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Abstract— Infrared target detection has important applications
in rescue and Earth observation. However, the disadvantages of
low signal-to-clutter ratios and severe background noise interfer-
ence for infrared imaging pose great challenges to the detection
technology for infrared dim targets. Most algorithms only extract
features from the spatial domain, while the lack of temporal
information results in unsatisfactory detection performance when
the difference between the target and the background is not sig-
nificant enough. Although some methods utilize temporal infor-
mation in the detection process, these nonlearning-based methods
fail to incorporate the complex and changeable background, and
need to adjust parameters according to the input. To tackle this
problem, we proposed a Spatio-Temporal Differential Multiscale
Attention Network (STDMANet), a learning-based method for
multiframe infrared small target detection in this article. Our
STDMANet first used the temporal multiscale feature extractor
to obtain spatiotemporal (ST) features from multiple time scales
and then resorted them to the spatial multiscale feature refiner
to enhance the semantics of ST features on the premise of
maintaining the position information of small targets. Finally,
unlike other learning-based networks that require binary masks
for training, we designed a mask-weighted heatmap loss to train
the network with only center point annotations. At the same time,
the proposed loss can balance missing detection and false alarm,
so as to achieve a good balance between finding the targets and
suppressing the background. Extensive quantitative experiments
on public datasets validated that the proposed STDMANet could
improve the metric F; score up to 0.9744, surpassing the state-
of-the-art baseline by 0.1682. Qualitative experiments show the
proposed method could stably extract foreground moving targets
from video sequences with various backgrounds while reducing
false alarm rate better than other recent baseline methods.

Index Terms— Attention mechanism, infrared target, target
detection.
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NOMENCLATURE

STDMANet Spatio-Temporal Differential Multiscale
Attention Network.
HVS Human visual system.
LoG Laplacian of Gaussian.
LIG Local intensity and gradient.
AAGD Absolute gray-scale difference.
LoPSF Laplacian of point spread function.
ACM Asymmetric contextual modulation.
ALCNet Attentional local contrast network.
DNANet Dense nested attention network.
DNIM Dense nested interactive module.
NPSTT Nonoverlapping patch Spatio-Temporal tensor.
TCNN Tensor capped nuclear norm.
CSAM Channel and spatial attention module.
CTSAM Channel-temporal and spatial attention
module.

CTA Channel-temporal attention.
MLP Multilayer perceptron.
TP True positive.
FN False negative.
FP False positive.
BSF Background suppression factor.
CG Contrast gain.

I. INTRODUCTION

ITH the development of science and technology,

infrared imaging technology is widely used in ground
observation, night rescue, forest firefighting, and other fields
due to its advantages of strong environmental adaptability and
high resolution [1], [2], [3], [4]. Among its various applica-
tions, infrared target detection technology, as an extremely
important part of the infrared imaging system, has been
studied by scientists and scholars [5] for decades. However,
due to the lack of effective information, such as the shape
and texture of infrared dim targets, the fast motion of the
target, and the influence of background noise and interference
radiation [6], the infrared image usually contains a severe
undulating background, and the targets are submerged. Thus,
the targets often appear to be several pixels in the complex
background, which makes infrared dim target detection very
difficult.
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Today, the mainstream methods of air-to-ground infrared
target detection are mainly divided into two categories: single-
frame-based and multiframe-based methods [7]. The single-
frame infrared target detection method mainly distinguishes
the target from the background by means of background fea-
tures and local contrast [8]. However, due to the characteristics
of the infrared dim targets, there are limitations.

1) The signal-to-clutter ratio (SCR) is low.

2) The size is small, and the relative area is less than 0.01%

of the entire image.

3) The background is extremely complex.

4) The relative target moves fast.

Therefore, a single-frame infrared image cannot provide
enough information for stable weak and small target detection.

However, the multiframe method detects more temporal
context information than the single-frame method [9] by corre-
lating multiple consecutive frames to improve the performance
of small target detection, and the method based on multiple
frames usually performs better than that based on a single
frame. These temporal clues are important in robust small
infrared object detection, especially for complex cases [10].

There are two main methods of multiframe data target
detection through temporal context: one is to reduce noise
and interference through temporal context, thereby decreasing
false detection due to flicker and other factors [11]; the other
is to enhance the extraction of target characteristics through
temporal context to better solve the difficulties caused by
motion blur and small object area [12].

There is a certain difference between a large number of
small aerial target image sequences captured by an airborne
imaging platform and ordinary infrared images. In air-to-
ground data, the target moves relatively faster, the target SCR
is low, and ground radiation and weather interference are very
serious considerations. Dim infrared aerial targets often appear
as point targets in infrared images. They only occupy a few
pixels in the image. Due to infrared imaging characteristics,
the edges of objects are blurred. The scarcity of intrinsic
properties for the target means that the shape of the target is of
little significance for practical applications. We can simply use
the center position of the spot to represent the small infrared
aerial target in the image.

The targets in a cluttered background may not show a high
correlation in an image sequence, especially if the background
changes due to the motion of the airborne infrared detection
system. In this case, traditional methods such as background
alignment alone cannot achieve satisfactory results for robust
small infrared aerial target detection and will introduce other
redundant information and noise. Thus, even if it can provide
some implicit information about motion, some additional
feature processing is required.

In this article, the temporal attention mechanism was intro-
duced to infrared dim target detection for the first time.
The proposed method contained a temporal multiscale feature
extractor module, a spatial multiscale feature refiner module,
and a weighted loss compensation module. The temporal mul-
tiscale feature extractor module extracted both dynamic motion
and static contrast features through several feature paths in
different time scales. In the spatial multiscale feature refiner
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module, the semantics of these extracted Spatio-Temporal (ST)
features were further refined to better distinguish targets from a
variety of backgrounds while maintaining position information
through dense connection. For the temporal multiscale module
and spatial multiscale module, we customized different atten-
tion mechanisms to complete their respective tasks. Different
attention mechanisms were designed for the selection of differ-
ent steps for the temporal section in particular, the continuous
motion accumulation in the temporal domain, and the selection
of local contrast enhancement in the spatial domain, so as
to improve the quality of feature extraction. In addition,
our mask-weighted heatmap loss could perform end-to-end
training with only point annotations, eliminating the need for
segmentation masks. We evaluated the proposed method on
public datasets (DSAT [13] and SIATD [14]) and compared
it with existing methods. Experimental results demonstrated
that our method could robustly detect small infrared airborne
targets against complex ground backgrounds and outperform
existing methods.

