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Abstract

Graph neural architecture search (NAS) has achieved great
success in designing architectures for graph data processing.
However, distribution shifts pose great challenges for graph
NAS, since the optimal searched architectures for the train-
ing graph data may fail to generalize to the unseen test graph
data. The sole prior work tackles this problem by customizing
architectures for each graph instance through learning graph
structural information, but fails to consider data augmenta-
tion during training, which has been proven by existing works
to be able to improve generalization. In this paper, we pro-
pose Data-augmented Curriculum Graph Neural Architecture
Search (DCGAS), which learns an architecture customizer
with good generalizability to data under distribution shifts.
Specifically, we design an embedding-guided data genera-
tor, which can generate sufficient graphs for training to help
the model better capture graph structural information. In ad-
dition, we design a two-factor uncertainty-based curriculum
weighting strategy, which can evaluate the importance of data
in enabling the model to learn key information in real-world
distribution and reweight them during training. Experimental
results on synthetic datasets and real datasets with distribu-
tion shifts demonstrate that our proposed method learns gen-
eralizable mappings and outperforms existing methods.

1 Introduction
Graph neural networks have achieved great success in pro-
cessing non-Euclidean data such as social networks, traffic
networks, molecular structures, etc. They use the informa-
tion of adjacent nodes to update the features of nodes, and
can capture the structure of graph data. In recent years, many
excellent graph neural networks, such as GCN (Kipf and
Welling 2017), GAT (Velickovic et al. 2018), and GIN (Xu
et al. 2019), have been designed for various datasets and
tasks. However, manually designing network architectures
requires expert knowledge and significant amounts of effort.

With the rise of neural architecture search (NAS), graph
neural architecture search methods have been used to cus-
tomize graph neural network architectures for different
datasets and tasks. Compared to manually designed net-
works, graph NAS methods (Gao et al. 2020a; Zhou et al.
2022a) have achieved better results. Existing graph NAS

*Corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

works (Wei et al. 2021; Gao et al. 2020b) mainly focused on
searching for one architecture for a given dataset. This strat-
egy works well for independently and identically distributed
(I.I.D.) datasets, where the training data and testing data
come from the same distribution. However, in graph clas-
sification datasets with distribution shifts between training
and testing, the architectures found using the training dataset
may generalize poorly to data under a different distribution.
GRACES (Qin et al. 2022) is the sole work to consider
distribution shifts and out-of-distribution generalization in
graph NAS. They attempt to produce customized architec-
tures by learning the feature of different graphs through de-
coupling graph encoding, and then using the feature infor-
mation to customize the architecture for each graph. By pro-
ducing different architectures for each graph, it is possible to
achieve great performance in tasks with distribution shifts.

However, customizing the architecture for datasets with
distribution shifts still faces several important challenges.
The existing graph NAS methods designed for datasets with
distribution shifts failed to consider data augmentation dur-
ing training, which has been proven by existing works (Zhao
et al. 2021; Wu et al. 2022a; You et al. 2020) to be able
to improve generalization. Merely learning from the graphs
present in the training dataset often fails to effectively cap-
ture the crucial graph structural information, thus impact-
ing the performance of customized architectures in existing
works. Additionally, since distribution shifts exist between
the training dataset and the test distribution, the importance
of different graphs in enabling the model to learn key infor-
mation in real-world distribution can vary significantly. Ex-
isting methods have treated all data equally without consid-
ering their importance, which leads to inferior performance.

In order to solve these challenges, we propose a Data-
augmented Curriculum Graph Neural Architecture Search
(DCGAS) approach to produce customized architectures
from graph data. To enable better generalization ability with
limited training data, we design an embedding-guided data
generator to generate new data for training. It adds an
embedding guidance module to a discrete graph diffusion
model, allowing for the generation of graphs with similar
structures to a given graph. Moreover, to better facilitate im-
portant graphs in the training dataset for further enhancing
OOD generalization ability, we use a two-factor uncertainty-
based curriculum weighting strategy to schedule the training



data. Specifically, we design a two-factor uncertainty-based
curriculum weighting strategy that measures the uncertainty
of the architecture customizer’s performance on data. Higher
uncertainties indicate data that should be used more during
training, and therefore are assigned higher weights. Exper-
imental results on synthetic datasets and real datasets with
distribution shifts demonstrate that our proposed method is
able to learn generalizable architecture customizers that out-
perform existing methods.

