between how I-DIDA
exploits the patterns and satisfies the invariance constraint. From Figure 8 and Figure 7, the model
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Fig. 7. Sensitivity of hyperparameter 𝜆𝑒 on the OGBN-Arxiv dataset. The area shows the average accuracy
and standard deviations in the test stage, which ranges from 2015 to 2020. The dashed line represents the
average accuracy of the best-performed baseline.
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Fig. 8. Sensitivity of hyperparameter 𝜆𝑒 on the Aminer dataset. The area shows the average accuracy and
standard deviations in the test stage, which ranges from 2015 to 2017. The dashed line represents the average
accuracy of the best-performed baseline.
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Fig. 9. Sensitivity of hyperparameter 𝐾 on different datasets. The area shows the average AUC and standard
deviations in the test stage. The dashed line represents the average AUC of the best-performed baseline.

significantly outperforms the best-performed baseline with a large range of hyperparameters 𝜆𝑒 .

It shows that the environment-level invariance loss promotes the invariance properties of the

invariant patterns, and similarly, the hyperparameter 𝜆𝑒 controls the balance between the empirical
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risk minimization and the invariance constraint. From Figure 9, the model outperforms the best-

performed baseline with number of environments 𝐾 from 2 to 6, which shows that the model is

robust to the number of environments.

4.7 Implementation Details
4.7.1 Hyperparameters. For all methods, we adopt the Adam optimizer [66] with a learning rate

0.01, weight decay 5e-7 and set the patience of early stopping on the validation set as 50. The

hidden dimension is set to 16 for link prediction tasks and 32 for node classification tasks. The

number of layers is set to 2. Other hyper-parameters are selected using the validation datasets. For

DIDA, we set the number of intervention samples as 1000 for link prediction tasks, and 100 for

node classification tasks, and set 𝜆𝑑𝑜 as 1e-2,1e-2,1e-1,1e-4,1e-4 for COLLAB, Yelp, Synthetic, Arxiv

and Aminer dataset respectively. For I-DIDA, we adopt cosine distance for all datasets, coefficient

𝜆𝑒 as 1e-2,1e-2,1e-1,1e-4,1 for COLLAB, Yelp, Synthetic, Arxiv and Aminer dataset respectively, and

the environment number 𝐾 as 4 for all datasets.

4.7.2 Evaluation Details. For link prediction tasks, we randomly sample negative samples from

nodes that do not have links, and the negative samples for validation and testing set are kept the

same for all comparing methods. The number of negative samples is the same as the positive ones.

We use Area under the ROC Curve (AUC) as the evaluation metric. We use the inner product of the

two learned node representations to predict links and use cross-entropy as the loss function ℓ . We

randomly run the experiments three times, and report the average results and standard deviations.

For node classification tasks, we adopt cross-entropy as the loss function ℓ and use Accuracy (ACC)

as the evaluation metric.

4.7.3 Model Details. Before stacking of disentangled spatio-temporal graph attention Layers, we

use a fully-connected layer FC(·) to transform the features into hidden embeddings.

FC(x) = Wx + b. (22)

We implement the aggregation function for the invariant and variant patterns as

z̃𝑡𝐼 (𝑢) =
∑︁
𝑖

m𝐼 ,𝑖 (v𝑖 ⊙ m𝑓 ),

z𝑡𝐼 (𝑢) = FFN(z̃𝑡𝐼 (𝑢) + h
𝑡
𝑢),

(23)

z̃𝑡𝑉 (𝑢) =
∑︁
𝑖

m𝑉 ,𝑖v𝑖 ,

z𝑡𝑉 (𝑢) = FFN(z̃𝑡𝑉 (𝑢)),
(24)

where the FFN includes a layer normalization [4], multi-layer perceptron and skip connection,

FFN(x) = 𝛼 ·MLP(LayerNorm(x)) + (1 − 𝛼) · x, (25)

where 𝛼 is a learnable parameter. For link prediction tasks, we implement the predictor 𝑓 (·) in
Eq.(10) as inner product of hidden embeddings, i.e.,