II. RELATED WORK
A. Single-Frame Infrared Small Target Detection

The mainstream single-frame detection method of infrared
dim target highlights small targets, suppresses background
noise through image preprocessing, then uses threshold seg-
mentation to extract suspected targets, and, finally, confirms
targets based on feature information, without considering time
series operations. This has been extensively studied.

In 2012, according to the contrast mechanism of HVS,
Shao et al. [15] suppressed noise and enhanced target intensity
through the LoG filter, thereby enhancing monitoring per-
formance. In 2012, Qi et al. [16] proposed a salient region
detection method combined with an attention mechanism to
detect small infrared targets in complex backgrounds. In 2013,
Gao et al. [17] used an adaptive infrared patch image model
constructed by local patches to segment targets and suppress
a different clutter interference. Also, in 2013, Chen et al. [18]
proposed an algorithm based on the contrast mechanism of the
HVS and a derived kernel model to segment targets through
local contrast and adaptive thresholds. In 2014, Han et al. [19]
proposed a threshold operation and fast traversal mechanism
method based on an HVS attention transfer mechanism for
rapid target acquisition. Although these methods can effec-
tively improve detection performance, they are still not appli-
cable to complex backgrounds. In 2018, Zhang et al. [20]
computed LIG maps from raw infrared images to enhance
targets and suppress clutter. In 2018, Moradia et al. [11]
modeled point targets through multiscale mean AAGD and
LoPSF to reduce the FP rate (FPR).

Although the research on single-frame infrared small target
detection has been going on for decades, traditional meth-
ods still cannot cope with changeable scenes in complex
backgrounds. These methods usually adjust the parameters of
each scene, which challenges their application for the actual
scene. Recently, deep learning methods have been widely
used in various visual tasks. With the release of infrared
target detection datasets [21], [22], deep neural networks have

Authorized licensed use limited to: Tsinghua University. Downloaded on July 04,2024 at 15:14:20 UTC from |IEEE Xplore. Restrictions apply.



YAN et al.: STDMANet FOR SMALL MOVING INFRARED TARGET DETECTION

naturally migrated to the field of single-frame infrared small
target detection. The annotations provided by these datasets
are usually bounding boxes and segmentation masks, among
which segmentation masks are the most widely used.

For those methods utilizing bounding box annotations,
they detect small infrared targets by modifying the general
detection network [23]. In contrast, most methods obtained
the contour of the target by predicting the segmentation mask
of the input image and then determining the detection boxes.
Zhao et al. [24] proposed TBC-Net, which utilized a simple
spatial multiscale network to extract the location of the target
and a simple classification network to obtain the label of the
target. Wang et al. [22] regarded infrared small target detection
as a balance between miss detection and false alarm. They
achieved a balance between the two indicators through a deep
adversarial learning framework [22]. Dai et al. [25] proposed
ACM, which combined high-level semantics and low-level
location details by designing a comprehensive top-down and
bottom-up attention modulation path. They further introduced
the idea of local contrast in the subsequent ALCNets to refine
the characteristics of small targets [26]. In addition, the interior
attention-aware network (IAANet) combined the relationship
between pixels to enhance the correlation of the target through
coarse-to-fine attention [27]. DNANet proposed a DNIM
module, which improved the effect of feature extraction and
preservation of targets through dense connection and spatial
pyramid fusion [21]. Liu et al. [28] incorporated the popular
structure Transformers used in computer vision and natural
language processing into infrared small target detection and
achieved good results.

Deep-learning-based single-frame infrared small target
detection methods are inspired by both deep neural network
design (such as dense connection, attention mechanism, and
feature pyramid networks) and traditional infrared small target
detection methods (such as local contrast) so that the per-
formance of single-frame detection methods has significantly
improved.

B. Multiframe Infrared Small Target Detection

In contrast, multiframe methods need to deal with several
consecutive frames. Therefore, multiframe methods must be
able to conduct ST processing in order to obtain dynamic
information, such as motion and brightness changes, in addi-
tion to static information, such as local contrast.

In 2011, Qi and An [29] proposed an improved optical flow
infrared target detection algorithm to improve adaptive ability
and prevent the suppression of reliable optical flow. In 2019,
Lv et al. [30] proposed a method of building a background
dictionary based on an online learning double sparse model
to improve the traditional algorithm to suppress background
noise. Zhao et al. [31] proposed an ST consistency detection
method for motion trajectories based on optical flow to distin-
guish objects from backgrounds in 2019. In 2020, Li et al. [32]
proposed an adaptive infrared dark target detection method
utilizing a multiframe screening strategy based on optical flow
combined with dynamic pipeline filtering to identify targets
and reduce the false alarm rate. In 2021, Wang et al. [33]
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obtained nonoverlapping patches in adjacent images by using
sliding windows, established an NPSTT model, and introduced
TCNN to improve the robustness of detection.

However, the problem of applying deep learning technology
to small infrared target detection in videos has not been fully
explored. The release of relevant datasets [13], [14] recently
provides a good premise for this problem. The simplest method
is to detect small targets in every video frame [34], which
cannot consider temporal context information. Some methods
carried out the super-resolution operation on the current frame
through the dynamic information of the front and back frames
to enhance the details and significance of the targets in
the current frame [35], [36]. This operation also enabled
the application of single-frame small target detection meth-
ods. However, such methods required multiplying the image
resolution, significantly increasing computation consumption.
Recently, Yao et al. [37] made a multiframe image input
into a single-frame detection method through maximum filter
preprocessing.

The idea of these methods is to use a single-frame detector
to detect multiframe input. The core problem in this process is
to convert multiple-frame images to a single frame and retain
dynamic information as much as possible. However, these
methods are not specially designed for multiframe scenes,
and there is still much space for exploration in the use of
temporal information. Recently, some methods [38], [39] have
explored the specific designs for multiframe cases, but there
is still a problem on the edge of small targets in their require-
ments for detection boxes, which increases the difficulty of
annotating. Their exploration of spatial multiscale information
is not sufficient, which has been validated in recent single-
frame detection methods that spatial multiscale information is
effective for small targets. Based on this, this article made
a detailed analysis of the ST characteristics in multiscale
manners of multiframe input and designs in STDMANet,
which achieved the efficient utilization of ST information
under a similar network complexity to that of the single-frame
detection method.

