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Abstract—Video question answering (VideoQA) requires the
ability of comprehensively understanding visual contents in
videos. Existing VideoQA models mainly focus on scenarios
involving a single event with simple object interactions and
leave event-centric scenarios involving multiple events with dy-
namically complex object interactions largely unexplored. These
conventional VideoQA models are usually based on features
extracted from the global visual signals, making it difficult to
capture the object-level and event-level semantics. Although there
exists a recent work utilizing a static spatio-temporal graph to ex-
plicitly model object interactions in videos, it ignores the dynamic
impact of questions for graph construction and fails to exploit
the implicit event-level semantic clues in questions. To overcome
these limitations, we propose a Self-supervised Dynamic Graph
Reasoning (SDGraphR) model for video question answering
(VideoQA). Our SDGraphR model learns a question-guided
spatio-temporal graph that dynamically encodes intra-frame
spatial correlations and inter-frame correspondences between
objects in the videos. Furthermore, the proposed SDGraphR
model discovers event-level cues from questions to conduct self-
supervised learning with an auxiliary event recognition task,
which in turn helps to improve its VideoQA performances
without using any extra annotations. We carry out extensive
experiments to validate the substantial improvements of our
proposed SDGraphR model over existing baselines.

Index Terms—Vision and Language Model, Video Question
Answering, Video Understanding, Spatio-temporal Graph

I. INTRODUCTION

With the rapid development of applications in computer
vision, the research community has encouraged more efforts
towards a deeper understanding of video content. In recent
years, machine learning algorithms have achieved impressive
progress on visual perception tasks, including image classifi-
cation, object detection and segmentation, etc. Nevertheless,
it is still very challenging for machines to achieve human
comparable performances for high-level visual understanding
tasks, e.g., correctly answering questions based on video
contents (VideoQA).

Conventional VideoQA works mainly focus on relatively
simple scenarios where very few events are presented in
the videos and correctly answering questions rarely requires
complex reasoning. In this work, we investigate the more
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Conventional VideoQA

Q: What is the man playing ?
A : Guitar.

Event-Centric VideoQA
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Q: What enemy was killed by stomping after a block was broken by Mario ?
A : Red koopa troopa.
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. What does the man who is on the left do after stand with another man ?
: Point finger to shoot a target.
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Fig. 1. An example demonstrating the differences between conventional
VideoQA and event-centric VideoQA. Conventional VideoQA mainly focuses
on simple scenarios where only one or very few events are involved, without
the necessity of complex reasoning for answering the question. In contrast,
event-centric VideoQA tends to contain multiple events with dynamic and
complex interactions among objects in the videos.

difficult problem of event-centric VideoQA, i.e., visual rea-
soning in event-centric videos containing multiple events with
dynamically complex object interactions. Fig 1 presents an
example demonstrating the differences between conventional
and event-centric VideoQA scenarios.

On the one hand, substantial efforts have been devoted to
the conventional VideoQA tasks that largely rely on low-
level visual perceptions rather than high-level object-related
reasoning. Existing methods for conventional VideoQA com-
bine features of visual signals and textual questions together,
using various mechanisms like attention, memory and graph
to model the motions and appearances in videos [59], [62],
[8], [6], [55]. On the other hand, reasoning in event-centric
videos requires the abilities of well understanding the target
task (question), perceiving principle parts from visual sig-
nals, modeling the complex spatio-temporal relationships in
dynamic visual scenes across multiple events, and carrying
out progressive operations for multi-step reasoning. Several
visual reasoning models for visual question answering mainly
focus on static images with recurrent approaches [40], [17]
or modular approaches [1], [35], [31]. Other works are also
proposed to extend image-based visual reasoning methods to
the video domain through temporal reasoning [48], [63], or
representing videos with spatio-temporal graphs to explicitly



model the relationships between objects for VideoQA [15].

However, existing literature suffers from the following lim-
itations when conducting reasoning in event-centric videos:
i) Conventional VideoQA approaches are usually based on
global visual features that lack sufficient semantic knowledge,
failing to recognize different object instances and complex
interactions between objects in space and time across multiple
events. ii) The recent graph-based approach largely ignores
the impact of questions when constructing the object relation
graphs in videos. iii) In event-centric VideoQA, questions
usually contain useful cues about what events have happened,
which provides useful semantic information seldom exploited
by the existing methods.

To overcome these limitations, we propose a Self-supervised
Dynamic Graph Reasoning (SDGraphR) model for event-
centric VideoQA. Based on the input question, our SDGraphR
model first learns a question-guided spatio-temporal graph for
the corresponding video, which dynamically encodes intra-
frame spatial correlations and inter-frame correspondences
between objects. The spatio-temporal graph is then exploited
through a graph convolutional network (object-level modeling)
and aggregated to capture the long-term relationships in the
course of time (frame-level modeling). Further, the proposed
SDGraphR model is capable of discovering event-related cues
from questions by conducting self-supervised learning with an
auxiliary event recognition task, which satisfies the event-level
semantic constraints for providing a more accurate answer.
This self-supervised procedure in our proposed SDGraphR
model is designed to enable the consistent improvement of
model performance for the VideoQA task, without using any
extra annotations. We demonstrate the effectiveness of our
approach in MarioQA dataset, a gameplay VideoQA dataset
containing abundant events, and show that the proposed SD-
GraphR model with self-supervised training strategies can
achieve significant improvement over existing state-of-the-
art baselines. Then we carry out experiments on real-world
datasets (MSVD-QA, MSRVTT-QA) and achieved competitive
performance with existing baselines, which verify the general-
ization ability of our method on conventional VideoQA case.

To summarize, our work makes the following contributions:

o We propose a Self-supervised Dynamic Graph Reason-
ing (SDGraphR) model for video question answering in
event-centric videos, which explicitly models the com-
plex spatio-temporal intra-frame and inter-frame object
interactions across multiple events by taking the impacts
of questions on the dynamic graphs into consideration.

« We propose to exploit the event-related cues discovered
from questions to conduct self-supervised learning with
an auxiliary event recognition task, which can help to
improve the model performance for visual reasoning
without any extra annotations.

« We conduct extensive experiments and demonstrate the
effectiveness of our proposed SDGraphR model against
several state-of-the-art approaches.

The remainder of this paper is organized as follows. We
review related works in Section II and present our proposed
SDGraphR model in Section III. Section IV describes details
about empirical evaluations over VideoQA datasets in terms

of various metrics, followed by our detailed implementations
introduced in Section V. Last but not least, we conclude the
whole paper and point out research directions deserving further
investigations in Section VI.