Our contributions are summarized as follows:
• We propose a graph NAS method, DCGAS for graph

classification, which learns the mapping from graph data
to architectures and is able to customize architectures for
graph data under distribution shifts.

• We design a data generator with embedding-guided dis-
crete diffusion, which can generate new graph data with
similar structures to a given graph for training.

• We design a data scheduler with two-factor uncertainty-
based curriculum weighting, which can evaluate the im-
portance of data and reweight them during training.

2 Preliminaries
2.1 Graph neural architecture search
We denote the training dataset by Dtrain = (Gtrain,Ytrain),
where Gtrain = {Gi} is the set of training graphs and
Ytrain = {yi} is their corresponding labels. Similarly, let
Dtest = (Gtest,Ytest) be the testing dataset. Graph neural ar-
chitecture search methods aim to choose architectures from
a search space A such that the model after training optimizes
the loss on the testing set:

A∗ = argminA∈A L(A, θ∗,Dtest)

s.t. θ∗ = argminθ L(A, θ,Dtrain)
, (1)

where L is the loss function and θ is the network parameters.
Graph neural architecture search learns to produce an ar-

chitecture that is optimal for the whole dataset. However, for
graph classification tasks, since the training dataset and the
testing data often have different distributions of graphs, the
optimal architectures can vary for different graphs. There-
fore, it can be advantageous to allow using different archi-
tectures based on the graph. GRACES (Qin et al. 2022) first
studied the problem of customizing architectures based on
input data, and achieved superior results on several graph
classification datasets with distribution shifts. They gener-
alized graph neural architecture search to learn a mapping
from graphs to architectures, producing optimal architec-
tures for each graph.

2.2 Graph diffusion model
Diffusion models are a class of generative models that re-
cently grew popular due to their excellent performance in
computer vision. Recently, there are works that successfully
apply diffusion models to the problem of graph generation.
Due to the discrete nature of graph data, diffusion mod-
els that build on discrete probabilistic distributions (Vignac
et al. 2023) have better performance than traditional diffu-
sion models based on Gaussian distribution. We briefly de-
scribe the framework of discrete graph diffusion as follows.

A discrete graph diffusion model consists of a forward
process and a reverse process. Let G = (X,E) be a graph,
where X = {xi} is the node features and E = {ei,j} is
the matrix of edge features, and the absence of edges is
represented with the special value ei,j = 0. The forward
process is a Markov chain that starts with G0 = G, gradu-
ally adds noise and ultimately transforms it into pure noise
GT = (XT , ET ). In the case of discrete diffusion, each step
of the Markov chain q(Gt | Gt−1) transforms each element
of Xt−1 and Et−1 independently:

q(xt = j | xt−1 = i) = Qt
X,ij

q(et = j | et−1 = i) = Qt
E,ij

, (2)

where Qt
X and Qt

E are predefined transition matrices. Given
the initial value G0, we can sample GT with a closed-form
expression, using the one-hot encoding for X0 and E0 as
follows:

q(Xt | X0) = X0Q̄t
X , q(ET | E0) = E0Q̄t

E (3)

Q̄t
X = Q1

X . . . Qt
X , Q̄t

E = Q1
E . . . Qt

E . (4)

The reverse process of the diffusion model is defined with
a denoising neural network pθ(G

0 | Gt) that learns to re-
move the added noise from Gt. By expressing p(Gt−1 | Gt)
as

∑
G0 pθ(G

0 | Gt)q(Gt−1 | G0, Gt), it can be used for
gradually denoising the graph and generating new data. The
denoising network is trained with the following loss:

L = EG∼Dtrain,t∼U(0,T ),Gt∼q(Gt|G0)[
λXCE(X0, pθ(X

0 | Gt)) + λECE(E0, pθ(E
0 | Gt))

]
,

(5)

where CE(·) is the cross-entropy loss, and λX and λE are
hyperparameters controlling the weighting of terms.