III. PROPOSED METHOD
A. Overview

The overall structure of our proposed STDMANet is shown
in Fig. 1. STDMANet takes k infrared frames as input.
With the sequential processing of the temporal multiscale
feature extractor (see Section III-B), spatial multiscale feature
refiner (see Section III-C), and prediction head module (see
Section III-D), the output of our model is the prediction
mask p,. The generated segmentation mask is processed
differently in the training phase and the testing phase. In the
training phase, we used mask-weighted heatmap loss (see
Section III-E) to minimize the difference between the seg-
mentation mask and the 2-D Gaussian heatmap. In the test
phase, we used instance extraction and center computation
(see Section III-F) to obtain the position of small targets in
the segmentation mask.

Specifically, the given input X, at time step ¢
consists of k infrared frames, i.e., X; = [X;—k, ..., Xi—1, X:],

c kaHxW
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Structure diagram of our proposed STDMANet. The network consists of three parts: the temporal multiscale feature extractor, the spatial multiscale

feature refiner, and the prediction head. The temporal multiscale feature extractor is proposed to extract ST features in different time scales. Then, the spatial
multiscale feature refiner can refine and preserve the ST features on the multispatial scale. Finally, the prediction head is applied to produce the prediction
map. Then, different operations are applied in the training and testing phase to train the whole network and generate the position output, respectively.

where x, is corresponded to the infrared frame at time step .
Here, we treated infrared images as single-channel gray-
scale images rather than RGB images so that the multiple
frames could be treated as several input channels of the
network. After passing through the temporal multiscale feature
extractor module and the spatial multiscale feature refiner
module, the output feature maps are F! € RE*H>*W and
F3T ¢ ROstHxW " respectively. Then, the final segmentation
mask p, € R¥*W generated by the prediction head module
represents the probability that each pixel becomes the center
of a small target. In the following, we would explain in detail
the motivation and design of each module and describe the
training and testing process for the model to clarify the reason
that our model could solve the problem of point target position
prediction in multiframe infrared images.

B. Temporal Multiscale Feature Extractor

The multiple infrared frames can be regarded as a mul-
tichannel single image input into the network because the
infrared image can be regarded as a single-channel gray-scale
image. Therefore, the single-frame detection network can be
applied to multiframe scenarios by changing only the first layer
of the network and will not introduce too much computational
burden.

However, there seems to be some impropriety in inputting
continuous infrared sequences into the network equally. On the
one hand, the purpose of multiframe infrared target detection
is to locate the target position of the current frame according
to the continuous k images in the past, so the current frame
should clearly have a larger weight than other frames. On the
other hand, when the motion state of the target is not fixed,
the frames that produce more apparent displacement should
also have a larger weight.

Based on the above analysis and the traditional methods of
infrared small target detection, we designed a temporal mul-
tiscale feature extractor module, which was composed of the

Dynamic Path

Conv
Block

VSD Attention Map*

Differential Path

Conv
Block

Reference

Static Path

Conv
Block

Fig. 2. Tllustration of proposed temporal multiscale feature extractor module.
The basic idea is to achieve the feature extraction on different time scales by
customizing the input image sequences of different paths and then through
aggregation to get the ST features containing multiscale time information.

motion path, the dynamic path, and the static path. These paths
could extract features on different time scales by customizing
the input information of different paths. Specifically, the input
of the static path is the current frame, corresponding to the
static time scale. The input of the dynamic path is all k£ frames,
corresponding to the dynamic time scale. The input of the
differential path is the subtraction between the current frame
and each past frame, corresponding to the time scale from 1 to
k — 1. The specific design of these paths can be seen in Fig. 2.

Before the infrared sequence fed into the network, we per-
form background alignment to separate the motion of the
background and the motion of the target, which made the
differential path have more physical meaning, which was
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the change in pixel brightness in the same position. Specif-
ically, we used the common background alignment pipeline.
For a previous frame x;,_;,i = 1,...,k and the current
frame x;, we extracted their scale-invariant feature transform
(SIFT) [40] features, respectively. Then, we identified the
matching pairs between the two. After this, the transformation
matrix is calculated through the RANdom SAmple Consensus
(RANSAC) [41] algorithm, and finally, x,_; is transformed to
the perspective of x,, which we denote it as x;_;.

After the above alignment operation, we could formalize
the input of different paths. The input of differential path
DI, € R&=DxHxW can be formulated as

DI, = M O [x; — Xy oo, X0 — %y1] (1)

where M? = [mé,,...,m% |] is a group of masks that
excludes the blank area after transformation. m? ; can be
obtained from
0, x,_(mn)=0
d _ ’ t—1
m_i(m, n) = {1, else @

where m € [0, W — 1] and n € [0, H — 1] is the position
index of the image. Because there is a background shift
between the previous frame x,_; and the current frame x;,
there will be a certain blank area in X,_; when the previous
frame is transformed to the perspective of the current frame.
If these blank spaces are ignored, there will be a large response
here when taking the differential operation because it is zero
here in X,_; and nonzero in x,. Therefore, we introduced
additional m? ; to exclude this area to prevent the model
from focusing on the new background introduced by the
camera motion rather than the moving targets. The design
of the differential path was inspired by the frame differential
methods commonly used in infrared small target detection. The
differential results of different time scales were obtained by
using the current frame to apply differential operations to each
previous frame. Thus, the model was provided with brightness-
aware information across time scales.

In addition, the input of a dynamic path DY, e RF*HxW
can be formalized as

DY, = abs([DI,, I]) © [X;—, - - -, X/] 3)

where [ is the identity matrix.

We padded DI, here to k channels to serve as the variable
step differential attention (VSDA) map for clearer highlighting
of the areas in the image sequence that had changed signifi-
cantly. The dynamic path was designed to capture continuous
motion and changes in image sequences.

Finally, the input of the static path is x,. The static path is
designed to obtain spatial information, such as local contrast
and background information.