II. RELATED WORK

In this section, we review existing works on video repre-
sentation learning with graphs, video question answering and
self-supervised learning.

Video Representation Learning. In the past decades, re-
searchers have developed a series of approaches for modeling
the appearances and dynamics of videos in the settings of
video classification (video action recognition). Before the deep
learning era, the hand-designed features were widely used,
such as the SIFT-3D [45], HOG-3D [28] and Dense Trajecto-
ries [53], [54]. With the rise of convolutional neural networks,
researchers have switched to focus on learning deep features
from videos. One type of architecture is to first utilize spatial
2D ConvNets and then model temporal information [47], [64],
[5]. Another type of architecture is the 3D ConvNets, such as
C3D [20], [50], I3D [3], P3D [42] and R(2+1)D [51], which
are shown to be more powerful over 2D ConvNets for videos.

However, the aforementioned approaches extract features
from the whole visual scenes, without considering any explicit
semantic meanings. Thus, they can hardly recognize different
object instances and model object-object relationships in space
and time, especially when the videos are event-centric and
involve complex object interactions.

Representing Video as Graphs. In order to model semanti-
cally meaningful spatio-temporal interactions in videos, sev-
eral works [56], [41], [13], [65], [37], [36] explore to represent
videos as object-level spatio-temporal graphs in recent years.

The Object Relation Network (ORN) [2] conducts relational
reasoning between pairwise semantic object instances through
space and time. Wang et al. [56] propose to represent videos as
space-time region graphs followed by graph convolutions for
inference. Qi et al. [41] infer a graph from visual scenes within
a message-passing framework for human-object interaction
recognition. Later, Zhang et al. [65] employ a tracking module
to aggregate long-term motion patterns and reason about
interactions between actors and objects. Mavroudi et al. [37]
propose to use a hybrid spatio-temporal visual graph and a
symbolic attributed graph to capture rich visual and semantics.

These approaches are mainly proposed for human action
recognition where very few actions are presented in these
videos, while our work aims at answering complex questions
in event-centric videos. In contrast to previous methods, we
take the input textual question into consideration and develop
a question-guided spatio-temporal graph reasoning method in
the scenario of VideoQA.

Answering Visual Questions in Videos. There have been
many works for multi-step reasoning on static visual scenes
(e.g., CLEVR [23] and GQA [18] datasets). In general, re-
searchers adopt either recurrent approaches or modular ap-
proaches. For recurrent approaches, each reasoning step is usu-
ally implemented with a general-purpose reasoning block [40],



[17], [16], while the modular approaches decompose the rea-
soning procedure into specialized modules [1], [24], [14], [35],
[31]. Despite the impressive progresses that have been made
on static images, visual reasoning on videos yet remains rarely
explored, especially when the videos involve complicated
events. Recently, Song et al. [48] construct a refined GRU
(Gated Recurrent Unit) with temporal attention for VideoQA.
Yi et al. [63] combine a neural video parser with a symbolic
program executor to obtain an answer. Le et al. [30] build
a hierarchical structure with Conditional Relation Network
(CRN) to process input objects and conditions. The replication
and stacking of reusable networks is beneficial for obtain-
ing diverse modalities and contextual information. Recently,
Gao et al. [7] proposed MIST, a multi-modal spatio-temporal
transformer to answer the questions in long videos.

The above works are either feature-based methods that
lack sufficient semantic knowledge, or rely on extra pro-
gram annotations that are not usually available. Recently,
Huang et al. [15] propose a location-aware graph convolu-
tional network (L-GCN) by incorporating the location infor-
mation of an object into the graph. There are also several
methods [46], [21], [10] performing spatial-temporal reasoning
by explicitly modeling the positional relationship between
objects. Grunde-McLaughlin et al. [9] utilize dynamic spatio-
temporal scene graphs to generate questions for QA dataset.
There are also several methods [57], [61], [52], that introduce
hyper-graph, a hierarchical structure that encodes scene sub-
graphs with connections between objects, relations and actions
for video frames and hyper-edges for connected sub-graphs, to
solve the VideoQA problem. However, they require additional
hyper-graph annotations, which is conducive to the solving
the VideoQA problem, but limits its application in real-
world systems. However, the existing VideoQA methods
usually neglect the guidance information from the questions
when operating on the spatio-temporal graphs. In comparison
with the existing methods, our model explores a question-
guided graph-based approach for spatio-temporal reasoning in
videos. Meanwhile, we propose to exploit the question cues
to gather self-supervision for an auxiliary event recognition
task instead of modeling events as symbols for programs
[57] and language representation in the quesiont [9] , which
consistently improves model performances without using any
extra annotations.

Self-Supervised Learning with Auxiliary Tasks. The idea of
exploiting the question cues to form a self-supervised auxiliary
event recognition task in this work is closely related to Self-
Supervised Learning (SSL). As a subset of unsupervised
learning methods, self-supervised learning leverages input data
itself as supervisions [22], [33] without relying on expensive
human annotations, where the model learns data representa-
tions through pre-designed auxiliary tasks and automatically
generated pseudo-labels. Various auxiliary tasks have been
proposed for self-supervised learning in computer vision (e.g.,
colorization [29], inpainting [39], etc.), neural language pro-
cessing (e.g., next word prediction [43], masked language
model [4], etc.) and visual-language understanding [49], [34].
For visual question answering, Zhu et al. [66] propose a self-

supervised task which utilizes the generated balanced data
to overcome the language prior problem recently. In our
work, based on the observation that questions always contain
information about what events have happened, we propose to
exploit the implicit cues in questions through a self-supervised
event recognition task.

III. SELF-SUPERVISED VIDEO QUESTION ANSWERING
WITH DYNAMIC GRAPHS

In this section, we elaborate on the details of our proposed
model. Fig 2 presents an overview of our model based on
a visualized example. We first describe the learning process
of constructing the object-level spatio-temporal graphs for
videos based on an inquired question in Section III-A, and
then present the details of object-level and frame-level graph
modeling in Section III-B, followed by discussions about the
novel self-supervised auxiliary task and joint training strategies
of the proposed SDGraphR model in Section III-C.