3 Data-augmented Curriculum Graph
Neural Architecture Search

In this section, we introduce our method. The framework of
our method is shown in Figure 1. We describe the feature-
guided graph diffusion model in Section 3.2. We describe
the two-dimensional curriculum learning method in Section
3.3.

3.1 Framework
Our method aims to learn the mapping of graph data to ar-
chitecture, which can customize a good architecture for data
with distribution shifts. It can be formalized as follows:

A∗(G) = argminA∈A L(A, θ∗, G), (6)

where A is the space of available architectures, A∗(G) is
the learned mapping for graph data G, and θ∗ represents the
trained model parameters.

The framework of our method is shown in Figure 1. For
a given graph data, it firstly computes the graph embedding
using a graph encoder, and then produces the customized ar-
chitecture from the graph embedding using an architecture
customizer. To address the problem of limited training data,



!!

!"

!#

!$

Two-factor Uncertainty-based Curriculum Weighting Strategy

Embedding-guided Data Generator

!!
!"
!#

!!
!"
!#

!!
!"
!#

!!
!"
!#

!!
!"
!#

!!
!"
!#

…

!"
… …

Denoising network
graph 

transformer 
layer

Embedding-guidance module

⊕

# $$%! $$ , & =(
&!
#' $( $$ , & )($$%! ∣ $(, $$)

"!

""

"#

"$

"#%

"!%

""%

!!
!!)

ℒ*+,-.

!!

!#
!"

.//*#,0#

.//*#$ ,0#

.//*%$ ,0#

.//*#,0#

.//*#,0%

.//*#,0&… …
… …

Graph Encoder

Architecture Customization 

Original 
Graph

Generated 
Graph

Graph

weight "! 0" 0# 01 0!) = 0! 0") = 0! 0#) = 0"

Data

…

…

!!

!#
!"

!!

!#
!"

!!

!#
!"

!!

!#
!"

!!

!#
!"

!!

!#
!"

!!

!#
!"

" = $(!)
!1 !123 !4

'5616 '6789

0 $ = :2345;2345 $ + :-2$2;-2$2($)
ℒ$6$27 =(

&
0($)ℒ($)

Figure 1: The framework of DCGAS. The architecture customizer uses the graph embedding obtained from graph encoder
to customize the architecture for each graph. The embedding-guided data generator generates new graph data for training to
enhance the generalization ability of architecture customizer. The two-factor uncertainty-based curriculum weighting strategy
measures the uncertainty of the architecture customizer’s performance on data to better facilitate important graphs in training.

we use a data generator with discrete embedding-guided dif-
fusion to generate more data for training. In addition, we use
a data scheduler with two-factor uncertainty-based curricu-
lum weighting to calculate the weights of the original and
generated data, improving the quality of the learned map-
pings. With the use of these two modules, our method can
perform well on graph datasets with distribution shifts.

3.2 Embedding-guided data generator
For many real-world graph scenarios, however, the amount
of training data is limited, which makes it difficult to learn
good mappings from graphs to architectures. Therefore, we
design a data generator to generate additional graph data for
training. Since it has been demonstrated (Cai, Zheng, and
Chang 2018) that graph embedding can accurately repre-
sent the structure of graphs, we guide the generation of new
graphs with the embeddings of existing graphs in the train-
ing dataset to improve the quality of graph generation.

Our embedding-guided data generator builds upon dis-
crete graph diffusion generation model (Vignac et al. 2023),
whose main component is a denoising network that can re-
move noise from noisy graph data. Generating new data in-
volves starting with pure noise and iteratively denoising over
many steps. However, the data generation of the diffusion
model is unconditional and cannot be controlled with ad-
ditional input. Since the space of all graphs is discrete and

there is no gradient information of graph embedding regard-
ing the graphs, we cannot use the gradient-based guidance
methods (Vignac et al. 2023; Dhariwal and Nichol 2021)
commonly used with diffusion models. We design an em-
bedding guidance module to guide the generation of new
graphs.

