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Abstract
Visual concept recognition aims to capture the basic attributes of an
image and reason about the relationships among them to determine
whether the image satisfies a certain concept, and has been widely
used in various tasks such as human action recognition and image
risk warning. Most existing works adopt deep neural networks
for visual concept recognition, which are black-box and incompre-
hensible to humans, thus making them unacceptable for sensitive
domains such as prohibited event detection and risk early warning
etc. To address this issue, we propose to combine large language
model (LLM) with explainable symbolic reasoning via curriculum
reweighting to increase the interpretability and accuracy of visual
concept recognition in this paper. However, realizing this goal is
challenging given that i) the performance of symbolic representa-
tions are limited by the lack of annotated reasoning symbols and
rules for most tasks, and ii) the LLMs may suffer from knowlege
hallucination and dynamic open environment. To address these
issues, in this paper, we propose CurLLM-Reasoner, a curriculum
reasoning method based on symbolic reasoning and large language
model for visual concept recognition. Specifically, we propose a
novel rule enhancement module with a tool library, which fully
leverage the reasoning capability of large language models and can
generate human-understandable rules without any annotation. We
further propose a curriculum data resampling methodology to help
the large language model accurately extract from easy to complex
rules at different reasoning stages. Extensive experiments on vari-
ous datasets demonstrate that CurLLM-Reasoner can achieve the
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state-of-the-art visual concept recognition results with explainable
rules while free of human annotations.
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1 Introduction
Visual concept recognition, such as human action recognition [7,
39, 60] and image risk warning, aims to determine whether the
image satisfies a certain concept by extracting the basic attributes
from the image and reasoning about the relationships among these
attributes. Compared to the basic object detection or instance seg-
mentation visual tasks that only involve visual attribute extraction,
visual concept recognition remains a more challenging and worth
exploring problem.

On the one hand, traditional deep learning based methods have
achieved remarkable results in visual concept recognition tasks [7,
18, 23]. Nevertheless, due to their black box and unexplainable
characteristics, the traditional deep learning based methods face
challenges in being accepted for sensitive tasks involving sensitive
data or specific objectives, such as healthcare and risk warning. On
the other hand, symbolic reasoning [2], by emulating the cogni-
tive reasoning process of humans, symbolizes various conditional
statements and employs mathematical theorems for deduction and
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inference. By formalizing the reasoning process, symbolic reason-
ing methods ultimately yield a human-interpretable reasoning rule.
Some previous researches [1, 13, 14, 17, 22, 26, 30, 49, 53, 62] in-
tegrate the perceptual capability of neural networks with the rea-
soning ability of symbolic methods. The neural perception compo-
nent is expected to guide the learning of logical rules, while the
logical reasoning component, in turn, supervises the learning of
neural perception by generating logical formulas. The goal is to
achieve mutual enhancement between these two components. This
approach has made great success with traditional reasoning tasks
such as some numeric calculation [13, 53]. However, more com-
plex tasks such as visual concept recognition often require more
sophisticated domain knowledge and symbolic operators, necessi-
tating the composition of multiple layers of logic to accomplish the
tasks. Yet, there is generally a lack of high-quality annotated and
defined reasoning rules and symbolic representations, which limits
the further development of symbolic methods.

Considering the success of large language models [12, 19, 27, 32,
34, 42, 48, 52, 68], a natural approach is to use a large languagemodel
to define reasoning rules instead of relying on human input and an-
notation. However, current approaches that employ large language
models for reasoning [58, 60, 64] often conduct self-evaluation on
the generated rules, which leads to the following issues: (1) The
potential knowledge hallucination of the large language model
undermines the trustworthiness of the confidences. Due to some
security and privacy concerns, many companies or agencies are
compelled to use open-source language models, exacerbating this
problem. (2) Simple self-evaluation overlooks the impact of the data
from the dynamic and open environment, e.g., when encountering
unseen multimodal data, the large language model may struggle
to accurately evaluate the generated rules. (3) As reasoning pro-
gresses, the generated rules by the large language model become
more complex. Using the same data for evaluation during the whole
rule generating process may fail to generate more complex rules.

To address these issues, we propose CurLLM-Reasoner, a novel
curriculum reasoning method based on large language models.
Specifically, we utilize a large language model and devise an itera-
tive approach to generate reasoning rules. To aid the comprehension
of multi-modal information such as images and text in the dynamic
and open environment, we introduce a tool library that dynamically
selects appropriate tools to assist in constructing reasoning rules.
With the knowledge of the tools, the hallucination problem can
be largely alleviated and the unseen multi-modal information can
be tackled by the corresponding multi-modal tools. As the gen-
erated rules at different iterations vary in difficulty, we employ a
curriculum learning approach to gradually generate easy to com-
plex rules. This involves dynamically evaluating the difficulty of
the data and resampling to choose easy to hard data for easy to
complex rule generation in an accurate way. Extensive experiments
are conducted on several datasets to demonstrate that our proposed
CurLLM-Reasoner is able to generate accurate and human-readable
rules and outperforms several state-of-the-art baselines.

Our main contributions are summarized as follows:

• We propose a new CurLLM-Reasoner approach that lever-
ages large models together with a novel tool library to gener-
ate human-interpretable reasoning rules for visual concept
recognition.

• We introduce a novel framework that combines curriculum
learning with LLM reasoning, allowing for adaptive adjust-
ment of difficulty levels based on the reasoning stages, which
improves the performance of the reasoning method.

• We conduct extensive experiments on several real-world
datasets to show that the proposed CurLLM-Reasoner can
be applied to different visual concept recognition tasks and
achieves SOTA performance.

2 Related Works

LLM for Reasoning Tasks. Large language models (LLM) [12,
16, 19, 48, 52, 70] exhibit a high capacity to understand, gener-
ate, and manipulate textual information, making them valuable
tools for various natural language processing tasks such as ma-
chine translation, text generation, sentiment analysis, and question-
answering [27, 32, 34, 42].

