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ABSTRACT
Video Grounding (VG), has drawn widespread attention over the
past few years, and numerous studies have been devoted to im-
proving performance on various VG benchmarks. Nevertheless,
the label annotation procedures in VG produce imbalanced query-
moment-label distributions in the datasets, which severely deteri-
orate the learning model’s capability of truly understanding the
video contents. Existing works on debiased VG either focus on
adjusting the learning model or conducting video-level augmen-
tation, failing to handle the temporal bias issue caused by imbal-
anced query-moment-label distributions. In this paper, we propose
a Disentangled Feature Mixup (DFM) framework for debiased VG,
which is capable of performing unbiased grounding to tackle the
temporal bias issue. Specifically, a feature-mixup augmentation
strategy is designed to generate new (text, location) pairs with
diverse temporal distributions via jointly augmenting the represen-
tation of text queries and the location labels. This strategy encour-
ages making prediction based on more diverse data samples with
balanced query-moment-label distributions. Furthermore, we also
design a content-location disentanglement module to disentangle
the representations of the temporal information and content infor-
mation in videos, which is able to remove the spurious effect of
temporal biases on video representation. Given that our proposed
DFM framework conducts feature-level augmentation and disentan-
glement, it is model-agnostic and can be applied to most baselines
simply yet effectively. Extensive experiments show that our pro-
posed DFM framework is able to significantly outperform baseline
models in various metrics under both independent identical distri-
bution (i.i.d.) and out-of-distribution (o.o.d.) scenes, especially in
scenarios with annotation distribution changes.
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Query: 
A woman pours water into a cup, takes a sip and opens the window. 

Figure 1: An example of Video Grounding (VG)
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1 INTRODUCTION
Video Grounding (VG), has received an increasing amount of at-
tention in recent years [8, 20, 25, 27, 57–59, 64, 67, 69]. Specifically,
given a descriptive natural language sentence, the goal of the video
sentence grounding task is to retrieve a video moment semantically
matching the sentence query from the untrimmed video [37]. As
shown in Figure 1, given a query “A woman pours water into a cup,
takes a sip and opens the window.”, VG aims to return a moment
(3.2s-16.7s) which contains the semantics indicated by the query.

Nevertheless, the label annotation procedures in VG produce im-
balanced query-moment-label distributions in the datasets, which
severely deteriorate the learning model’s capability of truly under-
standing the video contents. With these imbalanced query-moment-
label distributions, current VG approaches may resort to "shortcuts"
solutions without obtaining genuine comprehension of the videos

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3581783.3612401
https://doi.org/10.1145/3581783.3612401
https://doi.org/10.1145/3581783.3612401


MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Xin Wang, Zihao Wu, Hong Chen, Xiaohan Lan, & Wenwu Zhu

and texts, but rather achieving good results via overfitting the tem-
poral biases caused by the imbalanced distributions, which has been
previously discussed [1, 39, 46, 60, 61]. When the training and test
sets of VG datasets are independently and identically distributed
(i.i.d.) and have obvious biases (e.g., long duration moments that
have higher predictability with a higher IoU), VG models may heav-
ily overfit the biases in groundtruth moment annotations, leading
to inadequate utilization of multimodal inputs. Consequently, VG
approaches suffer from overfitting and spurious correlation due to
distribution biases in existing VG datasets.

There exist several works on debiased VG [35, 36, 46, 47, 60, 61,
70], where they either focus on adjusting the learning models [36,
60] or conducting video-level data augmentations [35]. As such,
these existing works fail to handle the temporal bias issue caused
by imbalanced query-moment-label distributions.

Therefore, we study temporally debiased video grounding through
moment-level augmentation, which poses two challenges:

(1) It is non-trivial to augment positive moment-level samples
to conduct unbiased training for temporally debiased VG.

(2) It is unclear how to eliminate the spurious correlations be-
tween multimodal input and the target moment location,
which may lead to the temporal biases.

To solve these challenges, in this paper, we propose aDisentangled
Feature Mixup (DFM) framework for debiased VG, which is capable
of performing unbiased grounding to tackle the temporal bias issue.
In concrete, to obtain positive moment-level samples, we design a
feature mixup augmentation strategy which can jointly augment
the representation of text queries and the location labels to produce
new (text, location) pairs with diverse temporal distributions for
video moments. Therefore, the proposed feature-mixup augmen-
tation is able to enrich the sample space with more diversity, thus
encouraging the model to make predictions based on more diverse
data samples with balanced query-moment-label distributions. To
eliminate the spurious correlations between multimodal inputs and
target moment location, we further develop a content-location dis-
entanglement module to separate the latent representations of the
temporal information and content information in videos via recon-
struction and information bottleneck. Thus, we are able to remove
the spurious effects from temporal information through forcing
the model to focus more on the true relation between multimodal
input and the target moment location. Given the feature-level aug-
mentation and disentanglement, our proposed DFM framework is
model-agnostic and can be applied to most baseline models simply
yet effectively. Extensive experiments show that our proposed DFM
framework achieves superior performances over state-of-the-art
baselines on several datasets, especially in scenarios with annota-
tion distribution changes.