𝑓 (z𝑡𝐼 (𝑢), z
𝑡
𝐼 (𝑣)) = z𝑡𝐼 (𝑢) · (z

𝑡
𝐼 (𝑣))

𝑇 , (26)

which conforms to classic link prediction settings. To implement the predictor 𝑔(·) in Eq.(11), we

adopt the biased training technique following [14], i.e.,

𝑔(z𝑡𝑉 (𝑢), z
𝑡
𝐼 (𝑢), z

𝑡
𝑉 (𝑣), z

𝑡
𝐼 (𝑣))

=𝑓 (z𝑡𝐼 (𝑢), z
𝑡
𝐼 (𝑣)) · 𝜎 (𝑓 (z

𝑡
𝑉 (𝑢), z

𝑡
𝑉 (𝑣))),

(27)
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For node classification tasks, we implement the predictor 𝑓 (·) in Eq.(10) as a linear classifer, i.e.,

𝑓 (z𝑡𝐼 (𝑢)) = Wz𝑡𝐼 (𝑢) + b. (28)

Following [146], we use an additional shortcut loss to train the linear classifier of the variant

patterns for the node 𝑢, i.e.,
L𝑠 = ℓ (𝑓 (z𝑡𝑉 (𝑢)), y𝑢) (29)

Note that this loss is just used for training the classifier, and does not update other neural networks,

e.g., the disentangled dynamic graph attention. Similarly, we implement the predictor 𝑔(·) in Eq.(11)

as

𝑔(z𝑡𝑉 (𝑢), z
𝑡
𝐼 (𝑢)) = 𝑓 (z

𝑡
𝐼 (𝑢)) · 𝜎 (𝑓 (z

𝑡
𝑉 (𝑢)) . (30)

4.7.4 Configurations. We implement our method with PyTorch, and conduct the experiments on

all datasets with:

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz

• GPU: NVIDIA GeForce RTX 3090 with 24 GB of memory

• Software: Python 3.8.13, Cuda 11.3, PyTorch [99] 1.11.0, PyTorch Geometric [42] 2.0.3.

5 EXPERIMENTS ON SEQUENTIAL RECOMMENDATION
In this section, we conduct extensive experiments for sequential recommendation tasks to verify

that our framework can handle spatio-temporal distribution shifts in sequential recommendation.

5.1 Baselines
We compare our approach with following sequential recommendation baselines following the

literature [40, 114]:

• POP is a straightforward approach that ranks items based on their popularity.

• BPR-MF [103] leverages implicit feedback to learn personalized item rankings, utilizing matrix

factorization as a foundational method for recommendation.

• NCF [51] employs a neural network architecture in place of the traditional inner product to

model interactions between users and items.

• FPMC [12] integrates matrix factorization with Markov chains to effectively capture and model

user preferences.

• GRU4Rec [53] utilizes Gated Recurrent Units to model the sequential information inherent in

user behaviors.

• LightGCN [50] is a graph-based model that simplifies the message passing process in GCNs.

• TransRec [49] is a model that leverages latent transition space to embed items.

• Caser [118] incorporates convolution operations to effectively model high-order Markov chains.

• SASRec [64] maximizes the utilization of self-attention mechanism and stands out as one of

the early adopters of Transformers for sequential recommendation tasks.

• Bert4Rec [114] applies the Cloze objective to sequential recommendation, where it predicts

the masked item by leveraging both the left and right context.

• DSSRec [91] integrates disentangled representation learning and self-supervised learning to

effectively balance the weights of multiple interests.

• ComiRec [17] incorporates attentionmechanism and user interests to enhance recommendation

performance.

• DT4SR [39] utilizes distributions to encode items and sequences and introduces two transform-

ers for modeling the mean and covariance embeddings.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: October 2024.



• ICLRec [28] utilizes contrastive learning techniques to effectively capture and model distinct

purchasing interests.