As the extensive knowledge repository possessed by LLMs across
various domains, some researchers have tried to enable LLMs to
engage in reasoning tasks through several novel techniques such
as prompt engineering. The Chain-of-thought [58] (CoT) method
serves as a representative method in which large language models
are guided through prompts to provide rationales or justifications
before generating answers. Tree-of-thoughts [64] expands upon
the CoT approach by transforming the reasoning process from
a linear chain to a tree structure, which enables large language
models to better handle the reasoning tasks. And many previous
works [10, 20, 45, 50, 60, 65] have extended large language models
reasoning to more complex tasks, such as Symbol-LLM [60], which
applies LLM to reason human action recognition tasks and derive
human-interpretable reasoning rules for this task.

However, these methods rely on self-evaluation by the LLMs,
which is not entirely reliable in sensitive domains like risk assess-
ment due to the existence of knowledge hallucination. Additionally,
the high computational cost associated with training multimodal
LLMs poses challenges in accurately evaluating and processing
multimodal data in dynamic and open environments.

Neural SymbolicReasoning. Deep neural networks have achieved
tremendous success in many tasks, but when it comes to tasks re-
quiring reasoning ability and explainability, there still remain a
lot of problems for deep neural networks. In contrast, symbolic
reasoning which emulates human cognitive reasoning processes
using symbolic operators, has shown promising results in various
numerical reasoning tasks [13, 14, 22, 53]. However, tasks involving
semantic understanding still pose significant challenges [5, 43, 44].

To combine the reasoning capabilities of traditional symbolic
methods with the learning abilities of deep neural networks, some
approaches introduce novel structures that enable neural networks
to possess reasoning capabilities. Specifically, some works [1, 26,
30, 49, 62] employ modular networks with logical supervision, al-
lowing deep networks to utilize specialized structures to obtain
human-readable symbolic representations or reasoning rules, such
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as programs [26] or trees [49]. Other works leverage the differen-
tiability of deep networks and redesign specific tasks to transform
symbolic systems into differentiable operations for optimization.
For example, [40] extends Prolog [59], and [4] designs a differen-
tiable Forth interpreter. Other works [2, 13, 17, 31, 38, 41, 67] treat
the deep networks as perception modules and utilize other com-
plex reasoning systems to handle symbolic problems. They employ
DNNs to capture semantic information and abstract it into neural
symbols, while a symbolic executor serves as the reasoning system
to infer from these symbols and derive the final answers.

However, existing neural symbolic reasoning methods require
accurate annotations of intermediate reasoning symbols and rules,
preventing extending them to more complex and general tasks.

Curriculum Learning. Inspired by human learning processes,
curriculum learning attempts to train deep neural networks by
starting with the simple samples and gradually increasing the dif-
ficulty of the data samples [3, 37, 54, 57, 71]. It has achieved re-
markable success in various fields, such as recommendation sys-
tems [8, 11, 55, 61], combinatorial optimization [69], neural archi-
tecture search [46, 66, 72], multimodal learning [73], and video
grounding [9, 36].

The key aspect of curriculum learning is how to accurately assess
the difficulty level of samples and a training scheduler to decide
the input sequence or weights of data subsets, leading to the de-
velopment of various methods. Baby Step [51] is one of the most
intuitive approaches, utilizing simple predefined measures such as
sentence length for NLP tasks. However, such a method requires
strong domain knowledge and is not easily transferred to many
other specific domains. Thus, several works have proposed auto-
matic curriculum learning. Self-paced methods [6, 35] leverage the
training loss to evaluate the difficulty of data. The transfer teacher
approach [24] introduces a powerful teacher model and assesses
the difficulty of data based on the performance of samples on the
teacher model. The RL Teacher method [21] employs a reinforce-
ment learning-based model as the teacher model and dynamically
adjusts the difficulty of data based on the feedback from the current
model.

In this work, we use the idea of curriculum learning to dynami-
cally resample the dataset to adapt different levels of data difficulty
during the rule generation process.

2.1 Methodology
The overall framework of our CurLLM-Reasoner is shown in Fig-
ure 1. To incorporate reasoning knowledge from various domains,
we employ a large language model as reasoner. To fully leverage
the reasoning capabilities of the large language model, we devise
a rule enhancement methodology and introduce several auxiliary
tools to dynamically generate human-readable rules. To more com-
prehensively and reasonably evaluate the quality of the generated
rules based on the current generating state, we adopt a curriculum
learning approach to dynamically resample the dataset.

In the following subsections, we first give the problem formula-
tion and preliminaries. Then, we give a brief overview of the main
parts of our method and detail the rule enhancement strategy based
on a large language model to find the reasoning rules in section 2.3
and describe our curriculum resampling method in section 2.4.

2.2 Preliminary
Definition 1 (Visual Concept Recognition Through Rea-

soning). Given a set of images as input, the task is generating a set
of reasoning rules to determine whether visual contents or objects
carried in these images belong to specific concepts.

These concepts may vary depending on different specific tasks,
such as recognizing whether particular visual objects are engaged
in certain activities and whether particular visual contents may
involve certain risks. Suppose C = {𝑐1, 𝑐2, · · · , 𝑐𝐾 } represents a
collection of visual concepts, where each 𝑐𝑘 is a concept, i.e., a text
that describes a certain action of a person or qualities of an object
in an image. Given a dataset X = {𝑥1, 𝑥2, ..., 𝑥𝑛} and each 𝑥𝑖 is an
image, Y = {𝑦1, 𝑦2, ..., 𝑦𝑛} is the set of labels of the given samples,
where each 𝑦𝑖 ∈ R𝐾 . 𝑦𝑘𝑖 is the 𝑘 − 𝑡ℎ dimension of 𝑦𝑖 and is a binary
value. If 𝑦𝑘

𝑖
= 1, 𝑥𝑖 satisfies concept 𝑐𝑘 .

Our purpose is to find a list of human-readable reasoning rules,
{𝑅𝑘 }, where each 𝑅𝑘 is the disjunctive normal form of several rules
𝑟1
𝑘
∨ 𝑟2

𝑘
∨ ... ∨ 𝑟𝑀

𝑘
and is used to reason whether a give data 𝑥 ∈ X

satisfies the concept 𝑐𝑘 . Each rule 𝑟 𝑖
𝑘
is a conjunctive normal form

of various symbolic conditions 𝑠1
𝑖
∧ 𝑠2

𝑖
∧ ... ∧ 𝑠

𝑄

𝑖
⊩ 𝑐𝑘 , which means

that we conduct a reasoning process about the concept 𝑐𝑘 from
the conditions set {𝑠𝑞

𝑖
}. Typically, a condition 𝑠

𝑞

𝑖
is an executable

program accompanied by a natural language description to describe
its purpose.