By passing the customized inputs through their respective
convolution blocks, the output features FtDI of the differential
path, FPY of the dynamic path, and F’P of the static path
could be obtained. Then, these features were concatenated,
and the output of the temporal multiscale feature extractor
module is obtained through a feature aggregator, which was
also a convolution block that reduced the dimension of the
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collected feature map. Formally,
FP' = ConvBlock(DI,) 4)
FPY = ConvBlock(DY,) 5)
FSF = ConvBlock(x,) (6)
Fl = ConvBlock([F', FP¥, F}F]). )

For the design of the convolution module, we followed
DNANet [21] to perform feature enhancement adaptively
through sequentially applied channelwise and spatialwise
attention. In the original paper, this module was called CSAM.
However, here, we took an infrared frame as a gray-scale
image to serve as an input channel for the network. Thus, the
channel dimension of the feature map in our model was not
only the semantic channels but contained temporal information
and clues. As such, we clarified that, in our model, the basic
convolution module should be called the CTSAM. The core of
the module was the acquisition of CTA map Mcyt € RCnx1x1
and spatial attention (SA) map Mg € R™>">*W where Cj, is
the input feature channels. For input feature map Hj,, the CTA
map Mcr can be calculated by

H = Conv2(Convl(H;,)) (8)
Mcr = o ([W(Maxpoolyy (H)), W (Avgpoolyw (H))])  (9)

where Convl and Conv2 are the combination of Conv-BN-
ReLU. The subscript HW in Maxpool and Avgpool means
taking pooling operations in width and height dimensions.
W is a two-layer MLP that performs nonlinear feature pro-
jection. o is sigmoid nonlinearity. After this, the feature map
becomes

Her =Mcr ® H. (10)

Then, the SA map My and the output feature map Hoy can
be obtained by

Mg = o (Conv[Maxpool-r(Hcr), Avgpool-r(Hcer)]) (11)
How = Ms ® Hcr. 12)

In the following spatial multiscale feature refiner mod-
ule, we continued using the standard structure of CTSAM.
However, it should be noted that, for the static path, temporal
information does not exist, so the CTSAM module here is
simplified to a CSAM module.

C. Spatial Multiscale Feature Refiner

Although the temporal multiscale feature contains rich
information, such as motion, brightness change, local contrast,
and background in the input infrared sequence, its semantic
information is not rich enough to clearly distinguish the target
from the background. Therefore, it is necessary to extract high-
level semantic information, which can be achieved by stacking
subnetworks and spatial multiscale fusion in computer vision
tasks. However, the cascaded subnetworks will still experience
suboptimal small target detection. Because the target size is
so small, targets only account for a small part of the feature
map. In the sequential processing of subsequent subnetworks,
the features of a small target are easy to obscure and weaken.
In order to solve this problem, the dense connection is
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Ilustration of the proposed spatial multiscale feature refiner module. This module divides four different spatial scales and refines the semantic features

of the target at each scale. We design sufficient spatial scale interaction paths between different spatial scales to integrate different scale features and enrich
semantic information. Finally, the module outputs ST multiscale features based on the input temporal multiscale information.

an essential component of neural network design in small
target detection [21], [36]. Based on the above principles,
we designed the spatial multiscale feature refiner module,
as shown in Fig. 3.

In this article, we set four spatial scales: the original scale,
1/2 scale, 1/4 scale, and 1/8 scale, corresponding to the
four stages of the module. The reason for setting multiple
scales was first to enrich semantic information through the
interaction between multiscales and second to provide different
feature paths for small targets of different sizes because,
in the detection task, feature maps of different sizes could
be used to detect targets of different sizes. We did not further
expand the fifth spatial scale, and it was almost impossible
for extremely small feature maps to retain information about
small targets. For each spatial scale, we stacked L CTSAM
convolution modules. In addition, with the combination of
dense connection and spatial fusion, each convolution module
could reuse all previous features of the current scale and
receive the features from the upper scale and the bottom scale.

Specifically, we first downsampled the temporal multiscale
features to obtain the original feature inputs Gf’o at different
spatial scales and stages, i.e.,

G$* = DownSamplefyyy* (F/) (13)
where s is index of stage and the superscript of DownSample
represents the kernel size of downsampling.

After that, the output of the /th module of the sth stage was
denoted as Gf‘l, which can be calculated by

G$' = ConvBlock ([GS0, ..., G3'=1, Gs=1I=1 Got 11T
(14

where G5~ '~! is 2 x 2 downsampling from G;"'~! and
G i 2 % 2 upsampling from G5!, For the modules
of the first and last stages, their inputs lacked the output of
the upper module and the bottom module, respectively.
Finally, the features generated by the modules in different
stages were aggregated, and finally, the spatial multiscale

features FST were obtained

FST = [GOF, uy (GME), ug (G1), us (G31)] (15)

where u,, u4, and ug represent 2 x 2, 4 x 4, and 8 x 8 upsam-
pling, respectively.

D. Prediction Head

The prediction head consists of a CTSAM module and a
1 x 1 convolution. The function of the convolution module
is to further process the previously obtained ST multiscale
features and reduce the dimension to produce reasonable
prediction results. The 1 x 1 convolution generates heatmap
prediction result p, € R7*W based on the final ST features,
and each pixel in the heatmap represents the probability that
the pixel is the center of a small target.
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E. Mask-Weighted Heatmap Loss

Most detection methods of infrared small target use datasets
annotated with segmentation binary masks as ground truth.
However, when the target further shrinks and does not exceed
the size of 3 x 3, it is not easy to discern a clear edge, and
even we can only use the central point to annotate the targets.
Hence, the segmentation mask is difficult to apply in such a
scenario. Therefore, how to use point annotations to train the
network in the detection of tiny targets has become a problem
that needs to be solved. If we use the binary mask directly,
only the center point is 1, and the rest of the background is 0,
in which case the model will easily recognize all the pixels as
the background and fail to generate the correct prediction.

Using a 2-D Gaussian distribution to model infrared small
targets can alleviate the problem that point annotations are
challenging for model training [42], [43]. The 2-D Gaussian
distribution softens the binary mask into a continuous spatial
probability distribution, that is, the probability of the annotated
point as the target center point is 1, and the probability
decreases with the increasing distance from the annotated
center points. Specifically, we can build ground truth g, in
the following ways:

gi(m, n) = exp (—2162 [(m = )"+ (n — w;)ﬁ) (16)
where € is the standard deviation and o is the index of indepen-
dent targets (0 = 1,2, ..., 0). (1, 1759 is the point annotation
of the oth small target. The coefficient and covariance matrix
of the distribution were ignored because we did not need to
guarantee that the integral of the probability density function
was 1, and we assumed that the trend of probability reduction
was isotropic.

The ground truth using a 2-D Gaussian distribution
expands the area of the nonzero part of the heatmap, prevent-
ing the model from cheating by predicting the whole image as
the background. However, it should be noted that the area of
the small target is very small, so the area that a 2-D Gaussian
can significantly cover will not be very large. In order to
further alleviate the imbalance between the target region loss
and the background region loss, we introduced M,

1, p/(@m,n) >34

M;(m, n) = {O else a7

where § is the threshold of significant probability. To summa-
rize, we used mask-weighted heatmap loss to train our model

L=(p—g)0oM +rl— M) (18)

where A is the weighting factor, which was used to balance
the loss of the background region and the target region. Here,
we set A = 0.25 to reduce the proportion of the loss of the
background region in the backward gradient.