• STOSA [40] employs a stochastic Gaussian distribution to effectively capture the similarity

between various items by treating their embedding.

• DROS [154] is a competitive and generic learning framework that enhance the sequential

recommendation performance in the dynamic environment by leveraging a distributional

robust optimization strategy. Note that DROS is a model-agnostic method that can be applied

to general sequential recommendation models. We choose SASRec-DROS as a baseline due to

its competitive performance.

5.2 Datasets
We conduct experiments on the following publicly available datasets:

• Amazon3
: A dataset is a widely used dataset for sequential recommendation. It contains user-

item interactions from the Amazon website. In our experiments, we use the ‘Beauty’, ‘Home

and Kitchen’, ‘Tools and Home Improvement’, ‘Toys and Games’ and ‘Office’ subsets of the

Amazon dataset.

• MovieLens4: This dataset contains multiple user ratings for multiple movies. We useMovieLens-

1m (ML-1m) and MovieLens-20m (ML-20m) datasets in our experiments.

In the experiments, we divide the sequence of each user into training, validation, and testing

sets. The last item in the sequence is utilized for testing, the second-to-last item is for validation,

and all the remaining items are for training. We adopt the same evaluation design as in the original

papers of the competitive baselines. For the experimental data of SASRec and Bert4Rec, we follow

popularity negative sampling, that for each ground-truth item in the testing set, we randomly

sample 100 negative items that the user has not interacted with. The popularity of the items is used

as the sampling probability. On the experimental data of STOSA, we adopt a non-sampling strategy

that all items that the user has not interacted with are considered as negative samples. The details

of datasets statistics used for popularity negative sampling are shown in Table 6 and statistics used

for non-sampling strategy are shown in Table 7. Note that statistics of Beauty dataset in Table 6

differ from those in Table 7 is because the latter employs 5-core settings.

Table 6. Summarization of dataset statistics for sequential recommendation with popularity negative sam-
pling.

Dataset Beauty ML-1M ML-20M

# user 40,226 6,040 138,493

# items 54,542 3,416 26,744

# interactions 353,962 999,611 20,000,263

density 0.02% 4.84% 0.54%

average interactions per user 8.7993 165.4985 144.4135

5.3 Results
The performance of different methods is presented in Table 8 and Table 9. Based on the experiment

results, we have the following observations. Sequential models like GRU4Rec and Caser outperform

3
http://jmcauley.ucsd.edu/data/amazon/

4
https://grouplens.org/datasets/movielens/
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Table 7. Summarization of dataset statistics for sequential recommendation with non-sampling strategy.

Dataset Home Beauty Toys Tools Office

# user 66,519 22,363 19,412 16,638 4,905

# items 28,238 12,102 11,925 10,218 2,421

# interactions 551,582 198,502 167,597 134,476 53,258

density 0.03% 0.07% 0.07% 0.08% 0.45%

average interactions per user 8.2936 8.8764 8.6337 8.0825 10.8579

non-sequential models such as BPR-MF and LightGCN, indicating that non-sequential models

which solely rely on user behavior information and neglect the temporal aspect lead to suboptimal

recommendation performance. Among the non-sequential models, LightGCN shows the most

promising results, demonstrating the effectiveness of incorporating graph data to capture user

interaction behavior. On the other hand, Transformer-based approaches such as SASRec and

Bert4Rec not only leverage temporal information but also capture diverse user intents, resulting in

superior performance. SASRec-DROS brings a significant improvement over SASRec, demonstrating

that distribution shift is a critical issue in sequential recommendation tasks. Ourmethod consistently

shows improvements and outperforms most other baselines. The results demonstrate that I-DIDA
is effective in capturing invariant patterns between different environments and can effectively

handle the spatio-temporal distribution shifts in sequential recommendation tasks.

Table 8. Overall performance comparisons on sequential recommendation datasets with popularity negative
sampling. The best and second-best results are bold and underlined.