After we get a set of rules, we can use logical reasoning to get
the final result. For each condition 𝑠𝑞

𝑖
of the rule 𝑟 𝑖

𝑘
, it accepts 𝑥 ∈ X

as input and outputs the probability 𝑝𝑞
𝑖
that this data satisfies this

condition. Since the conditions are conjunctive normal form, it
is required that all conditions hold true for the conclusion to be
valid. Therefore, we consider the minimum value of all conditions,
i.e., min𝑞 𝑝

𝑞

𝑖
, as the probability of rule 𝑟 𝑖

𝑘
being valid. The different

rules are organized as disjunctive normal form, if any of the rules
is satisfied, the conclusion is considered valid. Hence, we take the
maximum value of these rules’ probabilities as the final probability
for the given sample, i.e., 𝑝 = max𝑖 min𝑞 𝑝

𝑞

𝑖
. If 𝑝 exceeds a prede-

fined threshold, we consider that the sample satisfies the visual
concept 𝑐𝑘 .

Taking the concept of "a person is drinking" as an example, one
possible rule is "there is a person in the image ∧ there is a bottle
in the image ∧ the people is holding the bottle ∧ the head of the
people and the bottle is close ⊩ a person is drinking". One possible
executable program for the first condition is to detect whether there
is a person in the image and one possible executable program for
the third condition is to segment the person and the bottle in the
image and check whether the masks of these two objects overlap.

2.3 Rule Enhancement with LLM
The first key problem of visual concept recognition through reason-
ing is to find the rules. When humans conduct reasoning, they often
draw upon knowledge from various domains. However, traditional
machine learning approaches struggle to achieve the same goal
without extensively annotated data, particularly when it is required
to generate human-readable reasoning rules. Upon recognizing the
effectiveness of large language models across multiple domains, we
employ LLM as the core for generating rules.
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Figure 1: The framework of the proposed CurLLM-Reasoner. Our method iteratively generates the reasoning rules according to the
present results. For each iteration, we first iterate through the current list of rules and expand on them to get various candidate rules. After
that, we evaluate these candidates and select the top-m rules among them as the objects to be enhanced in the next iteration. At each
iteration step, we dynamically adjust the difficulty level 𝜏 based on the selected data difficulty from the history as well as the evaluation
metrics of the generated rules. This level 𝜏 is then passed into the curriculum scheduler for data resampling.

We consider a rule as a conjunction of multiple conditions and
iteratively generate new conditions to expand our rule set. To ac-
complish this, we initialize a rule pool through positive samples
of a certain concept. These initialized rules often represent certain
intuitive attributes about the samples that satisfy the concept, such
as the presence of specific elements in an image. Subsequently, we
propose a method to enhance these initialized rules through inter-
actions with a large language model. The objective is to capture the
relationships between these intuitive attributes using the enhanced
complex rules, thereby facilitating improved concept recognition.

Rule initialization. Suppose we are generating rules of concept
𝑐𝑘 , and there is a positive dataset X𝑘 ⊂ X𝑡𝑟𝑎𝑖𝑛 , where ∀𝑥 ∈ X𝑘 , 𝑥
satisfies 𝑐𝑘 . We perform captioning on the images to obtain textual
descriptions for each positive sample. Subsequently, we conduct
part-of-speech analysis on the textual descriptions to extract the
nouns and calculate their frequencies across all positive samples.
We select the top-m words with the highest frequencies. For each
word𝑤 , we construct an initial rule that includes only one condition:
"there is a𝑤 ⊩ 𝑐𝑘 " and thus get𝑚 initialized rules.

Expand Condition. After obtaining the initialized rules, we need
to enhance them to obtain more complex rules. For each rule 𝑠1

𝑖
∧

𝑠2
𝑖
∧ ...∧𝑠𝑄

𝑖
⊩ 𝑐𝑘 in the current rule set, we construct a prompt based

on its conditions and target concept 𝑐𝑘 to interact with the large
language model and generate new conditions. According to [33],

reasoning in the backward direction is significantly more efficient.
And inspired by [60], the prompt can be formulated as:

• Please take a deep breath and answer the question. The
reasoning chain is: if 𝑠1

𝑖
, 𝑠2
𝑖
, ..., 𝑠𝑄

𝑖
and <condition>, then 𝑐𝑘 .

What is <condition>?

The <condition> output from the large language model repre-
sents the newly added condition 𝑠𝑐𝑎

𝑖
.

Tool choosing. However, only relying on the large language model
to conduct rule enhancement may suffer from the following two
problems. On the one hand, large language models are often sus-
ceptible to knowledge hallucination and exhibit inherent instability,
resulting in varying quality of their outputs. Therefore, it is nec-
essary to apply filtering techniques to select reliable enhanced
conditions. On the other hand, as a purely text-based model, the
large language model lacks the ability to directly judge whether
a given image satisfies a given condition, i.e., the large language
model cannot determine whether the generated condition 𝑠𝑐𝑎

𝑖
is

a proper condition of the multi-modal input data, especially the
image data. To address these challenges, we design a tool library,
which integrates various pre-defined multi-modal function mod-
ules such as object detection modules. For each newly generated
condition, we dynamically choose appropriate tools from the tool
library to assist the large language model in verifying the generated
rules effectively, which will be elaborated on in detail.
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We employ the large language model to assist in tool selection.
However, practical experience has shown that the large language
model cannot directly output a specific tool, or it may be influenced
by history, consistently yielding the same tool, lacking exploration
of various tools, resulting in sub-optimal choices. Therefore, we
utilize the large language model to provide probabilities for using
each tool based on the currently generated new condition 𝑠𝑐𝑎

𝑖
. To

obtain these probabilities, we use the following prompt:
• You can solve problems with the following tools. [Tool 1]:
[Description of the functionality of tool 1], ..., [Tool L]: [De-
scription of the functionality of tool L]. Please take a deep
breath and answer the question. There is an image and you
need to find out whether 𝑠𝑐𝑎

𝑖
. You will use the mentioned

tools to solve the problem. Tell me the probabilities that each
tool to be used. Please answer with the format as ’[Tool 1]:
<𝑝1>, [Tool 2]: <𝑝2>, ..., [Tool L]: <𝑝𝐿>’, where each <p> is a
float value.