A. Dynamic Object-Level Graphs for Videos

For each video, we propose to build a question-guided
spatio-temporal graph to explicitly model the object-object
dependencies in videos. In the spatio-temporal graph, a graph
node corresponds to an object snapshot at a specific time,
which contains various information about the object, such as
identity, position, visual appearance, etc. By linking the objects
within the same frame and objects across different frames,
the spatio-temporal graph is able to serve as an explicit video
representation that reflects the underlying spatial and temporal
dependencies in dynamic visual scenes. We adopt a two-step
procedure to generate the spatio-temporal graphs for videos
and in an alternative view, the graphs can be regarded as one
type of prior knowledge.

Objects as Graph Nodes. Given a clip of the target video,
we first sample a fixed number of frames from the clip.
The sampled frames are then fed into a pre-trained Faster-
RCNN [44] model, which predicts the bounding boxes and
categories of objects that appear in the frames. In detail,
the Faster-RCNN model is based on a ResNet-18 [12] (for
synthetic dataset) and ResNet-101 (for real world dataset)
backbone with Feature Pyramid Network (FPN) [32]. Based
on the predicted bounding boxes, for synthetic dataset, we
feed the frames again into the backbone and apply the
ROIAlign [11] to extract visual features for each bounding
box. And for real-world data, we feed the frames to another
pretrained ResNeXt-101 [58] backbone to enhance the feature
generalization in real-world data and then we directly crop
corresponding feature map from overall feature map to get
the object feature.

Formally, we sample a fixed number (I" = 12) of frames
for each video v where for the t¢;;, frame there are n;
objects {0f}x=1.... .m, in the frame. Thus, there are in total
N = Zthl n; objects, constituting the N nodes in the
corresponding spatio-temporal graph of the video. For the

ki object in the t;, frame, i.e., noted as of, we denote its
bounding box as bf = [2F, yF, wF, hF] which represents the

2D coordinate of its center position, width and height of the
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Fig. 2. Overview of our proposed SDGraphR model. Given a pair of video and question, our model first learns a question-guided spatio-temporal graph
from the extracted objects for the video, encapsulating the object-object interactions in space and time. Subsequently, the graph and node features are fed into
a graph convolutional network to exploit the neighborhood information, and then aggregated into context-aware frame-level features for modeling long-range
relationships over time. We apply a general multi-modal fusion module to produce an adequate answer according to above representations for the given
question. In addition to the primary Question Answering task, we propose a self-supervised auxiliary Event Recognition task, which can consistently boost

the model performance without using any extra annotations.

bounding box. Based on bf, we obtain its visual feature,
ie., a feature map obtained from ROIAlign or direct crop
and then squeeze it into a feature vector v¥ € RP by
average pooling, where D is the channel number over feature
map. Meanwhile, the Faster-RCNN model also generates a
distribution ¢f € R® over all C possible object classes.
Besides, we also take the global scene as an object in each
frame to simultaneously consider the scene as a whole. Finally,
we concatenate the visual feature, object bounding box and
object category together to form the representation of a node,

ie., of =[vF;bl: k] € R, in a spatio-temporal graph.

Learning Question-Guided Graph Edges. For each video,
we link the objects with weighted edges based on the given
question ¢, where larger weights indicate higher possibilities
of interactions between objects, e.g., objects of interest in the
question.

Specifically, we build a spatial graph A°P%* and a temporal
graph A*™P for each video. For simplicity, we re-arrange the
objects {oF =1, Tik=1,.- m, into {0;}i=1, . n, and define
a mapping function 7(-), where 7(0;) = t means that o,
is an object in the t;, frame. Formally, the %[raph adjacency
matrices A% € RNVN*N and AP ¢ RVXN are calculated
as follows, fori=1,--- ,Nand j=1,--- | N:

spat __ F<S>(Oi, 0jlq) if 7(0;)=7(0;) and i 1
i = . (1)
0 otherwise,
temp _ J FW(04,05lq) i 0 < |r(0:) —7(0))| S w
Al = . @
0 otherwise,

where F'(*) and F(*) compute the interaction weights for intra-
frame and inter-frame object pairs respectively, w is an integer
indicating the window size for adjacent frames. The graphs of
our method are completely dynamic. For the static graph [15],

each frame in the video requires constructing a graph with a
fixed number of nodes. Our dynamic method focuses on the
whole video, and each graph created contains all the objects in
the video. The number of graphs in the static method is equal
to the number of frames sampled. However, the number of
graphs in our proposed model is fixed at two, one for spatial
modeling and the other for temporal modeling.

There are two ways to design the object interaction func-
tions: i) heuristic and ii) learnable.

Heuristic Interaction Function. When building the graph
edges heuristically, we follow several assumptions on those
objects that tend to have more correlations:

1) The objects tend to be closer in space — due to
that events usually happen to surround spatially nearby
objects.

2) The objects tend to be more similar in adjacent
frames — due to that the changes of object states over
time can be captured through analyzing adjacent frames.

For intra-frame object pairs, the correlation is in inverse
proportion to the Euclid Distance of the object pair within the
frame, i.e.,

1
(@i, yi) — (5, 95)|
For inter-frame objects, we compute the cosine similarity
in terms of the categorical distributions between each possible

object pair in adjacent frames and link the object pair whose
similarity score is above zero, i.e.,

F(0,05q) = (3)

F(S)(Oi70j) =

ci-Cj

F(t)(oi,o~|q) =F .
! el - llesl

(0, 05) = max(0, )

Learnable Interaction Function. For a question ¢ with M
words, the question words are first mapped into M 300-
dimension randomly initialized vectors. We use a one-layer



Gated Recurrent Unit (GRU) with a hidden dimension of
d, = 512 as the question encoder, then feed the word vectors
into GRU to get a sequence of hidden vectors. We take the final
GRU hidden vector h? € R% as the question representation.
We seek to model the pairwise interactions between two
objects, e.g., 0; and o;, through the inner product of their joint
representations with the given question representation h? as
follows:

F(01,0,]g) = ReLU(WIoy; k%)) - ReLU(W/o,3 A7),  (5)

where W € R(doFda)xde jg 3 Jearnable parameter matrix that
embeds the concatenated object and question features into a
d. = 256 dimensional joint embedding space.

In this way, we build question-guided spatio-temporal
graphs that can encapsulate both spatial intra-frame and tem-
poral inter-frame dependencies in videos simultaneously.

We would like to point out that both configurations of using
heuristic interaction function and learnable interaction function
to construct the spatio-temporal graphs in videos are compared
in our experiments in Section IV-C.