Dataset Metric POP BPR-MF NCF FPMC GRU4Rec Caser SASRec Bert4Rec DROS IDIDA

Beauty

HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1625 0.1934 0.2343 0.2076 0.2446
NDCG@5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1050 0.1436 0.1711 0.1481 0.1770
AUC 0.5201 0.5434 0.5467 0.5534 0.5867 0.6041 0.6634 0.6679 0.6461 0.6680

ML-1m

HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5353 0.5435 0.5902 0.5864 0.6051
NDCG@5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3832 0.3980 0.4515 0.4315 0.4615
AUC 0.5251 0.7411 0.7349 0.7556 0.8311 0.8469 0.8725 0.8805 0.8810 0.8827

ML-20m

HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.3804 0.5727 0.5439 0.5788 0.5820
NDCG@5 0.0511 0.1332 0.0771 0.2239 0.3090 0.2538 0.4208 0.4018 0.4220 0.4276
AUC 0.5329 0.7213 0.7009 0.7211 0.7780 0.8393 0.8884 0.8863 0.9005 0.8959

5.4 Ablation studies
In this section, we conduct ablation studies to investigate the effectiveness of the environment

inference, intervention mechanism and disentangled attention in I-DIDA for sequential recom-

mendation tasks.

5.4.1 Spatio-Temporal Environment Inference. We remove the spatio-temporal environment in-

ference module mentioned in Sec. 3.4. The results are shown in Figure 10. We can see that the

spatio-temporal environment inference module is crucial for capturing the spatio-temporal distribu-

tion shifts. The model without the spatio-temporal environment inference module performs worse

than the full model, which demonstrates that our environment-level invariance loss is effective in

capturing the spatio-temporal distribution shifts in sequential recommendation tasks.
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Table 9. Overall performance comparisons on sequential recommendation datasets with non-sampling
strategy. The best and second-best results are bold and underlined. where the ‘OOM’ means the out of
memory error.

Dataset Metric LightGCN TransRec Caser SASRec Bert4Rec DSSRec ComiRec DT4SR ICLRec STOSA DROS IDIDA

Home

HR@5 0.0095 0.0063 OOM 0.0127 0.0105 0.0123 0.0092 0.0129 0.0153 0.0133 0.0137 0.0171
NDCG@5 0.0060 0.0040 OOM 0.0087 0.0067 0.0085 0.0058 0.0082 0.0101 0.0093 0.0097 0.0124
MRR 0.0071 0.0052 OOM 0.0094 0.0092 0.0086 0.0079 0.0093 0.0102 0.0100 0.0101 0.0128

Beauty

HR@5 0.0300 0.0321 0.0309 0.0416 0.0396 0.0436 0.0351 0.0449 0.0500 0.0504 0.471 0.0549
NDCG@5 0.0174 0.0204 0.0214 0.0274 0.0257 0.0308 0.0219 0.0296 0.0326 0.0351 0.0332 0.0384
MRR 0.0203 0.0236 0.0231 0.0291 0.0294 0.0314 0.0265 0.0323 0.0322 0.0360 0.0345 0.0393

Tools

HR@5 0.0231 0.0210 0.0129 0.0284 0.0189 0.0283 0.0283 0.0289 0.0326 0.0312 0.0312 0.0347
NDCG@5 0.0152 0.0134 0.0091 0.0194 0.0123 0.0202 0.0204 0.0196 0.0218 0.0217 0.0208 0.0244
MRR 0.0170 0.0152 0.0106 0.0207 0.0160 0.0211 0.0212 0.0206 0.0230 0.0226 0.0212 0.0250

Toys

HR@5 0.0266 0.0222 0.0240 0.0551 0.0300 0.0565 0.0366 0.0550 0.0598 0.0577 0.0567 0.0619
NDCG@5 0.0173 0.0143 0.0210 0.0377 0.0206 0.0387 0.0233 0.0360 0.0414 0.0412 0.0400 0.0443
MRR 0.0200 0.0166 0.0221 0.0385 0.0244 0.0392 0.0272 0.0387 0.0415 0.0415 0.0400 0.0444