To further mitigate the potential impact of redundant choices
and prevent repeatedly choosing the same tool, we reweight these
probabilities based on the types and numbers of tools selected in
history. For the tool 𝑙 , we consider the output result 𝑝𝑙 from the
large language model as the original probability of choosing tool 𝑙 .
Then, we iterate through the rule set. For the condition 𝑠𝑞

𝑖
in these

rules, if the tool used for 𝑠𝑞
𝑖
is 𝑙 , we need to determine whether 𝑠𝑞

𝑖
is

consistent with the current condition 𝑠𝑐𝑎
𝑖

and get their similarity𝑤𝑞
𝑖
.

Afterward, we use the weighted probabilities to randomly select
which tool to use at the current stage. The probability of choosing
each tool can be represented as:

𝑝𝑙 = 𝑝𝑙 (1 +
√︄

2 log𝑛𝑠∑
𝑖

∑
𝑞 𝑤

𝑞

𝑖

), (1)

where 𝑛𝑠 is the number of all conditions. The reweighing process
is utilized to guarantee that the tool has been used in similar rules
in history, we will decrease its probability of being chosen, so that
the model can explore many more other tools, avoiding the problem
of repeatedly choosing the same tools.

After expanding a new condition and tool choosing, we get a
new candidate rule 𝑠1

𝑖
∧ 𝑠2

𝑖
∧ ... ∧ 𝑠

𝑄

𝑖
∧ 𝑠𝑐𝑎

𝑖
⊩ 𝑐𝑘 with their tools. For

example, for the concept "drinking", the origin rule may be "there is
a bottle (tool detection) ⊩ the person is drinking", and the enhanced
rule may be "there is a bottle (tool detection) ∧ a person is holding
the bottle (tool overlap) ⊩ the person is drinking". For each rule, we
will repeat the rule enhancement process multiple times to obtain
different candidate rules.

2.4 Curriculum Resampling
Once the set of candidate rules is obtained, the next key point is how
to distinguish among various abilities of different generated rules.
Since in the process of our proposed rule enhancement procedure,
those earlier rules tend to emphasize the intuitive information
of the data, while the later iterations for rule enhancement may
focus more on the relationships among various features of the
data. In other words, the initial rules are simpler, while the later
enhanced rules become more complex. Therefore, when evaluating
the rules, if we fix the validation dataset, all the simple rules in the

earlier stages may fail to identify the difficult samples and may even
lead to capturing false associations. Conversely, in the later stages,
the simple data instances may prevent the model from generating
complex rules, which results in sub-optimal performance.

Inspired by curriculum learning, we dynamically adjust the diffi-
culty of each iteration step based on the performance of the current
rules. We employ a superloss approach [6] to assess whether the
data conforms to the specified difficulty level.

History	Rules

L
L
M

Dataset

Validation
Dataset

Curriculum
Scheduler loss Super

loss

Update 𝝉

history	𝝉,	metrics

𝑆!" ∧ 𝑆!! ⊩ 𝐶∧

𝑆#" ∧ 𝑆#! ⊩ 𝐶∧

𝑆"" ∧ 𝑆"! ⊩ 𝐶∧ 𝑆"#

𝑆!#

𝑆##

Figure 2: Curriculum resampling method. At the beginning
of each iteration step, we determine the difficulty level 𝜏 for the
current step based on the historical difficulty and rule scores. Then,
we perform data resampling using the superloss method to obtain
the validation dataset specifically for the current iteration step.

Superloss. Under the concept 𝑐𝑘 , we employ the trainable cur-
riculum method for data resampling. Given the difficulty threshold
𝜏 , we assign a trainable parameter 𝜎𝑖 to each data, representing
the confidence of the data being difficulty 𝜏 . For all data 𝑥𝑖 ∈ X,
we organize their labels as {𝑦𝑘

𝑖
} and consider it as a binary clas-

sification task. The loss for each data can be calculated as 𝑙𝑖 =

−(𝑦𝑘
𝑖
log𝑦𝑘

𝑖
+ (1 − 𝑦𝑘

𝑖
) log(1 − 𝑦𝑘

𝑖
)), where 𝑦𝑘

𝑖
is the output of the

curriculum scheduler. The curriculum scheduler can be any clas-
sifier suitable for the task, and for efficiency, we employ CLIP as
the feature extractor and train a two-layer MLP network as the
classifier. Afterward, we compute the superloss as follows:

𝐿𝜆 (𝑙𝑖 , 𝜎𝑖 ) = (𝑙𝑖 − 𝜏)𝜎𝑖 + 𝜆(log𝜎𝑖 )2, (2)

𝐿 =

∑𝑛
𝑖=1 𝐿𝜆 (𝑙𝑖 , 𝜎𝑖 )

𝑛
, (3)

where 𝜆 is a regularization hyper-parameter and 𝐿 is the training
objective. After the training procedure is completed, we select the
top ( 1

𝑇
∗100)% data points with the highest confidence and consider

them as the data that conform to the difficulty level 𝜏 , where 𝑇
represents the total number of iterations.
Dynamic difficulty adjustment. To dynamically adjust the dif-
ficulty based on the different datasets and different concepts, we
leverage the reasoning ability of the large language models. For
iteration 𝑡 , we input the difficulty level from the previous 𝑡 −1 steps
together with the corresponding average scores of generated rules
during these steps into the LLM to obtain the difficulty level 𝜏𝑡 for
step t. The prompt used is as follows:

• You are a researcher of curriculum learning, which mimics
the human process of learning a domain from easy to hard,
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i.e., the difficulty gradually increases with training, but some-
times you need to dynamically adjust the difficulty according
to the current effect. The difficulty of the 1-st iteration is 𝜏1
and the mAP (mean average precision) metric is𝑚1... The
difficulty of the (𝑡 − 1)-th iteration is 𝜏𝑡−1 and the mAP met-
ric is𝑚𝑡−1. What is the difficulty of the next iteration should
be? Please answer in the format with ‘difficulty: <p>’.