B. Exploiting Spatio-temporal Graphs with Dynamic Multi-
Level Modeling

To capture both the object-level spatio-temporal interactions
and frame-level dynamic relationships, we propose to exploit
the spatio-temporal graphs through object-level and frame-
level modeling in a dynamic manner. For the object-level
modeling, we develop a specific type of graph convolutional
network to exploit the spatio-temporal interactions between
objects. Afterwards, we aggregate the objects in each frame
and directly model the long-term patterns in the course of time
to capture the frame-level dynamic relationships. Besides, to
fully utilize the question as guidance, we employ a multimodal
fusion module to integrate the question and visual features
before obtaining the final answer for the given question.

Spatio-Temporal Graph Convolutions. We employ a graph
convolutional network inspired by [27]. Given the adjacency
matrix A, we first normalize the graph to introduce self-loop
connections and balance the neighboring weights according to
the node degrees:

D, :Z(Ai,j +1i;), A:ﬁfé(A—i—I)ﬁ*%, ©)
J

where I is the identity matrix representing self-connections,
D is the diagonal degree matrix of A + L

The GCN is a layer-wise network that takes the initial node
features as input and updates the features in each layer. In
our work, due to the intrinsic differences between spatial and
temporal relationships, we separately conduct convolutional
operations on spatial and temporal graphs in different layers
and samples. Besides, we use residual connections between

layers to improve the representation capacities of our model.
Formally, we stack the object features {o;};=1,.. n into

O € RV*do and perform the convolutions on spatio-temporal
graphs as follows:

H” =0, 7
H'™ = ReLUAYHYWW), 1=0,---,L-1, (8

where HY) € RN*dn for | =1,.-- L and dj, = 512, W)
denote the network parameters in the /;;, layer. We use L = 6

convolutional layers, where adjacency matrix A® s one of the
{Aspat | Atempy We discuss the effects of different choices in
Section IV-C.

Long-term Patterns in Videos. Upon being processed
through the graph convolutional networks, the object rep-
resentations have aggregated the neighbor information from
nearby objects in the spatio-temporal graphs. Furthermore, to
capture the long-time correlations among objects in videos,
we directly model their long-term dynamic patterns across
frames with a recurrent neural network (RNN). In detail, we
first aggregate the intra-frame objects with average pooling
to obtain frame-level features {v;};=1.. r, then apply a
recurrent neural network (RNN) to capture the inter-frame
relationships. Formally, we have:

{v} = avgpool,,; (split(HH"; 7(-))), ©)
{f;t} = RNN({vt}), (10)

where the split operator splits H(™) into objects belonging to
different frames according to the mapping function 7(-). As
for the RNN structure, we use a one-layer GRU with a hidden
size of 512 in our model.

Applying Fusion Modules. Based on the visual features
{04 }4=1,... 1 obtained through the dynamic modeling for the
spatio-temporal graph, we get the final answer for the given
question through applying our multimodal fusion framework.
We note that a wide range of multimodal fusion approaches
can be applicable in our framework, as long as it accepts
sequential visual and question features as inputs before gen-
erating resultant features as output:

r = FusionNet({0; }¢=1,..., ; {h%, }m=1,.-,M), (11)

where ¥, is the visual feature of ¢;, frame and hl is the
question feature of my;, word.

After concatenating the fused feature r and the question
representation h?, we feed them into a multi-layer perceptron
to compute the possibilities for all candidate answers .A. Then,
after sigmoid activation, the output is p(y,, = 1|¢,v), where
Ya; € {0,1} indicates whether the i;, answer in candidate
answer set A, i.e., a; can be the correct answer to the target
question. The final answer will be selected as the one with the
highest probability, i.e., § = argmax; p(ya, = 1|g,v).

C. Event Recognition as Self-supervision

When reasoning in event-centric videos, whether a specific
event happens or not can serve as informative signals. These
signals can potentially benefit the model learning process in
better understanding the event-centric videos. The existing
VideoQA approaches usually neglect this type of information
implicitly carried in questions. To tackle this issue, in addition
to the primary Question Answering task, we propose to con-
struct a self-supervised auxiliary Event Recognition task that
aims to boost the performance of the primary task through
applying event-level semantic constraints.

Based on the observation that questions always contain
information about what events have happened, we exploit



the cues in questions to gather self-supervision for the event
recognition task without using any extra manual annotations.
For example, the question “Which enemy was stomped by
Mario before a shell hit a goomba ?” implies that at least two
events “Mario stomped an enemy” (Mario, Stomp, Enemy)
and “A shell hit a goomba” (Shell, Hit, Goomba) happen in
the corresponding video. We also show another example in
MarioQA dataset in Fig 3, which contains both positive and
negative events.

Self-Supervison from Questions. Given that the names in
the MarioQA dataset tend to be relatively rare in daily life
(e.g., Mario, goomba, koopa troopa), we manually define a
collection of concepts for the given dataset, including agents
in the scenes (e.g., Mario, Goobma, Enemy, etc.), items (e.g.,
Mushroom, Coin, Block, etc.) and actions (e.g., Jump, Stomp,
Kick, Eat, etc.).

We design an automatic procedure to parse each question
into a list of concepts and assemble them into several event
descriptors, i.e., tuples such as (subject, action) or (subject,
verb, object), which are considered as the positive events in
the corresponding video. Our design benefits in the advantage
of deriving more positive events through concept hierarchies.
For example, considering the positive event (Mario, Stomp,
Goomba) and the fact that Goomba is one type of Enemy, we
can infer that (Mario, Stomp, Enemy) is also a valid positive
event. In total, there are 116 events that have been observed
from the questions in the MarioQA dataset. As for the negative
events involved in each question-video pair, we refer to the
object detection results for the video and identify those events
that involve non-existing objects as negative events. In this
way, the event recognition task can be formulated as a multi-

label classification task over all candidate events.
We resort to the frame-level features {¥,} in videos for
event recognition. Formally, we have:

P (yey [v) = sigmoid (MLP.(avgpool, ({8:}))) . (12)

Here p(°")(y,, |v) is the predicted possibility of y.,, where
Ye,, = 1 indicates event ey is positive and y., = 0 means
negative. MLP,, introduces extra parameters for this task.

We use the binary cross-entropy (BCE) loss to train our
model in an end-to-end fashion for the question answering
task and event recognition task simultaneously. Formally, the
loss of each data sample for the question answering task is
formulated as follows:

> (Ya;logp(ya,) + (1 = ya, log(1 — p(ya,;))) , (13)
a; EA

L‘,(qa) — _

where 1 is the index of answer. Similarly, we compute the loss
L(e7) for the event recognition task.

[.(ET) =— Z (yeklogp(yek) + (1 - yﬁk)log(l - p(yek))) ’ (14)
e, €E
where £ is the set of possible events. Note that we only
consider the positive and negative events and ignore the
uncertain events when computing the loss.