To summarize, this paper makes the following contributions.

• We propose a Disentangled Feature Mixup (DFM) frame-
work, which is able to perform unbiased video grounding to
eliminate the temporal biases.

• We design a feature-mixup augmentation strategy which
can produce many new (text, location) pairs with diverse
temporal distributions for videomoments in order to conduct
unbiased training.

• We develop a content-location disentanglement module to
separate the representations of the temporal information and
content information in videos so that spurious correlation
between multimodal input and target moment location can
be eliminated.

• We conduct extensive experiments on several datasets to
demonstrate the superiority of our DFM framework over
existing baselines for VG tasks.

2 RELATEDWORK

Video Grounding. On the one hand, many promising research
works have emerged, which have continuously improved model
performances for VG [8, 20, 25, 27, 57–59, 64, 67, 69]. On the other
hand, some recent studies [46, 61] point out significant distribution
biases in existing VG datasets. In particular, Yuan et al. [61] reorga-
nize the two benchmark datasets to create two different test sets
(i.i.d. and o.o.d.). Otani et al. [46] further propose two alternative
evaluation metrics to handle subjective bias and mislabeling in the
VG dataset. Similarly, Yuan et al.[61] also propose a new metric,
discounted-R@n, IoU@m to alleviate the bias inherent in the eval-
uation metric (R@n, IoU@m) for VG. Yang et al. [60] propose a
debiased cross-modal matching network to eliminate the confound-
ing effect of temporal location for VG. Lan et al. [36] later propose
a causality-based multi-branch de-biasing (MDD) framework for
VG to remove the effects caused by multiple confounders and help
the model better match the semantics between queries and clips. In
addition, Zhou et al. [70] focus on another type of bias in the VG
task, i.e., the single style of annotation, through proposing DeNet
with a debiasing mechanism to produce diverse and reasonable
predictions. Nan et al. [47] propose a method for approximating the
distribution of potential confusion sets based on causal inference
to eliminate the selection biases introduced by the datasets. To
the best of our knowledge, our method is the first to augment the
biased temporal annotations from the moment-level and explicitly
eliminates the spurious effect of location variables simultaneously.
Disentangled Representation Learning. Disentangled represen-
tation learning aims to identify and disentangle the underlying
explanatory factors [2]. In general, variational methods are widely
applied for disentangled representation over images. 𝛽-VAE [22]
demonstrates that disentanglement can emerge once the KL diver-
gence term in the VAE [31] objective is aggressively penalized. In
particular, Kingma and Welling [31] propose to utilize Bayesian
posterior inference and variational estimation to learn the con-
trollable factors hidden in the observed data. Higgins et al. [22]
propose 𝛽 − 𝑉𝐴𝐸 by setting a weight 𝛽 for the KL divergence to
improve representation disentanglement learned in the observed
data while sacrificing mutual information between input data and
latent representations. Later approaches separate the information
bottleneck term [51, 52] and the total correlation term, and achieve
a greater level of disentanglement [4, 9, 30]. Other works either
design an attentive architecture to learn aspect matrix for word
embeddings [21] or utilize methods based on triplets to learn aspect
representations from sentences where each aspect has a separate en-
coder [26]. The majority of the existing efforts are from the field of
computer vision [3, 10, 12–14, 22, 23, 28, 32, 33, 44, 71]. Disentangled
representation learning on relational data, such as graph-structured
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data, has not been explored until recently [38, 42, 56, 68]. Besides
the relational data on graph, disentangled representation learning
for recommendation has also drawn research attentions from the
community [6, 43, 54, 55].
Mixup.Data Augmentation is a strategy for increasing the diversity
of training instances without explicitly collecting new data [15].
As a data augmentation method, mixup was first introduced in
the computer vision community by Zhang et al. [65]. The mixup
training strategy is simple to implement and has only a small com-
putational overhead, but greatly improves generalization errors
on state-of-the-art models, and also enhances robustness for cor-
rupted labels, and adversarial samples, and stabilizes the training
of generative adversarial networks(GANs) [65]. Given the original
sample, Cheng et al. [11] first construct an adversarial sample, and
then applied two types of samples with the mixup strategies. Sun et
al. [50] propose Mixup-Transformer, which combines mixup with
a Transformer-based pre-training structure to validate its perfor-
mance on a text classification dataset. Mixup in NLP can effectively
improve data augmentation performance and has significant ef-
fects in avoiding model overfitting [7, 45, 65]. In the multimodal
community, Li et al. [40] adopt mixup as a baseline augmentation
method which serves as an equivariant intervention to the training
video through applying a linear interpolation on the causal scene,
question, and answer. Researchers have also proposed variants of
mixup for speech [29] and a nonlinear hybrid scheme [18], etc.