Let pθ(G0 | Gt) be the predictions of the denoising net-
work. The data generation process starts with GT sampled
from a prior distribution and samples Gt−1 from the follow-
ing distribution in each step:

p(Gt−1 | Gt) =
∑
G0

pθ(G
0 | Gt)q(Gt−1 | G0, Gt), (7)

where q(Gt−1 | G0, Gt) is defined in the forward process
of the diffusion model. To make graph generation condi-
tional on graph embedding v, we replace pθ(G

0 | Gt) with
pguide(G

0 | Gt, v) in graph generation, which can be repre-
sented as follows:

pguide(G
0 | Gt, v) ∝ pθ(G

0 | Gt)p(v | G0), (8)

where p(v | G0) is a guidance term defined as p(v | G0) ∝
exp(−λ∥v − vG(G

0)∥2) and vG(G
0) is the graph embed-

dings of G0.
However, it is difficult to perform sampling using this def-

inition as it is impossible to compute p(v | G0) for all values
of G0. Therefore, we approximate pguide using an embedding



guidance module pE that outputs a probability distribution
over G0 which is factorized over the nodes and edges of the
graph.

pE(G
0 | Gt, v) =∏

xi∈X0

pE(xi | Gt, v) ·
∏

ei∈E0

pE(ei | Gt, v), (9)

where X0 and E0 are the nodes and edges of G0 respec-
tively. The data generation process using the embedding
guidance module is given in Algorithm 1.

We use an architecture based on graph transformer
(Dwivedi and Bresson 2020) for the embedding guidance
module. It takes the logit predictions (before softmax) of the
denoising network as input as well as the target graph em-
bedding, and outputs the adjusted logits. To facilitate effi-
cient training of the embedding guidance module, we add a
residual connection from the input to the output, and zero-
initialize the last layer so the input is passed unmodified in
the beginning of training. The model is trained by matching
pE to pguide:

Lguide = KL(pE ∥ pguide)

= EG∼pE

[
log pE(G | Gt, v)

− log pθ(G | Gt)− log p(v | G)
]
+ C

= KL(pE ∥ pθ) + EG∼pE
[− log p(v | G)] + C

= KL(pE ∥ pθ) + EG∼pE

[
λ∥v − vG(G)∥2

]
+ C,

(10)

where C denotes terms independent of the model parame-
ters. Since the second term in the loss cannot be differenti-
ated directly, we compute Lguide in the following way, which
has an unbiased estimate of the gradient over pE :

Lguide = KL(pE ∥ pθ) + log pE(G)λ∥v − vG(G)∥2, (11)

where G is sampled from pE .

3.3 Two-factor uncertainty-based curriculum
weighting strategy

It is known that data have different importance in various
stages of training, and scheduling data according to their im-
portance using curriculum learning techniques can improve
the efficiency of model training (Bengio et al. 2009; Wang,
Chen, and Zhu 2022; Zhou et al. 2022b; Li, Wang, and Zhu
2023). For weight-sharing NAS methods, it has been demon-
strated (Zhou et al. 2022c) that the importance of data can
be reflected by its uncertainty over architectures. Training on
data with high uncertainty can help the under-trained archi-
tectures to catch on, thus facilitating more accurate compari-
son between architectures and improving the quality of final
architectures. Similarly, for graph NAS, the scheduling of
training data is also crucial for search performance. There-
fore, we designed a two-factor uncertainty-based curriculum
weighting for graph data.

The two-factor uncertainty-based curriculum weighting
consists of two uncertainty measurements. The first is the

uncertainty over architectures, which is defined as the vari-
ance of the losses of the same graph data on multiple sam-
pled architectures:

Uarch(G) =
1

N

N∑
i=1

(
L(Ai, θ, G)− 1

N

N∑
j=1

L(Aj , θ, G)

)2

,

(12)
where L is the loss function, θ is the current parameters of
the supernet, and Ai is the i-th sampled architecture. It mea-
sures how well the NAS method can evaluate different ar-
chitectures using this graph data.