Joint Training Strategies. We consider two joint training
strategies: multi-task and pretrain-finetune. For the multi-task
training strategy, we apply a one-phase training procedure with
a total loss £ = £(9%) 4+ 7L(e") where 7 is a hyper-parameter

to balance the multi-task losses. As for the pretrain-finetune
training strategy, we apply two training phases sequentially:
1) Minimize the £(¢) loss for the event recognition task;
2) Transfer the pretrained model parameters and finetune
on the primary question answering task, i.e., minimize
the £(9%) loss.

We close this section by pointing out that both joint training
strategies can significantly improve the VideoQA performance,
which is validated in Section IV-B.

IV. EMPIRICAL EXPERIMENTS

We conduct extensive experiments on the MarioQA
dataset [38], a synthetic VideoQA dataset collected from Super
Mario Bros gameplay videos. There are 13 hours of gameplay
videos totally in this dataset. These videos are divided into
clips, and each clip contains 11.3 events on average.

Because of its event-intensive characteristic and excessive
requirements for event-centric spatio-temporal modeling, the
MarioQA dataset serves as an excellent benchmark for evaluat-
ing the ability of high-level reasoning in videos. Furthermore,
the semantics in gameplay videos are clear, unambiguous,
and relatively easy to learn compared with real-world videos,
which makes it a good test-bed for this challenging research
field. Thus, we think MarioQA is the most suitable dataset in
our target multi-agent multi-event VideoQA scenario so far.

Besides, to prove the generalization of our method, we
also conduct experiments on real-world VideoQA datasets.
We choose MSVD-QA [59] and MSRVTT-QA [59], two of
the most commonly used datasets for evaluation. These two
datasets are generated from two video description datasets,
MSVD and MSR-VTT [60], respectively with NLP tools.
The MSVD-QA dataset contains 1970 videos and over 50k
Question-Answer pairs (QA pairs). The MSRVTT-QA dataset
is larger, containing over 10k videos and 243k QA pairs. More
detailed statistics are shown in Table I. The questions in both
datasets can be divided into 5 types, i.e., what, who, how,
when, and where. The detailed statistical results are shown in
Table II and Table III.

We remark that compared with MarioQA which involves
multiple events per question for high-level reasoning, the two
real-world VideoQA datasets, MSVD-QA and MSRVTT-QA,
mostly contain questions involving only one event and thus fail
to utilize our proposed event recognition self-supervised learn-
ing module. Therefore, we will test our proposed SDGraphR
model without event recognition self-supervised learning mod-
ule on the two real-world datasets.

We first describe the comparative baselines and several
variants of our model in Section IV-A, then analyze their
performance in Section IV-B. To gain more insights into our
proposed method and demonstrate its effectiveness, we carry
out several ablation studies and provide visualization examples
in Section IV-C.

A. Baselines and Model Variations

In this section, we briefly describe the baseline approaches
for comparison as well as several variants of our proposed SD-
GraphR model. The baseline approaches include conventional
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Q: What item was released after an enemy was killed ?

A : Mushroom.
PE : 'Appear’, 'Appear,item’, 'Kill,Enemy’, ‘Kill'

NE : 'Kill, GreenKoopa', 'Appear,GreenKoopa', 'Shoot,

Fig. 3.

Fireball’, 'Appear,BulletBill', 'Kick,Shell’ ...

An example illustrating our definition of positive events (PE) and a subset of negative events (NE). Given the words 'released’ and ’kill’, it is intuitive

to select "Appear’, ’Kill’ and their associated concepts as positive events. Additionally, negative events can be derived from the interplay between the question
and visual concepts. For instance, the event 'Kill, GreenKoopa’ involves killing, but it doesn’t qualify as a positive event in this context. The reason is that
’GreenKoopa’ is not present in the video clip, rendering this specific event a negative one despite the thematic similarity to a positive event.

TABLE I

Statistics on selected datasets. WE SHOW THE BASIC INFORMATION OF SELECTED DATASETS IN SEVERAL ASPECTS SUCH AS THE NUMBER OF VIDEOS,

THE NUMBER OF CLIPS, THE NUMBER OF QA PAIRS, THE MEAN LENGTH OF

QUESTIONS AND THE NUMBER OF UNIQUE CANDIDATE ANSWERS.

Dataset | Videos | Clips | QA pairs | Mean question length | Unique Answers
MarioQA 12 167,036 187,757 11.14 57
MSVD-QA 1,970 1,970 50,505 7.62 1,852
MSRVTT-QA | 10,000 10,000 243,680 8.35 6,211
TABLE 11 using a GRU pre-trained on a large corpus.

Detailed statistics on MSVD-QA dataset.

Split | Clips QA pairs Quation Type

What Who How When Where
Train | 1,200 30,933 [19,485 10,469 736 161 72
Val | 250 6,415 3,995 2,168 185 51 16
Test | 520 13,157 | 8,149 4,552 370 58 28
All \ 1,970 50,505 \ 31,629 17,199 1,291 270 116

TABLE III
Detailed statistics on MSRVTT-QA dataset.

Split | Clips QA pairs Quation Type

What Who How When Where
Train| 6,513 158,581 | 108,792 43,592 4,067 1,626 504
Val | 497 12,278 8,337 3,439 344 106 52
Test | 2,990 72,821 | 49,869 20,385 1,640 677 250
All \10,000 243,680 \166,998 67,416 6,051 2,409 806

VideoQA models and state-of-the-art reasoning models. Be-
sides, our model variations include different variants equipped
with different fusion modules and self-supervised training
strategies. The following methods including our proposed
approach are compared.

e V-Only The V-Only model predicts the answer without
knowing the questions, and the video features are ex-
tracted from a 3D fully convolution network (3DFCN).

e Q-Only The Q-Only model predicts the answer without
referring to the videos, and the questions are embedded

1-Step Temporal Att. The single-step temporal attention
model applies a soft attention mechanism for each frame
based on the question.

Spatio-Temporal Att. As for the spatio-temporal at-
tention model, the soft attention mechanism is applied
throughout the spatio-temporal space.

Global Context Embedding This is the state-of-the-art
results reported on the MarioQA dataset, which flattens
the video features throughout the spatio-temporal space
and uses a multi-layer perceptron for video embedding
to capture the global context. The video features and
question features are jointly embedded into a common
space for final classification.