3 Experiments
In this section, we empirically evaluate the performance of the
proposed CurLLM-Reasoner, analyze the roles of the proposed
modules, and provide some examples of the generated rules. Next,
we will describe the baselines and the datasets we adopt. We do
all the experiments with a NVIDIA A100-SXM4-40GB GPU. In the
experiments, for each dataset, we employ curriculum scheduler
with learning rate of 1𝑒−3 and weight decay of 1𝑒−4, and an Adam
optimizer for optimization.

Baselines. To better show the effectiveness of our proposedmethod,
we compared it with different baselines depending on the specific
scenarios. On the one hand, we selected several state-of-the-art
models for visual recognition tasks and several effective approaches
in image classification. On the other hand, considering that our
model incorporates a large language model and some foundational
models, we also introduced some approaches that use the same
foundational models as baselines for comparison.

• ResNet [25]. ResNet is a widely recognized neural network
that has significantly advanced the field of computer vision.
It addresses the challenge of training deep architecture by
introducing residual connections.

• DenseNet [28]. In order to facilitate optimal information
flow across network layers, DenseNet establishes direct con-
nections between all layers. This design ensures seamless
integration and propagation of information throughout the
network, facilitating effective feature extraction and repre-
sentation learning.

• ViT [15]. ViT divides an image into patches of fixed sizes
and linearly embeds them with positional embeddings. After
that, this methodology enables effective performance by
leveraging the Transformer architecture.

• RelViT [39]. RelViT has introduced a concept-feature dic-
tionary that aids inference by capturing visual features and
facilitating relational queries. This concept-feature dictio-
nary enables the extraction of relevant visual information
and supports the reasoning process by leveraging the cap-
tured visual features.

• Ram++ [29]. By leveraging foundationalmodels in the field of
computer vision, Ram++ is able to zero-shot capture common
visual concepts.

• CLIP [47]. The CLIP model is a state-of-the-art deep learning
architecture that combines vision and language understand-
ing. It is trained in a contrastive learning framework with a
large-scale dataset to learn joint representations of images
and their associated textual descriptions.

• Symbol-LLM [60]. Symbol-LLM capitalizes on the recent
advancements in large language models and introduces a

novel symbolic system that exhibits superior performance
in a wide range of activity recognition tasks.

For fair comparison, we adopt the ViT-L-14@336px CLIP model
as the image-text modality alignment model and employ Vicuna-
7b [12] as the large language model for all methods.

Datasets. To facilitate a comprehensive comparison of the varia-
tions among different methods, we have carefully chosen multiple
datasets for visual concept recognition tasks to conduct our evalua-
tions.

• Stanford40 [63]. It is a classic dataset for recognizing human
actions in still images which contains 40 diverse daily human
actions, and all the images are obtained from Google, Bing,
and Flickr.

• HICO [7]. It is a human-object interaction dataset which has
a diverse set of interactions with common object categories.
It has a total of 47,774 images, covering 600 categories of
human-object interactions.

• Alibaba Risk. The Alibaba Risk Dataset is a collection of
risk warning data collected by the Alibaba Group from its
e-commerce platforms. It involves assessing the risk associ-
ated with products listed by merchants on platforms such as
Taobao and Tmall. The dataset utilizes the product images
provided by the merchants to determine if these products
violate certain rules and pose risks. We have chosen the
following categories of risks, ALI-politics: risk of govern-
ment policies, ALI-pornography: risk of pornography, and
the dataset of other prohibited content ALI-other.

Tools. To strike a balance between time cost and performance, we
have chosen a limited but sufficient set of tools to aid in accom-
plishing our tasks. Below, we will describe some of the selected
auxiliary tools we have utilized.

• Detection. For computer vision tasks, information extraction
from images necessitates the use of detection techniques. In
our experiments, we employ the SOLOv2 [56] framework as
the detection tool.

• Overlap. For the interaction between objects in an image,
their relative positions often play a crucial role in judging
whether they have a relation. We utilize this tool to assess
the proximity of two objects in an image. Firstly, we employ
the detection tool to obtain the bounding boxes of the two
objects of interest. Subsequently, based on the results, we
determine whether the bounding boxes overlapped.

• Similarity. For certain tasks, the descriptions of symbols
provided by large language models may require the joint
utilization of both textual and visual modalities. Hence, we
incorporate the CLIP tool to compute the similarity between
text and images, allowing us to determine whether the gen-
erated symbolic operators fulfill the desired criteria.

• Classifier. For certain generated symbol operators, a natu-
ral binary characteristic may exist, where positive samples
contain the desired information embodied by the operator,
while negative samples lack this information. To address the
problem, we employ a straightforward classifier to satisfy
the symbol. In this context, for training samples, we initially
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extract information using CLIP and subsequently employ a
simple SVM classifier for classification.

Additionally, in cases where the detection tool encounters out-of-
distribution (OOD) issues, meaning that the objects to be detected
are outside the scope of the pre-trained model’s detection capa-
bilities, we resort to using the similarity or classifier tool as an
alternative solution. We will evaluate and select whether to use the
similarity tool or the classifier tool on the validation dataset.

3.1 Main Results
We evaluate the proposed method on the mentioned datasets, and
for all datasets, we choose mean average precision (mAP) as the
evaluation metric. The results are shown in Table 1.We find that our
method outperforms all the baselines in all of the tasks. Moreover,
from the obtained results, we can get several observations.

For traditional image classification models such as ResNet and
DenseNet, their performances on public datasets are comparatively
inferior to other methods. This is due to the fact that for these
tasks, there exist subtle differences in information between images
belonging to some of the categories, such as "riding a horse" and
"feeding a horse". To achieve accurate classification results, models
need to gather information about the relationships between differ-
ent objects in the images and reasoning based on such relationships.
ViT outperforms these models, possibly due to the enhancement
brought by its number of parameters. However, all of these results
remain black-box and lack interpretability.

The performance of RelViT heavily relies on the quality of the
annotated concept-feature dictionary or reasoning rules provided.
In the case of the HICO dataset, which includes expert-annotated
files, RelViT outperforms the aforementioned classification models.
However, for the Stanford40 dataset, where such annotated files
are not provided, we could only generate some simple annotations
through a detection model, resulting in worse performance. Ad-
ditionally, due to the absence of annotations, RelViT cannot be
applied to the Alibaba Risk Dataset. These limitations highlight the
drawbacks of traditional reasoning-based approaches.