The second measurement is the uncertainty over data, de-
fined as the difference among the losses for graph data G and
structurally similar graphs G′

i using the same architecture:

Udata(G) =
1

N

N∑
i=1

(L(A(G), θ, G)− L(A(G), θ, G′
i))

2
,

(13)
where A(G) is the customized architecture for G. Since the
graph embedding can be used to represent the structure of
graphs, we use the embedding-guided graph generator to
generate G′

i. This uncertainty reflects the generalization ca-
pability of architectures when given similar input data.

Inspired by curriculum learning methods (Wang, Chen,
and Zhu 2022; Shrivastava, Gupta, and Girshick 2016)
where difficult and informative data are used early on during
training, we consider data with higher uncertainty to have
greater importance. Therefore, we assign weights to each
data based on their uncertainties:

w(G) =
λarchUarch(G) + λdataUdata(G)∑

G∈G (λarchUarch(G) + λdataUdata(G))
, (14)

where λarch and λdata are hyperparameters. During training,
the losses are multiplied by the weights, effectively scaling
up or down the gradients depending on the data.

3.4 Architecture customization
We build our architecture customization module based on
differentiable NAS frameworks. The parameters of all possi-
ble architectures in the search space are shared using a super-
net which contains all candidate operators. For each choice
of operators, its output in the supernet is given as a mixture
of operator outputs:

o∗(x) =

M∑
i=1

qioi(x), (15)

where o∗ is the mixed operator in the supernet, oi is an in-
dividual candidate operator, M is the number of candidates,
x is the input to this operator, and qi is the corresponding
mixture coefficients.

In classical NAS methods (Liu, Simonyan, and Yang
2019), qi is directly represented as a trainable value. How-
ever, our method needs to choose customized architectures,
and qi should be computed from the graph data. Since the
structure of graph data is well represented by the graph em-
bedding, we match the graph embeddings to a set of proto-
type vectors to obtain qi:

qi =
exp(uT

i v)∑M
j=1 exp(u

T
j v)

, (16)



Algorithm 1: Generate new graphs with embedding guid-
ance
Input: Target graph embedding v

1: Sample GT from the initial distribution
2: for t = T to 1 do
3: Compute predictions pθ(G

0 | Gt) using the denois-
ing network

4: Compute guidance pE using the embedding guidance
module via Eq. (9)

5: Sample Gt−1 from ..., using pE as an approximation
of pguide

6: end for

where ui is a trainable prototype vector. After computing qi,
the customized architecture can be used to produce predic-
tions for the graph data.

3.5 Optimization procedure
Our method is optimized using the overall loss Lall:

Lall =
∑
G

w(G)L(G)

L(G) = (LCE(G) + λembedLembed(G))

, (17)

where w(G) is the data weight assigned to G, LCE is the
cross-entropy loss for graph classification, and Lembed is the
auxiliary loss used to train the graph encoder. Addition-
ally, the embedding guidance module for data generation is
trained using Lguide.

The optimization procedure for our method is shown
in Algorithm 2. In each round of training, we first use a
graph encoder to compute graph embeddings, then use the
embedding-guided data generator to generate graphs with
similar embeddings, customize their architecture, and cal-
culate data weights through a data scheduler for parameter
updates.

4 Experiments
To demonstrate the effectiveness of our proposed method,
we conducted sufficient experiments on simulated and real
datasets with distribution differences. And we demonstrate
the effectiveness of each module in the method through ab-
lation experiments

4.1 Experiment settings
Datasets We conducted experiments on a simulated
dataset and three real datasets. There are distribution shifts
between the training and testing sets of these datasets.
• Spurious-Motif (Qin et al. 2022; Wu et al. 2022b; Ying

et al. 2019) is a synthetic dataset. The distribution shifts
between its training and testing sets are constructed. It
contains 18,000 graphs. The graph inside it consists of
base subgraph (Tree, Ladder, Wheel denoted by S = 0, 1,
2) and motif subgraph (Cycle, House, Crane denoted by
C = 0, 1, 2). The label of the graph is only determined by
the motif subgraph. The test dataset consists of randomly
combined graphs of subgraphs and motif subgraphs. The