The above five baselines are all described in the MarioQA

dataset [38], readers can refer to Mun et al.’s work [38] for
more detailed information.

o« HCRN The Hierarchical Conditional Relation Network
(HCRN) [30] is a video question answering methods
based on global-level visual feature. HCRN consists of
mutiple Conditional Relation Network (CRN), in which
CRN performs reasoning on objects (i.e. the visual fea-
tures of multiple clips) under conditioning feature (i.e.
the text feature and high level visual semantic). HCRN
makes the reasoning process a replication, rearrangement
and stacking of basic blocks to conduct high-order and
multi-step reasoning.

L-GCN L-GCN is a video question answering method
based on object-level visual feature. L-GCN takes a fixed
number of objects from a single frames of the video clip.
Then for every frame in the video, we can obtain graph at



the same size. L-GCN apply graph convolutional network
on these object graph for extracting visual features that
containing the interactions between different objects.

e« ORN + MAC The Object Relation Network (ORN) [2]
is an object-level model for action recognition, which
models pairwise interactions between objects in videos
to capture spatio-temporal relationships. The Memory
Attention and Composition (MAC) network [17] is a
state-of-the-art recurrent reasoning module for visual
reasoning in static images, where each MAC cell serves
as a general-purpose reasoning step. We combine the two
models together to form an ORN + MAC baseline for
object-level reasoning in videos.

e SDGraphR.BAN and SDGraphR.MAC Our proposed
SDGraphR.X model takes X as the multimodal fusion
module. In our experiments, we employ two repre-
sentative modules, i.e., the Bilinear Attention Network
(BAN) [25] as well as the Memory Attention and Com-
position (MAC) network [17], as the multimodal fusion
module in our proposed SDGraphR model.

o SDGraphR.MAC (qa+er) This variant further improves
the SDGraphR.MAC model with our proposed self-
supervised auxiliary event recognition task. The ga+er
represents training with the primary question answering
task and the auxiliary event recognition task simultane-
ously. We employ the pretrain-finetune training strategy
described in Section III-C and will discuss other multi-
task joint training strategies in ablation studies later in
Section IV-C.

For the two real world datasets that are not specifi-
cally designed for event-centric VideoQA (i.e., one ques-
tion only refers to one single event), we directly employ
recent methods as baselines, and compare them with the
proposed SDGraphR.MAC (which consistently outperforms
SDGraphR.BAN) model without self-supervision signals for
event recognition task.

B. Performance Analysis

Results on the MarioQA dataset. As shown in Table IV, we
provide the QA accuracy of our model on MarioQA dataset
versus the baselines. In comparison with the conventional
VideoQA model Global Context Embedding baseline, our best
model SDGraphR.MAC(qa+er) improves the overall accuracy
by 7.31%, achieving the best performance among all models.
In addition, our model also exceeds the baseline methods.
Even without event supervision, our SDGraphR model can
still surpass these methods, which shows that the dynamic
graph construction and text guided optimization method can
better represent the video features containing events than the
global visual feature and static graph methods. Our model
obtains various accuracy boosts for different question types,
where the most significant improvement comes from the event-
centric questions, indicating that our model can better capture
the dynamics of events in the videos. We observe that the
Global Context Embedding baseline outperforms the object-
level reasoning model ORN + MAC by 1.22%, demonstrating
that the combination of object-level action recognition with

reasoning model is not effective. When equipped with the
self-supervised auxiliary event recognition task, the ga-+er
augmented variants consistently improve the performance
of various base models, e.g., +4.73% for ORN+MAC and
+1.66% for SDGraphR.MAC.

Results on the real world datasets. As shown in Table V,
we provide the results of comparisons between our SD-
GraphR.MAC model and several recent baselines. Here we do
not use the SDGraphR.MAC(ga+er) model because in most
conventional VideoQA datasets there is only one event in a
video clip, which does not match the event-centric setting that
our event recognition module is designed for. In addition,
we provide the comparisons of different question types in
Fig 4 and Fig 5 for baselines that take question types into
account. Comparing with these recent baseline methods, our
SDGraphR.MAC model surpasses all the baselines in terms
of overall QA accuracy while using the fewest video frames.
Given that many of the baseline methods also need spatio-
temporal graph to conduct reasoning, the experimental results
show that our proposed model can utilize the fewest frames
to build a more effective spatio-temporal graph, demonstrating
the superiority of our question-guided spatio-temporal graph
construction process.

To further explore the impact of different numbers of sam-
pled frames on the prediction accuracy, we gradually increase
the number of sampled frames from 1 to 32 and obtain the
corresponding accuracies of our proposed SDGraphR.MAC
model. The comparisons between different sampling numbers
of the SDGraphR.MAC model and other baseline methods are
illustrated in Fig 6. Here we can see that our SDGraphR.MAC
model is able to maintain good stability when the number
of sampled frames is between 2 and 24. When the sampling
number is 1, the accuracy decreases, which is reasonable
because a single frame can hardly provide any dynamic
information in video reasoning. Besides, there is another drop
when the number of sampled frames approaches 32, where one
possible reason may be that it is necessary to correspondingly
increase the complexities of temporal reasoning graph in order
to handle the increasing number of sampled frame.

We note that the accuracy of our SDGraphR.MAC model is
able to exceed 40% when we only sample two frames from
each video. On the one hand, this shows that SDGraphR.MAC
can build adequate spatial-temporal relationships between the
two frames. On the other hand, this also validates the stability
of the temporal reasoning step in SDGraphR.MAC which
demonstrates excellent performances when it starts to obtain
temporal information from two sequential frames.

More Analysis of the self-supervised event recognition.
As shown in Fig 7, when jointly training the primary
Question Answering task with the auxiliary Event Recog-
nition task, both SDGraphR.MAC(qa+er, multi-task) model
and SDGraphR.MAC(qa+er, pretrain-finetune) model signif-
icantly outperform the SDGraphR.MAC baseline at all per-
centage levels of training data. Specifically, the multi-task
strategy obtains a larger accuracy boost when using less
training data, while the pretrain-finetune strategy demonstrates
more consistent and substantial improvement with an increas-



TABLE IV
Results on the MarioQA dataset. WE SHOW THE OVERALL QUESTION ANSWERING ACCURACY AND THE ACCURACIES FOR DIFFERENT QUESTION
TYPES. THE NT, ET, HT ARE THE DEGREES OF TEMPORAL RELATIONSHIPS INVOLVED IN THE QUESTION, REPRESENTING NO TEMPORAL, EASY
TEMPORAL, HARD TEMPORAL, RESPECTIVELY. THE QUESTIONS ARE ALSO CATEGORIZED INTO DIFFERENT TYPES BASED ON THE QUERY
PREFERENCES, I.E., EVENT-CENTRIC, STATE AND COUNTING.