F. Instances Extraction and Center Computation

Instance extraction and center computation were opera-
tions in the test phase. The function of instance extraction
is to determine each independent target from the predictive
heatmap [44]. Then, through the center computation, the center
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of the closed graphic composed of all the target points was
obtained as the center point of the prediction. In this way,
we received the desired result: the center point of each target
in the image.

IV. EXPERIMENTS

To qualitatively and quantitatively verify the performance of
the proposed method, we conducted experiments on the public
datasets DSAT (a dataset for infrared image dim-small aircraft
target detection and tracking underground/air background) and
SIATD (a dataset for small infrared moving target detection
under clutter background). We also compared our method with
existing representative methods, including single-frame-based
methods and multiframe-based methods. We set the parameters
of these baseline methods according to the original paper for
a fair comparison.

We would investigate the following questions in our exper-
imental evaluation.

1) QI: Faced with the thermal radiation effects of different
ground disturbances, such as forests, rivers, and build-
ings in the background, we would study the impact of
different paths on capturing dim targets.

2) Q2: Our proposed method can be viewed as a temporal
attention mechanism. We would examine the effect
of different time windows on detection performance
separately.

3) Q3: We would study loss weight settings for background
and target regions to achieve a balance between sup-
pressing noise (false detection and false alarm rate) and
enhancing the target (miss detection).

4) Q4: We would analyze the comparison of the pro-
posed method with other state-of-the-art or data-driven
methods.

A. Dataset

For the experimental evaluation, we chose DSAT and
SIATD datasets, focusing on solving the following challenges:
1) target detection for multiscene images; 2) how to balance
detection probability and false alarm rates; and 3) discovery
and capture of dim targets in complex environments.

1) DSAT: This dataset mainly solved the problem of
infrared sequence image detection and tracking of fixed-wing
unmanned aerial vehicle (UAV) targets. For the DSAT dataset,
the typical wavelengths range from 3 to 5 um, and it belongs
to mid-wave infrared. 22 typical scenarios were designed,
which mainly included a single target underground complex
background, target from far to near, target from near to far,
target leaving the field of view, target returning to the field
of view, and so on. Most scenes in the dataset were ground
backgrounds, including forests, rivers, buildings, and so on.
Each typical scene corresponded to one data segment, for a
total of 22 data segments, 30 tracks, 16 177 frames of images,
and 16944 targets and labels. Each infrared image has a
resolution of 256 x 256 pixels and a bit depth of 8 bits.
An example is shown in Fig. 4.
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(d)

Two instances in the DSAT and SIATD datasets. We show the easy and difficult parts of the same sequence, respectively. For the easy part, even

if the target is small, it still can be clearly distinguished from the background. However, in the difficult part, the target moves to a complex part of the
background, which makes it difficult to distinguish the target from the background in appearance, local contrast, and brightness, so it is necessary to use
temporal information to determine the target position. (a) Easy part of DAST. (b) Difficult part of DAST. (c) Easy part of SIATD. (d) Difficult part of SIATD.

2) SIATD: This dataset contained a total of 350 image
sequences, and the targets were objects such as airplanes
flying in the air. Each target category also included five types
of backgrounds: looking up, looking down, looking down
on vegetation, looking down on water surfaces, and looking
down on buildings. For the SIATD dataset, the wavelength
ranges from 8 to 14 um, which belongs to long-wave infrared.
Although the dataset used a semisimulation method to generate
image sequences, the background images were all captured
on-site by a small UAV platform equipped with infrared
detection equipment. As a result, the radiation characteristics
corresponding to the scene environment in the image were
relatively true and reliable. The target size contained in it did
not exceed 7 x 7 at most, which met the standard of dim
targets. An example of the dataset is also shown in Fig. 4.

B. Evaluation Metrics

First, to measure the weakness of the target in a complex
background and, thus, indirectly evaluate the difficulty of
detection, we calculated the SCR of each target in each image

|m; — my|

SCR = 19)

Op
where m, and m; are the mean of the target and the back-
ground area, and o}, is the variance of the background area.
The target area refers to the square with the size of a x b
centered on the target center, while the background area is the
square with the same center as (@ + 2d) x (b + 2d). In our
experiments, a = b = 3 and d = 10 by default. The definition

comes from [45]. For some baseline methods with different
settings, we followed their settings for a fair comparison. The
SCR of the DSAT dataset under different splits is shown in
Table I, and the SCR of the SIATD dataset in test split is 3.33.

Second, we employed a direct and publicly available metric,
the F; score that combined the Precision and Recall, to quan-
titatively evaluate the performance of point target detection.
It is defined as

. TP
Precision = ——— (20)
TP + FP
TP
Recall = ———— 2n
TP 4+ FN
_ 2 - Precision - Recall 22)

Precision + Recall

which is the same as the definition in [37].

We stipulated that the TP (i.e., the correct prediction)
referred to the distance between the predicted center point
and the actual center point being within d pixels, the FN
(i.e., the missing prediction) referred to the fact there was
no prediction center around an actual center point within d
pixels, and the FP (the false detection) assumed that there
was no actual center around a predicted center point with d
pixels. d was set to 3 in SIATD and 10 in DSAT because there
were relatively large targets whose point annotation was not
centroid in some sequences of the DSAT dataset. Among the
above metrics, Precision is actually the ratio of the number
of correctly predicted targets to the total number of predicted
targets, while Recall represents the ratio of the number of
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correctly predicted targets to the number of correct targets.

In this case, these two metrics are directly related to detection

probability P, and false alarm rate F,, that is,
P; = Recall

F, = 1 — Precision.

(23)
(24)

The definition comes from [46].

To further evaluate our model in a more stable way, we cal-
culate the receiver operation characteristic (ROC) metric,
as described in [47], [48], and [49]. Here, we follow the
definition of TP rate (TPR) and FPR in [21], [32], [36], [42],
[43], and [45], where

number of true detections
TPR =

(25)
number of total targets

number of false detections
FPR =

. . . (26)
number of image pixels

In addition, some DSAT baseline methods did not use the

F1 score but other metrics to evaluate the method performance.