Office

HR@5 0.0226 0.0343 0.0302 0.0656 0.0485 0.0599 0.0438 0.0630 0.0653 0.0677 0.0669 0.0695
NDCG@5 0.0157 0.0219 0.0186 0.0428 0.0309 0.0395 0.0304 0.0421 0.0452 0.0461 0.0444 0.0481
MRR 0.0181 0.0263 0.0268 0.0457 0.0408 0.0407 0.0376 0.0475 0.0495 0.0502 0.0475 0.0512
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Fig. 10. Ablation studies on the environment inference, intervention mechanism and disentangled attention,
where ’w/o I’ removes the spatio-temporal environment inference module, ’w/o I&I’ further removes the
spatio-temporal intervention mechanism and ’w/o I&I&D’ further removes disentangled attention. (Best
viewed in color)

5.4.2 Spatio-Temporal Intervention Mechanism. We remove the spatio-temporal intervention mech-

anism mentioned in Sec. 3.3. The results are shown in Figure 10. We can see that the module is a
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crucial component in I-DIDA for utilizing the invariant patterns and variant patterns. The model

without the spatio-temporal intervention mechanism performs worse than the full model,which

demonstrates that our spatio-temporal intervention mechanism help the model to focus on invariant

patterns to make predictions in sequential recommendation tasks.

5.4.3 Disentangled Dynamic Graph Attention. we remove the disentangled dynamic graph attention

mentioned in Sec 3.2. The results are shown in Figure 10. We can see that the model without

disentangled dynamic graph attention performs worse than the full model, which demonstrates

that our disentangled dynamic graph attention module is a crucial component in I-DIDA for

obtaining variant patterns and invariant patterns for the subsequent prediction in sequential

recommendation tasks.

5.5 Implementation details
5.5.1 Hyperparameters. In I-DIDA for sequential recommendation, we adopt the Adam opti-

mizer [66] with a learning rate 0.01, weight decay 5e-7 and set the patience of early stopping

on the validation set as 100. The hidden dimension is set to 32. The number of layers is set to 2.

Other hyperparameters are selected based on the validation set. We set the number of intervention

samples as 100, set the environment number 𝐾 as 5, set 𝜆𝑑𝑜 as 1e-4,1e-4,1e-3,1e-3,1e-3,1e-3,1e-3,1e-3

for Home, Beauty(5-core), Tools, Toys, Office, Beauty, ML-1m and ML-20m dataset respectively

and set 𝜆𝑒 as 1e-2,1e-2,1e-2,1e-3,1e-2,1e-2, 1e-2,1e-2 for Home, Beauty(5-core), Tools, Toys, Office,

Beauty, ML-1m and ML-20m dataset respectively.

5.5.2 Evaluation Details. In our experiments, we adopt Hit Ratio(HR@K), Normalized Discounted

Cumulative Gain(NDCG@K), Mean Reciprocal Rank(MRR) and Area Under the ROC Curve(AUC) as

the evaluation metrics to evaluate the performance of all methods. HR@K measures the proportion

of users for whom the ground truth item is in the top-K recommended items. NDCG@K and MRR

measure the ranking quality of the recommended items. We set K as 5 in our experiments.

5.5.3 Configurations. We implement our method with PyTorch and conduct the experiments on

all datasets with same configurations in Section 4.

6 RELATEDWORK
In this section, we review the related works of dynamic graph neural networks, out-of-distribution

generalization, disentangled representation learning, and sequential recommendation.

6.1 Dynamic Graph Neural Networks
To tackle the complex structural and temporal information in dynamic graphs, considerable research

attention has been devoted to dynamic graph neural networks (DyGNNs) [112, 172, 177].