Method |Overall| NT ET  HT |Event State Count
V-Only 29.10 |21.16 35.32 34.00| - - -
Q-Only 38.34 139.79 35.67 39.65| - - -
1-Step Temporal Att. 66.82 | 64.28 69.64 67.21 - - -
Spatio-Temporal Att. 69.26 |66.38 72.73 69.27| - - -
Global Context Embedding | 70.02 |66.47 75.10 68.89| - - -
HCRN [30] 72.54 |68.86 77.96 71.15]80.53 84.13 52.85
L-GCN [15] 72.00 |68.36 76.90 71.30|79.97 97.75 51.57
ORN + MAC 68.80 |66.49 71.88 68.37]75.76 86.30 51.11
ORN + MAC (ga+er) 73.53 |71.02 77.38 72.37|81.92 91.90 52.40
SDGraphR.BAN 73.81 |72.31 77.36 71.29|81.68 95.58 53.68
SDGraphR.MAC 75.67 |75.01 79.02 71.98|84.25 98.23 53.81
SDGraphR.MAC (qa+er) | 77.33 |75.63 81.72 73.94|86.97 92.93 53.36
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Fig. 4. Comparisons of different types in MSVD-QA. Our method achieves the best performances in question type what and who where question type
what and who accounts for the largest proportion among all question types (account for 96.53% in the test set). The excellent performances in question type
what and who makes our SDGraphR.MAC model achieve the best overall performances compared with other baseline methods. It must be mentioned that the
lagging 42.89% under question type where only means that we have answered 12 more questions incorrectly, while the leading 2.76% under question type

who means that we have answered 1256 more questions correctly.

ing percentage of training examples. The comparisons of
SDGraphR.MAC(qa+er, multi-task), SDGraphR.MAC(qa+er,
pretrain-finetune) as well as SDGraphR.MAC verify that our
proposed self-supervised auxiliary event recognition task in-
deed helps the model to learn the correlations between events
and visual contents, thus reducing the requirement for extra
training data upon achieving the same accuracy. We would
like to point out that since our proposed models exploit the
implicit cues in each question to gather the self-supervision
for the event recognition task, there will no need for any extra
manual annotations in each QA pair.

C. Ablation Studies and Visualizations

In order to gain more insights into our method, we conduct
several ablation studies on the MarioQA dataset and provide
several visualized examples in Fig 8.

Ablation Studies #1: Effectiveness of several components.

We measure the effects of each component of our SD-
GraphR model by evaluating the accuracy when this part gets
removed or replaced with a simpler design.

In order to evaluate the effects of spatio-temporal graph
convolutions, we replace it with a fully-connected layer fol-
lowing a ReLU activation. As shown in Table VI (a), replacing
the spatio-temporal graph convolutions leads to an accuracy
decrease of 2.47%, and removing the long-term temporal



Comparison of different types in MSRVTT-QA
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Fig. 5. Comparisons of different types in MSRVTT-QA. Our method achieves the best performance in question typewho and competitive performances to

other baseline methods in other question types such as what and how.
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Fig. 6. Comparisons on different numbers of sampled frames between our method and state-of-the-art baselines. The horizontal axis indicates the
number of sampled frames, while the vertical axis represents the accuracy on the MSVD-QA dataset. For MASN, we assume that the length of each clip
is 10 seconds. In the case of DualVGR, we adhere to the standard MSVD-QA setting by sampling 8 clips per video. This results in a total of 128 frames,
with each individual clip comprising 16 frames. Besides, we show the detailed results under different numbers of sampled frames for our method, where the
accuracy for each configuration is annotated beneath its respective data point, and the number of sampled frames presented in parentheses.

TABLE V

Results on real world dataset. WE SHOW THE RESULTS OF DIFFERENT
METHODS WITH RESPECT TO THE ACCURACY AND THE NUMBER OF
SAMPLED FRAMES NEEDED TO ACHIEVE THE REPORTED PERFORMANCES

IN EACH DATASET.

Method | Sampled frames | MSVD-QA | MSRVTT-QA
AMU [59] 20 + 20 x 16 32.00 32.50
HME [6] 20 33.70 33.00
HCRN [30] 8 x 16 36.10 35.60
L-GCN [15] 20 34.30 /
Jin et al. [21] 30 38.20 37.60
MASN [46] 6 x clip time 38.00 35.20
MSPAN [10] 16 40.30 37.80
DualVGR [55] | (8 or 16) x 16 39.03 35.52
SDGraphR MAC | 12 | 4180 | 3842

modeling (i.e., without the RNN) causes a decrease of 3.14%.
Ablation Studies #2: Design Choices for the Spatio-

TABLE VI

ABLATION RESULTS ON THE MARIOQA DATASET.

Ablation | Accuracy | Acc.Diff
- Base model (ga) 75.67 0.00
a) - model components
- w/o st-graph convolution 73.20 -2.47
- w/o long-term modeling 72.53 -3.14
b) - spatio-temporal graph
- with heuristic s-graph 75.28 -0.39
- with only s-graph (learnable) 75.17 -0.50
- with only s-graph (heuristic) 73.94 -1.73
- with only t-graph 75.45 -0.22
- mixing s-graph and t-graph 73.88 -1.79
- w/o residual connections 73.37 -2.30
c) - self-supervised training
- with multi-task 76.46 +0.79
- with pretrain-finetune 77.33 +1.66




TABLE VII
EXAMPLES OF SELF-SUPERVISION FOR THE AUXILIARY EVENT RECOGNITION SELF-SUPERVISED LEARNING TASK. WE SHOW THE POSITIVE EVENTS
EXPLOITED FROM THE QUESTION ITSELF. WE LIST THE POSITIVE EVENTS THAT CAN BE DIRECTLY IMPLIED FROM THE QUESTION, AS WELL AS NEW
POSITIVE EVENTS IN TURN DERIVED FROM THE EXISTING POSITIVE EVENTS.

Questions

Positive Events

How many goombas were killed by fireballs ?

(Kill, Goomba, Fireball), (Kill); (Kill, Goomba);

How many times did Mario eat coins before a fireflower appears ?

(Eat,Coin); (Appear,FireFlower); (Eat); (Eat,Item); (Appear); (Appear;Item);

Where did a red koopa troopa appear after Mario held a shell ?