Pretrained foundational models based on extensive data such
as CLIP, demonstrate superior performance in common scenarios,
highlighting the ability of these foundational models, and enabling
their application across a wide range of tasks. However, for some
rare and sensitive scenarios, due to limitations in the available
positive data, even after fine-tuning, the performance remains un-
satisfactory.

Symbol-LLM outperforms all other baselines on public datasets,
primarily because it not only leverages foundational models to
acquire generalizable knowledge but also utilizes large language
models to harness their powerful reasoning capabilities, thereby
assisting the approach in achieving superior results. However, even
after adjusting the prompts, Symbol-LLM still performs poorly on
the risk warning tasks. Although Symbol-LLM can generate some
good reasoning rules, it lacks the ability to determine whether the
samples satisfy these rules. This limitation arises because Symbol-
LLM relies entirely on the CLIP for evaluation and, compared to
the large amount of pre-training data, it may struggle to capture
crucial information due to the scarcity of various domains of rare
risk samples.

Our method incorporates a tool library to enable accurate rule
evaluation and utilize curriculum resampling, which adjusts the
dataset according to different iterations, thereby getting the infor-
mation of these rare risk samples and improving the performance.

3.2 Ablation Study
To better investigate the mechanisms of our proposed method and
to demonstrate the necessity of certain experiment settings, we
conducted the following ablation studies.
Proposed module effectiveness. In our method, the central com-
ponents comprise the tool library, the reasoning module, and the
curriculum learning method. We conduct an ablation study on these
components, and the results are presented in Table 2

It can be observed that with the help of each module, there is a
corresponding performance improvement. This indicates that each
proposed component contributes positively to the reasoning result.

Additionally, we observe that for simpler tasks like the Stan-
ford40 dataset, significant improvements can be achieved by solely
employing the reasoning module. However, for more complex tasks,
although specific rules can be obtained through the reasoning ap-
proach, it is challenging to accurately determine whether samples
satisfy these complex rules using CLIP alone. Moreover, distinguish-
ing the quality of the generated rules is also problematic. Therefore,
incorporating the tool library module and the curriculum methods
brings further improvement.
Hyper-parameters. We conducted an analysis of two hyperparam-
eters that are prominently mentioned in the methodology section
including the total number of iterations 𝑇 and the top𝑚 rules to
choose. In the following experiments, the ablation experiments
about these two hyper-parameters are conducted on the Stanford40
dataset and the first 150 concepts of the HICO dataset. The results
are shown in Table 3.

From the results, it can be seen that as the maximum number
of iterations 𝑇 increases, the performance first increases and then
stabilizes. This indicates that using ourmethod can find good results
in a few steps. As 𝑚 increases, the performance first increases
and then decreases for the HICO dataset. On the one hand, this
suggests that only a small number of rules are needed to capture the
concepts, and an excessive number of rules may lead to sub-optimal
rules being included in the rule set thus causing a decrease in the
performance. On the other hand, simple logical reasoning may not
work excellently on more complex datasets, and using a superior
method such as ensemble learning to fuse different rules may be a
future direction worth exploring.
Tools. We also explore several other tools, such as "number", which
counts the quantity of a specific object in the image, "close", which
calculates the distance between two objects and determines if it
is below a certain threshold, and "calculate", which compares the
quantity of two objects. However, during the experiments, we find
that these tools are less frequently utilized during the generating
process of the LLM and appeared less frequently in the top3 gener-
ated rules. The detailed numbers of those tools when generating
the rules of Stanford40 datasets are provided in Table 4.

The poor performance of certain tools can be attributed to two
factors. Firstly, some tools inherently involve challenging tasks that
are difficult to generalize. Secondly, the difficulty lies in determining
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Table 1: Model performance

Dataset ResNet DenseNet ViT RelViT Ram++ CLIP Symbol-LLM Ours
Stanford40 0.8102 0.8263 0.9037 0.8143 0.8071 0.8472 0.9128 0.9572

HICO 0.1801 0.1747 0.4305 0.4496 0.4601 0.6337 0.6498 0.6674
ALI-pornography 0.3266 0.2022 0.1512 - 0.0344 0.0642 0.1030 0.3396

ALI-politics 0.1304 0.0402 0.0293 - 0.0086 0.0392 0.0405 0.1577
ALI-other 0.1795 0.0045 0.1712 - 0.0121 0.0235 0.0292 0.2323

Table 2: The impact of the proposed modules.

Stanford40 HICO
CLIP 0.8472 0.6337

CLIP+Reasoning 0.9426 0.6376
CLIP+Reasoning+Curriculum 0.9533 0.6546

CLIP+Reasoning+Tools 0.9537 0.6493
Our 0.9572 0.6674

Table 3: The impact of the hyper parameters. 𝑇 = 0 means
using the initialized rules.

Stanford40 25%HICO
𝑇 = 0 0.8530 0.6680
𝑇 = 1 0.9373 0.6751
𝑇 = 2 0.9572 0.6893
𝑇 = 3 0.9532 0.6902
𝑇 = 4 0.9531 0.6885
𝑚 = 1 0.9477 0.6905
𝑚 = 2 0.9501 0.6924
𝑚 = 3 0.9572 0.6893
𝑚 = 4 0.9531 0.6717
𝑚 = 5 0.9532 0.6625

Table 4: Number of tools that appeared in all rules throughout
the generation process and that appeared in the top3 rules

Total number Top3 number top3/total
detection 2015564 691992 0.3433
overlap 384440 137300 0.3571
number 1021512 313044 0.3065
close 131808 32592 0.2473

calculate 52462 9592 0.1832

suitable thresholds. For example, in the case of the ’close’ task, it
is challenging to define what constitutes "closeness" between two
objects, as it often depends on the relative scale of objects in the
image, leading to varying interpretations of the problem. And we
discover that the LLM exhibits a significant preference for certain
tools, such as detection and number. This preference can potentially
be attributed to the higher frequency of these words in the majority
of training data during the model’s training process. This implies
that 7B models, despite their limited capacity than other LLMs, still
possess biases that prevent them from generalizing to all the cases.
Reasoning. In order to demonstrate the performance of reasoning,
we construct the experiment that utilize some simple baselines
which utilize all the tools. To obtain the scores, these tools can be

combined in two different ways, conjunction manner and disjunc-
tion manner.