A classic of DyGNNs first adopt a GNN to aggregate structural information for the graph at each

time, followed by a sequence model like RNN [47, 108, 115, 151] or temporal self-attention [107]

to process temporal information. GCRN [108] models the structural information for each graph

snapshot at different timestamps with graph convolution networks [68] and adopt GRU [30] to

model the graph evolution along the temporal dimension. DyGGNN [116] adopts gated graph

neural networks to learn the graph topology at each time step and LSTM [54] to propagate the

temporal information among the time steps. Variational inference is further introduced to model

the node dynamics in the latent space [47]. DySAT [107] aggregates neighborhood information

at each snapshot similar to graph attention networks [125] and aggregates temporal information

with temporal self-attention. By introducing the attention mechanism, the model can draw context

from all past graphs to adaptively assign weights for messages from different time and neighbors.
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Some works [5, 115, 151] learn the embeddings of dynamic graphs in hyperbolic space to exploit

the hyperbolic geometry’s advantages of the exponential capacity and hierarchical awareness.

Another classic of DyGNNs first introduce time-encoding techniques to represent each temporal

link as a function of time, followed by a spatial module like GNN or memory module [32, 105,

138, 150] to process structural information. For example, TGAT [150] proposes a functional time

encoding technique based on the classical Bochner’s theorem from harmonic analysis, which

enables the learned node embeddings to be inherently represented as a function of time. To obtain

more fine-grained continuous node embeddings in dynamic graphs, some work further leverages

neural interaction processes [19] and ordinary differential equation [61]. EvolveGCN [98] models

the network evolution from a different perspective, which learns to evolve the parameters of graph

convolutional networks instead of the node embeddings by RNNs. In this way, the model does not

require the knowledge of a node in the full time span, and is applicable to the frequent change of

the node set.

DyGNNs have been widely applied in real-world applications, including dynamic anomaly detec-

tion [16], event forecasting [33], dynamic recommendation [158], social character prediction [139],

user modeling [72], temporal knowledge graph completion [142], entity linking [143], health

care [166], etc. For example, DGEL [117] proposes a dynamic graph evolution learning framework

for generating satisfying recommendations in dynamic environments, including three efficient

real-time update learning methods for nodes from the perspectives of inherent interaction potential,

time-decay neighbor augmentation and symbiotic local structure learning. DynShare [174] proposes

a dynamic share recommendation model that is able to recommend a friend who would like to share

a particular item at a certain timestamp for social-oriented e-commerce platforms. LLM4DyG [168]

proposes to handle spatial-temporal problems on dynamic graphs from perspective of leveraging

both advantages of large language models and graphs [165]. PTGCN [60] models the patterns

between user-item interactions in sequential recommendation by defining a position-enhanced and

time-aware graph convolution operation, demonstrating great potential for online session-based

recommendation scenarios.

In this paper, we consider DyGNNs under spatio-temporal distribution shift, which remains

unexplored in dynamic graph neural networks literature.

6.2 Out-of-Distribution Generalization
Most existing machine learning methods assume that the testing and training data are independent

and identically distributed, which is not guaranteed to hold in many real-world scenarios [109].

In particular, there might be uncontrollable distribution shifts between training and testing data

distribution, which may lead to a sharp drop in model performance.

To solve this problem, Out-of-Distribution (OOD) generalization problem has recently become

a central research topic in various areas [109, 128, 156]. As a representative work tackling OOD

generalization problems, IRM [3] aims at learning an invariant predictor which minimizes the

empirical risks for all training domains, so that the classifier and learned representations match

for all environments and achieve out-of-distribution generalization. GroupDRO [106] minimizes

worst-group risks across training domains by putting more weight on training domains with

larger errors when minimizing empirical risk. VREx [71] reduces differences in risk across training

domains to reduce the model’s sensitivity to distribution shifts.