3 METHOD
In this section, we present the details of our proposed Disentangled
Feature Mixup (DFM) framework, covering notations and problem
formulation, mixup augmentation, content-location disentangle-
ment as well as learning objectives.

3.1 Notations and Problem Formulation
As shown in the example in Figure 1, given an uncropped video
𝑉 and a sentence 𝑆 as a query, the VG task is to retrieve one or
more consecutive clips forming the moment 𝑀 which semantically
matches the query. Specifically, the query sentence is denoted as
𝑆 = {𝑠𝑖 }𝑙

𝑆 −1
𝑖=0 , where 𝑠𝑖 represents a word in the sentence and 𝑙𝑆 is

the total number of words. The input video consists of a sequence
of frames, i.e., 𝑉 = {𝑥𝑖 }𝑙

𝑉 −1
𝑖=0 , where 𝑥𝑖 represents a frame in the

video, and 𝑙𝑉 is the total number of frames. The output moment
𝑀 starts from frame 𝑥𝑀𝑠 and ends with frame 𝑥𝑀𝑒 , providing the
semantics that match the input sentence 𝑆 .

The given video 𝑉 is first divided into a set of video clip anchors
with different time lengths, i.e., {𝐶𝑖 }𝑁 −1

𝑖=0 where 𝑁 is the number of
candidate clips. Each candidate clip corresponds to a temporal posi-
tion, i.e., the starting and ending timestamp, and several consecutive
clips may form one moment. The correlation score between each
candidate moment 𝑀 and the ground truth moment 𝑀∗, measured
in terms of temporal Intersection over Union (IoU) between 𝑀 and
𝑀∗, is used as the supervision signal for training. A cross-modal
function F will be learned to map each <query, moment> pair to a
real value, indicating their correlation scores.
Temporal Biases in VG. The moments are actually located via the
temporal coordinate of (start time, end time) within the given video.
The temporal biases refer to the phenomenon that it is possible to

correctly guess the (start time, end time) coordinate simply from
the words or sentences of the query without truly understanding
the real meaning of the query and the content of the video. This
temporal biases are caused by the spurious correlation between the
multimodal input and the target moment location.

3.2 Mixup Augmentation
We innovatively conduct mixup augmentation to text queries and
corresponding temporal IoU labels, which simultaneously enhances
the representation of text queries [19] as well as generate diverse
data by mixing samples with different temporal locations. We em-
ploy two mixup strategies, i) Word Mixup which performs sample
interpolation in the word embedding space, ii) Sentence Mixup
which performs sample interpolation on the latent space projected
through the sentence encoder.
Word Mixup.Word Mixup operates on the embedding of words.
All sentences are first zero-padded to the same length, and then
interpolated for each dimension of each word in the sentence. Given
a piece of text, e.g., a sentence with 𝑁 words, it can be represented
as a matrix 𝐵 ∈ 𝑅𝑁 ×𝑑 . Each row 𝑤 of the matrix corresponds to a
word, denoted as 𝐵𝑤 , which is represented as the word embedding
table provided by the learned word or as a randomly generated
𝑑-dimension vector. Formally, consider a pair of samples (𝐵𝑖 ; 𝑦𝑖 )
and (𝐵 𝑗 ; 𝑦 𝑗 ) , where 𝐵𝑖 and 𝐵 𝑗 denote the embedding vectors of the
input sentence pairs, and 𝑦𝑖 and 𝑦 𝑗 denote the sample class labels
represented using one-hot vectors. Then, for the 𝑤𝑡ℎ word in the
sentence, the process of sample linear interpolation in the word
embedding space can be expressed as follows,

𝐵̃
𝑖 𝑗
𝑤 = 𝜆𝐵𝑖

𝑤 + (1 − 𝜆)𝐵 𝑗
𝑤 , 𝑦̃𝑖 𝑗 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦 𝑗 . (1)