For certain concept 𝑐 , conjunction manner means that data is
predicted as a positive sample if and only if all the tools predicted
the data as true 𝑡1 ∧ 𝑡2 ∧ ...∧ 𝑡𝑛 ⊩ 𝑐 . Disjunction manner means that
data is predicted as a positive sample if and only if there exists a
tool that predicted the data as true (𝑡1 ⊩ 𝑐) ∨ (𝑡2 ⊩ 𝑐) ∨ ...∨ (𝑡𝑛 ⊩ 𝑐).

Table 5: The impact of the reasoning method

Conjunction Disjunction Our
stanford40 0.8703 0.9472 0.9572
HICO 0.5989 0.4745 0.6674

We can observe that for the stanford40 dataset, the disjunction
baseline gets a better result, indicating that simple rules, which
can be characterized by fewer premises per rule, are sufficient to
achieve good performance for this easy dataset. Conversely, for
the complex HICO dataset, the conjunction baseline outperforms
the disjunction baseline, indicating that the need for more complex
rules. This is the same as the findings presented in our paper and
conforms to some intuitive understanding, where the difficulty of
the task varied across different datasets, and we need to adaptively
change the complexity of extracted rules according to the dataset,
which shows the importance of reasoning with curriculum learning.

3.3 Case Study
Next, we will provide some generated rules and examples of how
they can be applied for reasoning on given images.

There is a person 
(detection)

There is a skateboard 
(detection)

The image depicts a 
person holding onto 

the skateboard 
(overlap)

A person is performing 
a trick on a skateboard 

(similarity)
CLIP

0.8553

0.8175

0.8175

0.7923

0.7923

Positive!

Figure 3: Jumping the Skateboard

The first example is from the HICO dataset, specifically the
"jumping the skateboard" concept. The rule we generated for this
concept is "There is a person ∧ There is a skateboard ∧ The image
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There is a person 
(detection)

There is a boat 
(detection)

The person is sitting in 
the driver's seat 

(overlap)

The person is holding 
a steering wheel 

(overlap)
CLIP

0.6643

0.6717

0.6643

0.8946

0.6643

Positive!

Can’t detect 
steering wheel

Figure 4: Driving the Boat

depicts a person holding onto the skateboard ∧ A person is performing
a trick on a skateboard ⊩ A person is jumping the skateboard."

The tools they employed are "detection", "detection", "overlap",
and "similarity". For each tool, we evaluated the samples using the
approach described in Section 3. For each conditional symbol, we
obtain a probability value 𝑝 indicating the likelihood of the current
sample satisfying that condition. As the symbols are connected by
conjunction, we take the minimum value among these probabilities
as the final probability of the current sample passing the rule. If
this value exceeds a certain threshold, we consider the sample as a
positive example that satisfies the target concept.

When the specific target object cannot be detected by the present
detection tool, wewill choose to use either the similarity or classifier
tool as a substitute based on the performance of the validation set
as we have described in section 3. For example, in the case of
"driving the boat" shown in Figure.4, the detection tool encounters
an OOD problem and is unable to detect the "steering wheel". In
response, we choose the classifier tool as a substitute, which utilizes
CLIP to extract information from images and the description of
conditions and performs simple binary categorization, and it also
yields excellent results in this case.

From the experimental results and the provided case, it can
be observed that our approach can provide effective and human-
interpretable reasoning rules.

4 Discussion
In this section, we provide some discussion about the dataset of
Alibaba and some corresponding tasks.

The task within the dataset is challenging due to the influence
of policy regulations. Some risks are subtle and require specific
conditions, such as the simultaneous presence of two particular
objects or the absence of mosaic obscuring in critical areas, to be
identified as risks. Consequently, there may be instances of misjudg-
ment and noise during the annotation process. Other approaches,
limited to data-level analysis, often exhibit inferior performance
on complex datasets as they fail to capture the underlying decision
rules. In addition, we conducted a fine-grained analysis where we
extracted some typical sub-categories of ALI-politics. Based on this
analysis, we have evaluated the strengths and the weaknesses of
our method and some of the baselines. The experimental results
are shown below.

The risk type "social hotspots", typically involves sensational so-
cial events, which means that it is usually new and unlikely to have

Table 6: The results of some typical sub-categories

CLIP Symbol-LLM Our
Social hotspots 0.1878 0.3167 1.0000
The 1989 events 0.0078 0.0051 0.0061

appeared directly in the training data of the pre-trained model. As a
result, the performance of the CLIP model is relatively poor in this
aspect. However, these social events exhibit inherent patterns, and
therefore, our method and Symbol-LLM can capture these patterns
and form reasoning chains, leading to better performance. Besides,
our approach introduces a tool library that utilizes the visual modal-
ity to assist reasoning and employs a curriculum method to further
filter out excellent rules, resulting in improved performance.

However, at the same time, current reasoning-based methods
,including our method, also have some limitations. For example, the
risk "The 1989 events" or "The 1989 Tiananmen Square protests and
massacre", refers to a bad event that occurred on June 4th, 1989. It
is often restricted and banned in the Chinese internet environment.
Therefore, it usually cannot be directlymentioned. Some individuals
with malicious intent often try to circumvent these restrictions by
using synonyms or homophones, such as referring to it as the
"VIIV", where "VI" and "IV" represent the Roman numerals for six
and four. These alternative references are diverse and constantly
evolving. Additionally, the mere appearance of the numbers six and
four does not necessarily indicate a violation of the risk. As a result,
reasoning-based methods struggle to find consistently effective
rules and, in the worst-case scenario, may degrade the performance
of the pre-trained model they are based on.

Overall, most of the existing works are constrained by signif-
icant differences in data distributions between the pre-training,
fine-tuning, and inference stages. These variations can impact the
model’s performance and limit its ability to generalize effectively
across different data distributions and may lead to a struggle to
fully comprehend the contextual information present in the current
environment and extract relevant rules.

Our approach, on the other hand, leverages a tool library and
only needs limited training on specific tools to assist large language
models in comprehending unknown information. This supplemen-
tary training enables our method to capture rules more robustly
and successfully tackle complex tasks.