Recently, several works attempt to handle distribution shift on graphs [15, 20, 29, 38, 73, 76, 77, 79,

80, 82, 101, 152, 157, 167, 173], where the distribution shift can exist on graph topologies, e.g., graph

sizes and other structural properties. For example, some work [11] assumes independence between

cause and mechanism, and constructs a structural causal model to learn the graph representations

that can extrapolate among different size distributions for graph classification tasks. Some work [48]
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interpolates the node features and graph structure in embedding space as data augmentation to

improve the model’s OOD generalization abilities. EERM [144] proposes to utilize multiple context

explorers that are adversarially trained to maximize the variance of risks from multiple virtual

environments, so that the model can extrapolate from a single observed environment for node-level

prediction. DIR [146] attempts to capture the causal rationales that are invariant under structural dis-

tribution shift and filter out the unstable spurious patterns. DR-GST [83] finds that high-confidence

unlabeled nodes may introduce the distribution shift issue between the original labeled dataset and

the augmented dataset in self-training, and proposes a framework to recover the distribution of the

original labeled dataset. SR-GNN [176] adapts GNN models to tackle the distributional differences

between biased training data and the graph’s true inference distribution. GDN [44] discovers the

structural distribution shifts in graph anomaly detection, that is, the heterophily and homophily

can change across training and testing data. They solve the problem by teasing out the anomaly

features, on which they constrain to mitigate the effect of heterophilous neighbors and make them

invariant. GOOD-D [86] studies the problem of unsupervised graph out-of-distribution detection

and creates a comprehensive benchmark to make comparisons of several state-of-the-art methods.

Some works focus on the distribution shift problem in general recommendation. DESMIL [85], a

multi-interest learning framework, can eliminate spurious interests and adapt to distribution shifts.

AST [148] links unbiased recommendation with distribution shift and presents a novel adversarial

self-training framework for unbiased recommendation. CausPref [52], a causal recommendation

model, can handle the distribution shift problem by learning the causal relationships between users

and items.

Another classic of OOD methods most related to our works handle distribution shifts on time-

series data [81, 88, 126]. For example, some work [65] observes that statistical properties such

as mean and variance often change over time in time series, and propose a reversible instance

normalization method to remove and restore the statistical information for tackling the distribution

shifts. AdaRNN [37] formulates the temporal covariate shift problem for time series forecasting

and proposes to characterize the distribution information and reduce the distribution mismatch

during the training of RNN-based prediction models. DROS [154] proposes a distributionally robust

optimization mechanism with a distribution adaption paradigm to capture the dynamics of data

distribution and explore the possible distribution shifts for sequential recommendation. Wild-

Time [155] creates a benchmark of datasets that reflect the temporal distribution shifts arising

in a variety of real-world time-series applications like patient prognosis, showing that current

time-series and out-of-distribution methods still have limitations in tackling temporal distribution

shifts. WOODS [43] is another benchmark for out-of-distribution generalization methods in time

series tasks, including videos, brain recordings, smart device sensory signals, etc.
Current works consider either only structural distribution shift for static graphs or only temporal

distribution shift for time-series data. However, spatio-temporal distribution shifts in dynamic

graphs are more complex yet remain unexplored. To the best of our knowledge, this paper is the

first study of spatio-temporal distribution shifts in dynamic graphs.

6.3 Disentangled Representation Learning
Disentangled representation learning aims to characterize the multiple latent explanatory factors

behind the observed data, where the factors are represented by different vectors [7]. Besides its

applications in computer vision [23–25, 27, 34, 55, 92, 122, 136] and recommendation [21, 74, 90, 91,

132–135, 164], several disentangled GNNs have proposed to generalize disentangled representation

learning in graph data recently [170, 171]. DisenGCN [89] learns disentangled node representations

by proposing a neighborhood routing mechanism in the graph convolution networks to identify the

factors that may cause the links from the nodes to their neighbors. IPGDN [87] further encourages
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the graph latent factors to be as independent as possible by minimizing the dependence among

representations with a kernel-based measure. FactorGCN [153] decomposes the input graph into

several interpretable factor graphs, and each of the factor graphs is fed into a different GCN so that

different aspects of the graph can be modeled into factorized graph representations. DGCL [75] and