In these cases, we also calculated the corresponding metrics

of our method. These metrics are BSF and CG. They are

defined as

Oin

BSF = 27
Oout
M - u

CG, = [Max; — mp|out (28)
[Max; — myplin

CG, = lm; — mp|ou (29)

|m; — mplin

where oj, and o,y are standard deviations of the input image
and the output probability map. Max, represents the max value
in the target area, and m, and m,; are the mean values in the
target and the background area. Here, we used two definition
of CG according different methods, where CG; and CG; come
from [45] and [50]. The definition of BSF comes from [50].

Finally, we add inference time and frames per second (fps)
for evaluating and comparing the speed of our methods and
other baselines. In our method, we set the batch size to 1 while
calculating inference time.

C. Implementation Details

In our implementation, the sample frames k were set to
20 for the DSAT dataset and 5 for the SIATD dataset. For
the DSAT dataset, we fed the infrared frames directly into the
network using the original frame size (256 x 256). For the
SIATD dataset, we cropped the original frame (640 x 512)
at 256 x 256 to save video memory. In addition, the video
frames were randomly mirrored and normalized before being
sent to the network. The feature dimensions of the differential
path, the dynamic path, and the static path were 96, 32, and
32, respectively. The output channel dimensions of feature
aggregation and spatial multiscale feature refiner were 32.
We initialized the model weights with the Xavier [51] method.
The standard deviation € of the 2-D Gaussian distribution was
set to 3, and the weight factor A in the loss was set to 0.25.
Our method was developed based on the OpenCV [52] and
PyTorch [53] libraries.
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During the training process, we followed the official
train/test split of the SIATD dataset. For the DSAT dataset,
we used the low SCR and challenging sequences as the test
set for performance evaluation and ablation experiments. For
some of the baseline methods with different splits, we adopted
their splits and metrics to facilitate fair comparison. We used
the Adam [54] optimizer to train our model with a batch size
of 8 and an initial learning rate of 0.005. We used cosine
annealing to adjust our learning rate. For the DAST dataset and
the SIATD dataset, we trained 200 and 20 epochs, respectively.
We applied deep supervision to promote faster and more stable
convergence of the network. All models were trained and
tested on Nvidia GeForce RTX 3090 GPU.

D. Quantitative Results

1) Performance on the DSAT Dataset: We showed the
comparison performance over different splits and metrics in
Table I. Our proposed STDMANet was better than the baseline
methods in most cases. In experiment B, the CG performance
of our method was better, and the BSF performance was
worse. The reason was that we used 2-D Gaussian distribution
to represent point targets, resulting in a larger nonzero area
for each target in the final probability map, which led to an
increase in the standard deviation of the output probability
map and made the BSF metric slightly worse. We further show
the inference time and fps in Table II. Our method achieves
better performance while maintaining comparable speed as the
fastest method.

2) Performance on the SIATD Dataset: As shown in
Table III, we provided the F; score of our model on the
SIATD dataset versus the baselines. For those methods that
used the SIATD dataset and reported performance by F score,
we used the result in the original paper, and we also selected
some of the baseline methods that they implemented. For other
methods, we tested them with checkpoints provided by their
official open-source code. We could not retrain them because
they were difficult to manage with point annotations.

In comparison with recent baselines, our proposed STD-
MANet improves the overall F; score by 0.1682, achieving the
best performance among all methods. In addition, our model
performed well in terms of precision and recall. The precision
is only 0.0115 lower than the highest IAANet, while the recall
is the highest and surpasses the second highest ALCNet at
0.1336. In contrast, the baseline methods could only perform
well in one metric between precision and recall, while our
model achieved similar performance on two metrics.

Since the SIATD dataset contains rich scenarios, we select
several typical scenes and evaluate the performance of those
sequences. The results are shown in Table IV. The experi-
mental results show that our method maintains high detection
accuracy and consistency in all kinds of scenarios.

3) Performance on Targets With Different Speeds: This
article focuses on the effectiveness of temporal information for
small target detection. However, different targets have different
speeds. In this part, we design experiments to explore the
performance differences between our methods in detecting
targets with different speeds. We believe that, for those targets
with a strong contrast with the background, regardless of the
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TABLE I
RESULTS OF SEVERAL METRICS ON SEVERAL DSAT DATASET SPLITS. WE SHOW MULTIPLE RESULTS OF DIFFERENT METHODS WITH RESPECT TO
THEIR METRICS. FOR THE RESULTS OF EACH SEQUENCE, THE FIRST LINE IS THEIR NAME IN THE CORRESPONDING

PAPER, AND THE SECOND LINE IS THEIR SEQUENCE INDEX IN DSAT

Exp | Test Sequences A\éegaRge Metric Method Results
Data2
Overall Seq 8
Yan et al. [46] 0.9858 0.9858
A 8 291 | PaT | STDMANet (ours) | 0.9812 | 0.9812
Fl Yan et al. [46] 0.1435 | 0.1435
e STDMANEt (ours) | 0.0025 | 0.0025
Sequencel Sequence2
Overall Seq 8 Seq 2
Yao et al. [37] 0.987 0.984 0.989
B 28 SAT | Precision T grpMANet (ours) | 0.988 | 0.981 0.993
Recall Yao et al. [37] 0.994 0.992 0.996
STDMANet (ours) | 0.997 0.998 0.997
Sequence 4 Sequence 5 Sequence 6
A 313 Overall| "o 10 Seq6  Seq 18
T ) CGs 1 ASTTV-NTLA [45]| 13.89 27.49 5.88 8.30
2 STDMANet (ours) | 15.94 16.42 30.83 3.73
scene(f) scene(g) scene(h)  scene(i)
Overall | “go0'6"  Seq20  Seq22  Seq 8
Wu et al. [50] 23.098 | 16.391 31.017 25.615 18.686
D | 682022 321 1 BSET | oTDMANet (ours) | 19.714 | 14899 18297  29.446  13.725
Gy 1 Wu et al. [50] 1.395 1.498 1.465 1.260 1.391
! STDMANet (ours) | 1.596 1.958 1.669 1.378 1.434
Overall Seq 3 Seq 4 Seq 16  Seq 18
Precision 1 Zhu et al. [55] 0.9759 1.0000 1.0000 0.9898 0.9380
STDMANet (ours) | 0.9866 | 0.9141 0.9786 0.9960 1.0000
E 3,4,16,18 5.96 Recall | Zhu et al. [55] 0.9727 | 0.9865 0.9988 0.9838 0.9380
STDMANEet (ours) | 0.9920 | 0.9192 0.9975 0.9960 1.0000
Fr 1 Zhu et al. [55] 09717 | 0.9932 0.9994 0.9789  0.9380
! STDMANet (ours) | 0.9893 | 0.9166 0.9880 0.9960 1.0000
Overall Seq 7 Seq 10 Seq 14  Seq 15 Seq 17
F Our Split Precision 1 0.8378 | 0.9598 0.6696 0.7431 0.9397 0.9950
7,10,14,15,17 1.83 Recall T | STDMANet (ours) | 0.9031 0.9623 0.6900 0.8623 0.9987 1.0000
Fi 1 0.8692 | 0.9610 0.6796 0.7987 0.9683 0.9975
TABLE II TABLE IIT