5 Conclusion
In this paper, we propose CurLLM-Reasoner, a novel reasoning
method based on large language models for visual concept recog-
nition, which is able to generate accurate and human-readable
reasoning rules. Experiments show that our proposed method can
significantly improve the performance. The tool library module
and curriculum resampling method enhance the accuracy of the
extracted reasoning rules by large language models. A potential
future work could focus on automatically generating tools which
are semantically consistent, rather than only relying on predefined
tools.
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A supplementary material
A.1 Implementation Details
We do all the experiments with a NVIDIA A100-SXM4-40GB GPU.
In the experiments, for each dataset, we employ curriculum sched-
uler with learning rate of 1𝑒 − 3 and weight decay of 1𝑒 − 4,
and an Adam optimizer for optimization. For ResNet [25] and
DenseNet [28] models, a grid search is conducted to select the
learning rate from {1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2}, and weight decay from
{0, 1𝑒 − 5, 1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 3}. For ViT [15], we finetune on the
google/vit-base-patch16-224-in21k model with learning rate of 1e-5.
For Ram++ [29], we label the training set, computed the tf-idf values
for each tag result of each class, and select the top distinctive terms
with human-in-the-loop as indicators. Whenever these terms ap-
peared in the tags of test data predicted by Ram++, the probability
of that term is increased by 1

3 . In the case of CLIP [47], we fine-
tune it using OpenAI’s ViT-L-14@336px as a base model, and the
probability of a data point satisfying the condition is determined by
calculating the similarity between words and textual concepts. For
Symbol-LLM [60], we employ Vicuna-7b as large language models.

A.2 CurLLM-Reasoner Algorithm
In this section, we provide the pseudo-code of the CurLLM-Reasoner
in alg 1.

Algorithm 1 Curriculum Reasoning Method

Input: concept 𝑐𝑘 , training dataset X𝑡𝑟𝑎𝑖𝑛 , training labels Y
Output: Human-readable reasoning rules 𝑅𝑘
1: Get positive sample set X𝑘 and labels Y𝑘 for concept 𝑐𝑘
2: Initialize 𝑅0

𝑘
according to X𝑘

3: 𝜏0 = 0
4: X𝑣𝑎𝑙 = Curriculum_Resampling(𝜏0,X𝑡𝑟𝑎𝑖𝑛,Y𝑘 )
5: 𝑅0

𝑘
,𝑚0 = Evaluate_Rules(𝑅0

𝑘
,X𝑣𝑎𝑙 )

6: for t = 1 to 𝑇 do
7: 𝜏𝑡 = Dynamic_Difficulty_Adjustment(𝜏0,𝑚0, ..., 𝜏𝑡−1,𝑚𝑡−1)

8: X𝑣𝑎𝑙 = Curriculum_Resampling(𝜏𝑡 ,X𝑡𝑟𝑎𝑖𝑛,Y𝑘 )
9: 𝑅𝑡

𝑘
= []

10: for 𝑟𝑖 in 𝑅𝑡−1
𝑘

do
11: for j = 1 to enhancement_scale do
12: 𝑠

𝑐𝑎 𝑗
𝑖

= Rule_Enhancement(𝑟𝑖 , 𝑐𝑘 )
13: tool𝑐𝑎 𝑗

𝑖
= Tool_Choosing(𝑅𝑡

𝑘
, 𝑅𝑡−1
𝑘

, 𝑠
𝑐𝑎 𝑗
𝑖

)
14: 𝑠

𝑐𝑎 𝑗
𝑖

= (𝑠𝑐𝑎 𝑗
𝑖

, tool𝑐𝑎 𝑗
𝑖

)
15: 𝑅𝑡

𝑘
.append(𝑟𝑖 ∧ 𝑠

𝑐𝑎 𝑗
𝑖

)
16: end for
17: end for
18: 𝑅𝑡

𝑘
,𝑚𝑡 = Evaluate_Rules(𝑅𝑡

𝑘
,X𝑣𝑎𝑙 )

19: end for
20: 𝑅𝑇

𝑘
= Outperform_Softrule(𝑅𝑇

𝑘
)

21: return 𝑅𝑇
𝑘

A.3 Module Analysis
In this section, we will provide further analysis regarding the tool
library and curriculum resampling modules.
tool library. The tool library module aims to improve the evalua-
tion process of data and obtains more accurate and discriminative
rules. Without utilizing the tool library, to evaluate visual data with
text description, we compute the similarity between images and cor-
responding textual descriptions of symbolic conditions using CLIP.
However, large language models may provide some descriptions
that are ambiguous for CLIP and make it challenging for CLIP to
distinguish between similar samples. For instance, for the concept
"riding the cow", one of the conditions generated by a large lan-
guage model is "the people is on the cow". When the subjects in the
text condition perfectly match the image, CLIP may overlook subtle
relational details and provide consistent results between the posi-
tive sample and the negative sample as depicted in Figure 5. In such
cases, incorporating our tool library introduces prior knowledge of
human processing tasks under specific simple situation, enabling
better differentiation between positive and negative examples and
consequently enhancing the model’s performance.

CLIP

Tool
Library

0.2186 0.1836

0 0.6289

The	people	is	on	
the	cow

Figure 5: Case of riding the cow

curriculum resampling. The curriculum resamplingmethodology
aims to capture more accurate rules by better adapting to the diffi-
culty levels at different iterations. Without curriculum resampling,
there is a possibility of learning false associations. For example, in
the concept "cleaning the floor" from the Stanford40 dataset, with-
out using the curriculum resampling, one of the generated rules
is "there is a floor ∧ there is a house ⊩ the person is cleaning the
floor". This is because for the concept "cleaning the floor", almost
all positive samples contain a house and a floor as background
elements. This results in the dominance of information related to
"house" and "floor" in the rule set at a very early iteration, which
limits the reasoning capability of LLMs and makes it fail to fully un-
derstand the meaning of the concept itself and captures erroneous
false associations. The use of curriculum resampling can mitigate
this issue by dynamically adjusting the dataset during iterations.
By modifying the composition of validation samples and increasing
hard samples which may contain the concepts of "house" or "floor",
the evaluation process restricts the rules that capture only these
false associations, leading to more accurate results. After adopting
currculum resampling, one of the captured rules is "there is a broom
∧ the broom is being held by the person ∧ the broom is in contact
with the floor ⊩ the person is cleaning the floor".
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