IDGCL [78] aim to learn disentangled graph-level representations with self-supervision to reduce

the potential negative effects of the bias brought by supervised signals. However, most of these

methods are designed for static graphs and may not disentangle the factors with the consideration

of the structural and temporal information on graphs. GRACES [101] designs a self-supervised

disentangled graph encoder to characterize the invariant factors hidden in diverse graph structures,

and thus facilitates the subsequent graph neural architecture search. Some other works factorize

deep generative models based on node, edge, static, dynamic factors [163] or spatial, temporal,

graph factors [36] to achieve interpretable dynamic graph generation. DisenCTR [141] proposes a

disentangled graph representation module to extract diverse user interests and exploit the fluidity

of user interests and model the temporal effect of historical behaviors using a mixture of Hawkes

process. In this paper, we borrow the idea of disentangled representation learning, and disentangle

the spatio-temporal patterns on dynamic graphs into invariant and variant parts for the subsequent

invariant learning to enhance the model’s generalization ability under distribution shifts.

6.4 Sequential Recommendation
Different from traditional recommendation systems [2, 26, 137, 140], sequential recommendation

further leverages sequential information, aiming to predict the next item that a user will interact

with based on the user’s historical interactions.

With the development of deep learning, many deep learning-based methods have been proposed

for sequential recommendation. GRU4Rec [53] is one of the early works that uses RNN to model

the user-item interactions in the session-based recommendation. Besides, convolutional neural

networks have also been widely used in sequential recommendation. Caser [118] incorporates

convolution operations to effectively model high-order Markov chains. Furthermore, attention

mechanism has been adopted in sequential recommendation as a powerful tool to capture the user’s

interests. SASRec [64] maximizes the utilization of self-attention mechanism and is one of the early

adopters of transformers for sequential recommendation tasks. Diff4Rec [147] leverages diffusion

process for sequential recommendation.

Graph neural networks have also been widely used in sequential recommendation because of

their ability to leverage the graph structure information. There are some works [22, 145, 149, 160]

that use graph neural networks to model the user-item interactions in sequential recommendation.

SR-GNN [145] uses a graph neural network to model the user-item interactions in the session-based

recommendation. A-PGNN [160] combine personalized GNN and attention mechanism to model

the user-item interactions.

Although the GNN-based methods have achieved good performance in sequential recommenda-

tion, they are not designed to utilize the item relationship across different user-item interactions

sequences. To address this issue, some works [113, 127, 130, 169] have been proposed. Hyper-

Rec [127] utilizes a hypergraph to effectively capture the high-order correlations between items

within and across sequences. CSRM [130] takes into consideration neighboring sessions by evaluat-

ing the similarity between the current session and other sessions. DGRec [113] establishes explicit

associations among different user sequences based on social relationships. DGSR [161] establishes

connections between different user sequences using a dynamic graph structure, thereby exploring

the interactive behavior of users and items with respect to time and order information.
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However, these methods do not consider the spatio-temporal distribution shifts in sequential rec-

ommendation. In this paper, we propose a novel method to handle the spatio-temporal distribution

shifts in sequential recommendation tasks.

7 CONCLUSION
In this paper, we propose Disentangled Intervention-based Dynamic Graph Attention Networks

with Invariance Promotion (I-DIDA) to handle spatio-temporal distribution shifts in sequential

recommendation. First, we propose a disentangled dynamic graph attention network to capture

invariant and variant spatio-temporal patterns. Then, based on the causal inference literature,

we design a spatio-temporal intervention mechanism to create multiple intervened distributions

and propose an invariance regularization term to help the model focus on invariant patterns

under distribution shifts. Moreover, based on the invariant learning literature, we design a spatio-

temporal environment inference to infer the latent environments of the nodes at different time, and

propose an environment-level invariance loss to promote the invariance properties of the captured

invariant patterns. Extensive experiments on one synthetic dataset and several real-world datasets

demonstrate the superiority of our proposed method against state-of-the-art baselines to handle

spatio-temporal distribution shifts. Experiments on sequential recommendation datasets also show

our method can effectively perform accurate recommendations for sequential user-item systems

under spatio-temporal distribution shifts.
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