Algorithm 2: The overall searching algorithm of DCGAS
Input: Training dataset Dtrain, discrete graph diffusion
model trained on Dtrain

1: Initialize all trainable parameters
2: while not convergent do
3: for graph data G in Dtrain do
4: Compute embedding v of G using graph encoder
5: Generate new graphs G′ using graph generator

with guidance from v via Alg. 1
6: Compute embedding v′ of G′ using graph encoder
7: Get customized architectures for G and G′ via Eq.

(16)
8: Compute Ltotal using G and G′ via Eq. (17)
9: Store the value of losses for G and G′

10: Update loss weighting for G via Eq. (14)
11: Update parameters of graph encoder and architec-

ture customizer using Lall
12: Update parameters of the supernet using Lall
13: Compute Lguide using G via Eq. (10)
14: Update parameters of data generator using Lguide
15: end for
16: end while

training data consists of graphs composed of base sub-
graphs and motif subgraphs combined according to prob-
ability distribution P (S) = b×I(S = C)+ 1−b

2 ×I(S ̸=
C). The value of b determines the amount of distribu-
tion shifts between the training set and the test set. We
selected three values (0.7, 0.8, and 0.9) of b to gener-
ate three datasets with significant data distribution shifts
for experiments to demonstrate the effectiveness of our
method. We use accuracy as the evaluation metric for the
dataset.

• Ogbg-molhiv, Ogbg-molbace, Ogbg-molsider (Hu et al.
2020): they are molecular property prediction datasets
consisting of 41,127, 1,513, 1,427 molecule graphs, re-
spectively. We use ROC-AUC as the evaluation for these
datasets.

Baselines We compared our method with the following
baselines:

• Manually design GNNs: GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), GIN (Xu et al. 2019),
SAGE (Hamilton, Ying, and Leskovec 2017), and
GraphConv (Morris et al. 2019) are GNN architec-
ture. ASAP (Ranjan, Sanyal, and Talukdar 2020) and
DIR (Wu et al. 2022b) are recent methods, which
achieved good performance on several graph datasets.
In particular, DIR is specially designed for out-of-
generalization performance.

• Neural architecture search: DARTS (Liu, Simonyan,
and Yang 2019) is a differentiable architecture search
method. In addition, we also compare our method with
random search.

• Graph neural architecture search: GNAS (Gao et al.
2020b) and PAS (Wei et al. 2021) are graph neural
architecture search methods for i.i.d. graph datasets.



Method b = 0.7 b = 0.8 b = 0.9

GCN 48.39±1.69 41.55±3.88 39.13±1.76

GAT 50.75±4.89 42.48±2.46 40.10±5.19

GIN 36.83±5.49 34.83±3.10 37.45±3.59

SAGE 46.66±2.51 44.50±5.79 44.79±4.83

GraphConv 47.29±1.95 44.67±5.88 44.82±4.84

MLP 48.27±1.27 46.73±3.48 46.41±2.34

ASAP 54.07±13.85 48.32±12.72 43.52±8.41

DIR 50.08±3.46 48.22±6.27 43.11±5.43

Random 45.92±4.29 51.72±5.38 45.89±5.09

DARTS 50.63±8.90 45.41±7.71 44.44±4.42

GNAS 55.18±18.62 51.64±19.22 37.56±5.43

PAS 52.15±4.35 43.12±5.95 39.84±1.67

GRACES 65.72±17.47 59.57±17.37 50.94±8.14

DCGAS 87.68±6.12 75.45±17.40 61.42±16.26

Table 1: Test accuracy of different methods on Spurious-
Motif datasets. Values after ± denote the standard devia-
tions. The best results are in bold and the second best results
are underlined.

Figure 2: Examples of generated graphs for Spurious-Motif
datasets.