INFERENCE TIME AND fps BETWEEN OUR MODEL AND OTHER METHODS

Method | Input Size | Inference Time | FPS 1

Yan et al. [46] (256, 256) 0.0596 16.78
Yao et al. [37] (256, 256) 0.0282 35.50
Wu et al. [50] (256, 256) 0.0693 14.43
ASTTV-NTLA [45] | (250, 250) 282.76 0.0035
Zhu et al. [55] (256, 256) 1.4354 0.6967
STDMANet(ours) ‘ (256, 256) ‘ 0.0367 27.26

speed, the detection performance can be guaranteed. However,
for those targets with little difference from the background,
if the speed is too slow, we cannot get enough information
to distinguish the target; on the contrary, if the speed is too
fast, the motion blur of the target will also make the detection
more difficult. In order to verify this, we first count the speed

'To mention that the original paper only use part of sequences and there is
no description of the start and the end frames, so the results are for reference

only.

RESULTS ON SIATD DATASET. WE SHOW THE RESULTS OF DIFFERENT

METHODS WITH RESPECT TO THE PRECISION, RECALL, AND
F) SCORE. THE HIGHEST F| SCORE IS IN BOLDFACE,
AND THE SECOND HIGHEST IS UNDERLINE

Method ‘ Precision  Recall ‘ F; score
RIPT [56] 0.30 0.75 0.43
TIPI [57] 0.01 0.09 0.02

FKRW [58] 0.0033 0.0338 0.0061
ASTTV-NTLA [45] 0.60 0.52 0.56
Sun et al. [14] 0.92 0.63 0.75
MDvsFA [22] 0.9801 0.5623 0.7146
ACM [25] 0.0197 0.7986 0.0384
ALCNet [26] 0.4285 0.8397 0.5674
TAANet [27] 0.9870 0.6814 0.8062
DNANet [21] 0.0672 0.0682 0.0677
STDMANEet(ours) ‘ 0.9755 0.9733 ‘ 0.9744

of the target, where the speed is defined as the pixel dis-
placement under the fixed time window k (k = 20 in DSAT
and k = 5 in SIATD). After that, we calculate the detection
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TABLE IV
SEVERAL TYPICAL SCENARIOS ON SIATD DATASET. WE SHOW THE RESULTS OF DIFFERENT SCENARIOS WITH F; SCORE TO EVALUATE THE
PERFORMANCE OF OUR MODEL ON DIFFERENT SCENES. A: BUILDING; B: RIVER; C: BRIDGE; D: ROAD; E: FIELD;
F: Woobs; G: HILLY; H: CLoUD; AND I: CITY

Perspective | Down Down Down Down Down Down Down Down Down Down Down Down Down  Down Down
Scene | A B E F G AB AD AF BC BE DE EF EG FG ABD
Fy score |0.9729 0.9520 0.9693 0.9910 0.9807 0.9871 0.9704 0.9655 0.9676 0.9854 0.9889 0.9551 0.9694 0.9045 0.9786
Perspective\ Down Down Down Down Down Down Down Down Down Down Down Down Down Middle Up
Scene | ABE ABF BCD BCE BDF BEF EFG ABCD ABCF ABEF ABFG ABEFG ABCDEF HI H
F1 score |0.9800 0.9791 0.9929 0.9885 0.9893 0.9708 0.9423 0.9933 0.9339 0.9923 0.9867 0.9627 0.9973  0.9775 0.9695
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Fig. 5. Chart of target speed distribution and F; metric variation in (a) DSAT and (b) SIATD datasets. The abscissa is the speed range of the targets, the blue
bar chart is the probability distribution of the target speed in the dataset, and the orange line chart is the average Fj variation of target detection according

to different speed intervals.

TABLE V

ABLATION RESULTS ON DSAT DATASET. WE SHOW THE PERFORMANCE GAP UNDER DIFFERENT FEATURE EXTRACTION

STRATEGIES TO DEMONSTRATE THE EFFECTIVENESS OF EACH COMPONENT

Index %ﬁgiﬁ:ﬁ? ‘ lef;;gl: tial D}gZLmC SPt:glC Precision  Recall ‘ Fy score | Fy Diff
1 \ v \ v v v \ 0.8378 0.9031 \ 0.8692 \ 0.0000
2 \ \ v v v \ 0.7437 0.7685 \ 0.7559 \ -0.1133
3 v v v 0.8332 0.8654 0.8490 -0.0202
4 v v v 0.8412 0.8668 0.8538 -0.0154
5 v v v 0.8453 0.8795 0.8621 -0.0071
6 v v 0.8303 0.8637 0.8467 -0.0225
7 v v 0.8169 0.8341 0.8254 -0.0438
8 v v 0.6053 0.6189 0.6120 -0.2572

performance of our model for targets with different speeds,
as shown in Fig. 5. The experimental results show that our
method shows performance degradation when the speed is too
slow and too fast. At the same time, the decline of the SIATD
dataset with high SCR is smaller, while the performance
decline of the DSAT dataset with lower SCR is greater. These
results are consistent with our previous analysis.

4) Ablation Study on the DSAT Dataset: In order to verify
the effectiveness of our model components, we conducted
several ablation experiments on the DSAT dataset. We eval-
uated the F| score after removing specific components to
assess their contribution to the model. The experimental results
are shown in Table V. The first row of the table shows the
performance of our entire model. The second row shows the
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Fig. 6. ROC results of ablation study. The legends in the figure correspond
to the index of the ablation experiment in Table V.

result of removing the background alignment. The other lines
show the ablation of feature extraction paths at different time
scales. Fig. 6 further proves the credibility of the ablation by
Monte Carlo simulation.