(Appear,RedKoopa); (Hold,Shell); (Appear,Enemy); (Appear);

Where did Mario eat an item after killing a green koopa troopa ?

(Eat,Item); (Kill, GreenKoopa); (Eat); (Kill); (Kill, Enemy);

Where did Mario punch a mushroom block before hitting a coin block ?

(Hit, Mushroom Block); (Hit,Coin Block); (Hit,Block)

Where did Mario stomp on an enemy before kicking a shell ?

(Stomp,Enemy); (Kick,Shell); (Stomp)

Who did Mario kill after the appearance of a bullet bill

(Kill); (Appear,BulletBill); (Appear); (Appear,Enemy);

1 == STGraphR.MAC(ga+er,pretrain-finetune)
=¥= STGraphR.MAC(qa+er,multi-task)
1 =@ STGraphR.MAC(ga)
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Fig. 7. Comparisons of QA accuracies on the MarioQA dataset
with/without self-supervised auxiliary event recognition task. The y-axis
denotes the QA accuracy, while the x-axis shows the percentage of training
examples.

Temporal Graphs.

In our full model, we stack the learnable spatial graph
and heuristic temporal graph in the order of SSSTTT when
performing convolutions, where we use .S/ for “heuristic spa-
tial/temporal graph” and S / T for “learnable spatial/temporal
graph”. As shown in Table VI (b), replacing the learned s-
graphs with heuristic ones (SSSTTT) leads to an accuracy
decrease of 0.39%, meanwhile, using only the heuristic s-
graphs performs much worse than the learnable ones (—1.73%
v.s. —0.50%). The accuracies drop by different degrees when
using only the s-graphs or the t-graphs (i.e., —0.22% and
—0.50%). It is also possible to mix the s-graph with t-graph
to form a unified graph, but it performs 1.79% worse than
to process them individually. As for the graph convolutions,
removing the residual connections between layers harms the
performance by 2.30%. These results validate the effectiveness
of our design choices for the spatio-temporal graphs.

Visualizations. Fig 8 illustrates a couple of examples with
videos and the questions, where we compare our proposed SD-
GraphR.MAC(qa+er) model with the ORN+MAC approach. It
is quite clear that the proposed SDGraphR.MAC(ga+er) model
demonstrates its superiority over existing method through
correctly answering questions involving more complex events
with dynamic patterns.

V. IMPLEMENTATION DETAILS

We sample 12 frames from each video with a linspace
method, i.e., the same intervals between two adjacent sampled
frames. Before being fed into the object detector, the video
frames are normalized by extracting the mean RGB values
of the dataset. We apply a batch normalization layer [19] on
the object’s visual features v before running the graph con-
volutions. In our model variants, we adopt two representative
modules (the Bilinear Attention Network (BAN) [25] and the
Memory Attention and Composition (MAC) network [17]) as
the multimodal fusion module to reach an answer for the given
question. In detail, the BAN module uses 2 glimpse operations
and sets the hidden size equal to 512, while the MAC module
performs 4 recurrent steps.

In the experiments, we follow the official train/validation
splits of the MarioQA, MSVD-QA and MSRVTT-QA dataset.
We constitute a set of candidate answers that appear at least
10 times in the training set. The probability of being the
correct answer is predicted by a multi-layer perceptron (MLP)
classifier with the dimensions of (1024, 2048, classes).

We train our model using the Adam optimizer [26] with
a batch size of 8 and an initial learning rate as 0.00005 for
MarioQA dataset, and with an initial learning rate as 0.0005
for real world datasets, setting batch size to 16 for MSVD-QA
dataset and 64 for MSRVTT-QA dataset. The initial learning
rate gradually warms up to 1x, 2x, 3x, 4x times larger during
the first 4 epochs, and decays by 50% for every 2 to 5
(depending on the size of dataset) epochs after the 10, epoch.
For the multi-task training strategy, we set the hyper-parameter
n = 0.5 to balance the two multi-task losses between Question
Answering and Event Recognition.

In Table VII, we provide more examples showing that our
SDGraphR model is able to exploit the cues in questions to
gather self-supervision for the auxiliary event recognition self-
supervised learning task. We list the positive events that can
be directly implied from the question, as well as new positive
events in turn derived from the existing positive events. Take
the last example in Table VII as an example, three positive
events, i.e., (Kill), (Appear, BulletBill) and (Appear) can be
discovered directly from the given question, and another new
positive event, e.g., (Appear, Enemy), can then be derived
based on the three discovered positive events.



Q: What type of stage is Mario in?
GT Answer: castle.
Base: castle. v/ Ours: castle. v/

Q: What enemy was killed by a fireball after a
fireflower block was hit by Mario?

GT Answer: goomba.

Base: red koopa troopa. X Ours: goomba. v/

Q: By what means did Mario attack a spiky after
Mario killed a red koopa troopa?

GT Answer: by a shell.
Base: by stomping. X Ours: by a shell. v/
Q : How many enemies were killed by Mario?
GT Answer: 4.

Base: 2. X Ours: 3. X

Fig. 8. Visualized examples on MarioQA. We show the results of the SDGraphR.MAC(qa+er) model and compare it with the ORN + MAC baseline.

VI. CONCLUSIONS

In this paper, we study the problem of video question
answering (VideoQA) and propose the Self-supervised Dy-
namic Graph Reasoning (SDGraphR) model for VideoQA in
event-centric scenarios. Our SDGraphR model learns question-
guided object-level spatio-temporal graphs, which dynamically
encapsulate the intra-frame spatial correlations and inter-frame
temporal correspondences among objects in the video. The
self-supervised learning framework exploits the implicit cues
hidden in questions to gather self-supervision for an auxiliary
event recognition task. By utilizing object-level representations
and imposing event-level semantic constraints, our model
consistently boosts the performances in various experimental
settings. We validate the effectiveness of our approach in an
event-centric gameplay VideoQA dataset and two conventional
real-world VideoQA datasets, showing that our proposed SD-
GraphR model exhibits superior performances and achieves
substantial improvement over several state-of-the-art baselines.

The event-centric approach is suitable for scenes that con-
tain a large number of interactions in a short time like game
videos or scenes that contain a large number of objects like
sport videos, however, when the interactions and objects be-
come more and more complex, well-designed event auxiliary
also needs to be further improved. In the future, we will
explore how to maintain the effectiveness and efficiency of
graph modeling in longer videos or more sampling frames. At
the same time, complex hierarchical relationships rather than
simple inclusion relationships of real-world events also need
to be further explored.
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