GRACES (Qin et al. 2022) is a state-of-the-art graph
neural architecture search method for non-i.i.d. graph
datasets.

For our experiments, the reported mean and standard de-
viation of metrics are computed from 10 runs with random
seeds.

4.2 Results on synthetic datasets
As seen in Table 1, the methods generally have worse per-
formance for datasets with larger b, which matches the intu-
ition as larger b indicates more significant distribution shifts
between training and testing. Overall, NAS works better
than GNNs on the three simulated datasets with distribu-
tion shifts, suggesting that it is necessary to customize ar-
chitectures for graph classification tasks. GNNs designed
for non-I.I.D. datasets (DIR) perform better than GNNs de-
signed for I.I.D. datasets, and graph NAS methods designed

Method HIV SIDER BACE

GCN 75.99±1.19 59.84±1.54 68.93±6.95

GAT 76.80±0.58 57.40±2.01 75.34±2.36

GIN 77.07±1.49 57.57±1.56 73.46±5.24

SAGE 75.58±1.40 56.36±1.32 74.85±2.74

GraphConv 74.46±0.86 56.09±1.06 78.87±1.74

MLP 70.88±0.83 58.16±1.41 71.60±2.30

ASAP 73.81±1.17 55.77±1.18 71.55±2.74

DIR 77.05±0.57 57.34±0.36 76.03±2.20

DARTS 74.04±1.75 60.64±1.37 76.71±1.83

PAS 71.19±2.28 59.31±1.48 76.59±1.87

GRACES 77.31±1.00 61.85±2.58 79.46±3.04

DCGAS 78.04±0.71 63.46±1.42 81.31±1.94

Table 2: Test ROC-AUC of different methods on real-world
molecular property prediction datasets. Values after ± de-
note the standard deviations. The best results are in bold and
the second best results are underlined.

for non-I.I.D. datasets (GRACES and DCGAS) work better
than graph NAS methods designed for I.I.D. datasets.

Our method achieves significant improvement on all three
datasets. This is due to the fact that our method learns a
good mapping from data to architecture. Specifically, we de-
sign an embedding-guided data generator to generate graphs
with similar structures, which provide more information to
facilitate the model’s understanding of graph structures. The
generator enables the model to better adapt to graphs with
different structures, and improves the generalization of ar-
chitecture customization. As demonstrated in Figure 2, the
data generator can generate diverse graphs that capture the
graph structures in the dataset.

Additionally, we design two-factor uncertainty-based cur-
riculum weighting strategy to evaluate the learning impor-
tance of the data, allowing our method to stably customize
good architectures for similarly structured graph data. Thus,
it can be said that our method understands the structure of
graphs well and learns the mapping of graph data to archi-
tectures, which allows us to customize suitable architectures
for data with large differences in data distribution.

4.3 Results on real-world datasets
The results of the experiments are shown in Table 2 and it
can be seen that the NAS methods are still generally bet-
ter. The methods designed for non-I.I.D. datasets also still
achieved better results. Our method is better compared to all
baselines. The experimental results prove that our method is
still effective on real-world datasets.

In addition, we can find that the performance improve-
ment of our method over baselines is more significant for
datasets like Ogbg-molsider and Ogbg-molbace, which have
much smaller data sizes compared to Ogbg-molhiv. A pos-
sible explanation is that learning information about graph
structures is more difficult with limited data, and our method
improves the performance using the data generator. We also
compare our method with GRACES using subsets of train-
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Figure 3: The performance of DCNAS and GRACES trained
using different ratios of data from Ogbg-molbace.

Method b = 0.7 b = 0.8 b = 0.9

None 72.44±17.13 61.73±20.23 54.89±15.68

Data gen 82.05±5.67 68.25±11.32 60.07±12.62

Curriculum 80.38±8.29 63.99±19.60 56.08±13.80

DCGAS 87.68±6.12 75.45±17.40 61.42±16.26

Table 3: Ablation study on Spurious-Motif datasets.

ing data from Ogbg-molbace. As demonstrated in Figure 3,
our method remains competitive when the amount of train-
ing data is limited.