From the second row of the table, we can see that, after
removing the background alignment, the result of the model
drops by 0.1133, indicating that feature extraction based on
background alignment was vital for small target detection.
From the results of the third row to the fifth row, we can see
that combining any two feature paths could better complete the
task of small target detection, but they were slightly lower than
the combination of three feature paths. The results of the last
three rows show that only one feature path could be used to
complete the detection task, but its performance was limited.
Among them, the performance of the differential path alone
was the best, that of the dynamic path was the second, and that
of the static path was the worst. This result was consistent with
our analysis that it was far from enough to use only single-
frame information when the target was very small (even less
than 3 x 3). We must use temporal, motion, and brightness
change information in multiple frames.

5) Variation of Time Window k on the DSAT Dataset:
To verify the necessity of using multiframe images to obtain
temporal information in dim and small infrared target detec-
tion, we transformed the sampling frame number k from
1 to 25 to explore the influence of the time window on final
performance. The results are shown in Fig. 7. As can be
seen from the figure, the result of the model with multiframe
input was better than the performance of models using only
the current frame to extract spatial information. When the
sampling frame is greater than 20 frames, the final F; score
is even higher than that of a single frame by more than
0.25, which verified that dim targets needed to be detected
through temporal information. On the other hand, we observed
that the final performance of the model no longer increases
significantly when the time window exceeds 20, indicating
that most of the motions in the DSAT dataset were completed
within 20 frames. Therefore, we used 20 frames as the default
time window size for the DSAT dataset. Similarly, for the
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Fig. 7.  Performance under different sampling frames, where the y-axis

represents the value of different metrics and the x-axis represents the size
of the time window.
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Fig. 8. Performance under different A’s. To better visualize the changing

trend of various metrics with the increase in A, our chart does not include
precision when A equals 0, which is 0.0813.

SIATD dataset, the size of the time window was set to 5.
In our further experiments, the effect of increasing the time
window of the SIATD dataset was completely within the error
range.

6) Variation of Weighting Factor A on the DSAT Dataset:
We explored the changes in several metrics with A changes,
as shown in Fig. 8. When A is 0, only the loss of the target area
is calculated, and the precision is reduced to 0.0813, because
we do not add constraints to the background, resulting in a
large number of false detection and a significant reduction in
precision. When we gradually increase A from 0.25, it means
that we increase the constraint on the background area and
reduce the constraint on the target area, and the task of sup-
pressing the background will occupy more weight than finding
the target; thus, the importance of reducing false detection
increases, and the importance of reducing missed detection
decreases. The curve in the figure proves this analysis. The
decrease in precision is less than that of recall with the increase
in lambda, which means that the network pays more attention
to reduce false detection rather than missed detection. The
experiment shows that missed detection and false detection
can be balanced by A. We set lambda to 0.25 to maximize the
Fy score.
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Fig. 9. Visualization results on the DSAT
30, and 32, respectively.
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IAANet DNANet STDMANet (ours)

dataset. The time indices of given image sequences Data7, Datal0, Datal4, Datal5, and Datal7 are 40, 29, 295,

TAANet DNANet STDMANet (ours)

Fig. 10. Visualization results on the SIATD dataset. The time indices of given image sequences 58, 73, 79, 100, 146, 165, and 174 are 116, 360, 130, 127,

189, 100, and 106, respectively.

E. Qualitative Results
The visualization of the DSAT and SIATD datasets over our
STDMANet and other methods is shown in Figs. 9 and 10,

respectively. For those methods that need to adjust the
parameters, we adjust the parameters of each sequence so that
their result could include the correct target as much as possible.
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In the visualization of the DSAT dataset, we showed the
results of five scenes. Among them, three sequences (Seq7,
Seql4, and Seql7) showed that the target entered an area
where the background was similar to the appearance of the tar-
get, and two scenes (Seq10 and Seq15) showed that the target
was extremely dim and difficult to discern. From the results
of five scenes, the observation was that our proposed STD-
MANet could deal with complex backgrounds—our model not
only could detect dim targets through spatial information but
also could detect targets that could not be discerned by spatial
information through temporal clues.

Similarly, in the SIATD dataset with higher resolution, more
targets, and richer scenes, we also selected different sequences
for five scenes. In sequence 58, the two targets entered
clouds in the sky and buildings on the ground, respectively.
In sequence 79, the target entered a strong reflection area
caused by the superposition of clouds and roads. In sequence
100, all three targets entered the clouds from an overlooking
perspective. In sequences 146 and 165, the background of
the target was a strong reflection on the water surface and
a weak reflection on the water surface, respectively. From
the visualization results, we could see that our proposed
STDMANet performed well in all scenarios, which further
verified the ability of our model to deal with complex
backgrounds.

The video frames of the above sequence were specially
selected, in which it was difficult to distinguish the target from
the background in the current frame. In this case, our model
could make good use of the historical motion of the target and
find clues to the location of the target in the current frame.
Other baseline methods either added a large number of false
detection to include the correct target or could only locate the
high-brightness small patches in the video frame and could not
correctly identify the target, while our proposed STDMANet
could maintain both false detection and missed detection at a
low level at the same time.

To summarize, through several modules inspired by the
characteristics of infrared small targets, our model could
extract high-quality ST features for small targets under a
reasonable time window, generate prediction outputs of low
false detection rate and low missed detection rate, and clearly
exceed the latest baseline methods. The extensive experimental
results showed that we had successfully solved the problems
that we raised in the experimental design process.

V. CONCLUSION

In this article, we presented the STDMANet for infrared
small target detection. A network with temporal and SA
mechanisms was established through the temporal multiscale
feature extractor and the spatial multiscale feature refiner,
which was suitable for multiframe infrared dim target detec-
tion. The temporal multiscale feature extractor extracted the
ST features accumulated by the continuous motion of the
target under different time steps and improved the quality of
feature extraction through the attention mechanism. At the
same time, in order to prevent small objects from being
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annihilated by noise, we maintained the feature map of the
original image size throughout the process and maintained
the features related to the shallow position (position-aware)
and deep semantic (semantic-aware) through feature reuse.
We conducted extensive ablation studies and conducted a
comparison with today’s mainstream methods. The perfor-
mance of the proposed STDMANet on the open SIATD and
DSAT datasets showed that the proposed method significantly
outperformed the compared pure model-driven methods and
pure data-driven networks. This indicated that one should pay
more attention to the detection of infrared dim targets through
the combination of a deep network, temporal information,
spatial information, and differential information. In the future,
we can find more efficient ways to simplify computation and
reduce the runtime of processing.
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