4.4 Ablation study
We conducted ablation experiments to demonstrate the ef-
fectiveness of each module in our method. The following
methods are tested in the experiments:
• Curriculum: only the two-factor uncertainty-based cur-

riculum weighting strategy module is used.
• Data gen: only the embedding-guided data generator

module is used.
• None: neither of these modules is used.

The experimental results are shown in Table 3. It can be
seen that both the data generator module and the curriculum
weighting module lead to performance improvements, and
the best results are achieved when both modules are used.
This demonstrates that both components in our method are
indispensable to achieving satisfactory performance on tasks
with distribution shifts.

5 Related work
5.1 Graph generation
Graph generation is a widely studied field, which has re-
search value in many fields. Influenced by the emergence
of generation models in computer vision, recent graph gen-
eration has focused more on using deep learning methods
for generation, such as auto-regressive model (Goyal, Jain,
and Ranu 2020; Bacciu and Podda 2021), variational au-
toencoder (Du et al. 2022a,b), normalizing flow (Zang and

Wang 2020; Luo, Yan, and Ji 2021), generative adversar-
ial networks (Gamage et al. 2020; Pölsterl and Wachinger
2020), and diffusion model (Jo, Lee, and Hwang 2022; Vi-
gnac et al. 2023). GDSS (Jo, Lee, and Hwang 2022) uses a
diffusion model for generation based on a system of SDEs.
DiGress (Vignac et al. 2023) is a discrete graph diffusion
model generation method, which can preserve sparsity in the
noisy graphs and improve generation quality.

5.2 Graph neural architecture search
Neural architecture search is a research direction in auto-
matic machine learning that has emerged in recent years.
Traditional manual model design methods require profes-
sional knowledge, while neural architecture search can au-
tomatically search for the optimal architecture in a given
search space. Recent research has shown that neural archi-
tecture search can customize the optimal architecture for
many tasks compared to manually designed models. Various
search strategies have been proposed, such as reinforcement
learning (RL) based NAS (Zoph and Le 2017; Jaâfra et al.
2019), evolutionary algorithms based NAS (Real et al. 2017;
Liu et al. 2023), and gradient based NAS (Liu, Simonyan,
and Yang 2019; Ye et al. 2022).

Graph neural architecture search has also received
widespread attention. GraphNAS (Gao et al. 2020a) is the
first to use reinforcement learning methods to search for
graph neural network architectures, which integrate excel-
lent architectures in previous GNN fields as search spaces,
such as GCN, GAT, etc. After this work, many works (Gao
et al. 2020b; Wei et al. 2021; Qin et al. 2022; Cai et al.
2021; Li et al. 2021; Qin et al. 2021; Guan, Wang, and
Zhu 2021; Zhang et al. 2023b,a; Guan et al. 2022) on graph
NAS emerged and excellent architectures were found. Re-
cently, graph NAS, which focuses on graph classification
tasks, has also been widely studied. Its characteristic is
that the dataset contains graphs, such as protein molecule
datasets. Some works (Wei et al. 2021) studied the problem
of graph classification on independent identically distributed
datasets. GRACES (Qin et al. 2022) studied the problem
of graph classification on non-independent identically dis-
tributed datasets.

6 Conclusion
We propose Data-Augmented Curriculum Graph Neural Ar-
chitecture Search (DCGAS) method for graph classification
under distribution shifts, which customizes architectures for
each graph data through learning the mapping from graph
data to architectures. We design an embedding-guided data
generator to generate more graph data with similar struc-
tures to a given graph for training. Moreover, we design
a two-factor uncertainty-based curriculum weighting strat-
egy which measures the uncertainty of the architecture cus-
tomizer’s performance on data to schedule data in train-
ing. They greatly enhance the generalization ability of archi-
tecture customization. The effectiveness of our method has
been demonstrated through experiments on both simulated
and real datasets, which show our method achieves state-of-
the-art performance for the graph classification task under
distribution shifts.
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