The samples (𝐵̃𝑖 𝑗
𝑤 , 𝑦̃𝑖 𝑗 ) generated by mixup serve as the subsequent

training samples.
Sentence Mixup. Sentence Mixup operates on the latent space
projected through the sentence encoder. The latent embeddings
of two sentences with the same dimension are generated by the
encoder (e.g., LSTM), followed by a subsequent linear interpolation
on the sentence embeddings. Specifically, 𝑓 denotes the sentence
encoder, which encodes a pair of sentences 𝐵𝑖 and 𝐵 𝑗 to sentence
embeddings 𝑓 (𝐵𝑖 ) and 𝑓 (𝐵 𝑗 ) , with each dimension 𝑘 of the latent
sentence embedding being mixed, as shown in Eq.(2),

𝐵̃
𝑖 𝑗

{𝑘} = 𝜆𝑓 (𝐵𝑖 ){𝑘} + (1 − 𝜆) 𝑓 (𝐵 𝑗 ){𝑘}, 𝑦̃𝑖 𝑗 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦 𝑗 . (2)

Finally, the embedding vector 𝐵̃𝑖 𝑗

{𝑘} is passed to the softmax layer
to generate the predictive distribution over the possible target
classes.

Previous works on VG use each (sentence, moment) pair to learn
multimodal representations and predict matching relationships
separately during training, via utilization of the corresponding tem-
poral locations as supervision. These models tend to be strapped in
a limited and specific temporal location solution space, i.e., fitting
the labeling bias of temporal locations in the dataset. In contrast,
conducting mixup strategy to textual queries and their correspond-
ing temporal IoU labels can enable predicting (sentence, moment)
pairs at various locations in the same video, thus reducing empirical
risk [65]. In general, our utilization of mixup strategy in VG can
encourage the model to learn cross-modal matching relationships
without temporal biases in a larger solution space, benefiting in
improvement of the generalization ability.
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Figure 2: The overall structure of our proposed Disentangled Feature Mixup (DFM) framework for debiased VG. We conduct the
content-location disentanglement and mixup augmentation in an end-to-end paradigm. The mixup augmentation module
jointly augments the representation of text queries and the location labels to incorporate rich context information with less
biased location reliance. The content-location disentanglement module removes the spurious effect of temporal location and
enhance the visual representation.

3.3 Content-Location Disentanglement
It is very likely that the supervision signals lying in the 2D co-
ordinate map may introduce specific location information during
the model training process, leading to the temporal contextual
bias between moment and its location that may influence the clip
representations.

To address this issue, we propose to disentangle video represen-
tations v into mutually independent potential variables, i.e., content
representation c ∈ R𝑑 and location representation l ∈ R𝑑 , through
disentangled representation learning as follows,

c = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑐 (v), l = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑙 (v), (3)

where 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑐 and 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑣 can be implemented using any deep
architectures such as multi-layer perceptron (MLP). Specifically, we
achieve the disentanglement of content and location representa-
tions by resorting to i) reconstruction constraints and ii) informa-
tion constraints.
ReconstructionConstraints. In disentangled representation learn-
ing, reconstruction loss is crucial for ensuring that the representa-
tions learned by the model are semantically meaningful. For VG,
there exists an inherent timestamp (𝑥𝑖 , 𝑥 𝑗 ) that can be naturally
used as a supervised signal of the reconstructed temporal location
representation l. The reconstructing loss function Lrecon (l, p) en-
courages temporal position representation l to approximate the real
temporal location representation p, where p ∈ R𝑑 is the intractable
position embedding vector [31] obtained from the video representa-
tions (similar to position embedding in Transformer). For simplicity,
we use 𝐿2 distance for the reconstruction loss as follows,

Lrecon (l, p) = ∥l − p∥2 . (4)

Information Constraints. In order to achieve content-location
disentanglement, content representation c and location represen-
tation l from the video representation v are supposed to satisfy
the independence constraint after being extracted from the video

representation, i.e., c and l should be invariant and contain the
least information from each other. The information loss function
Linfo (c, l) encourages the content representation 𝑐 and location
representations 𝑙 to be independent with each other in the hidden
space. This independence can be realized via minimizing the mutual
information MI(c; l) between content 𝑐 and location 𝑙 . Meanwhile,
we maximize MI(c; v) to ensure that the content embedding 𝑐 suffi-
ciently encapsulates information from the video 𝑣. Therefore, our
overall information constraint objective is as follows,

Linfo (c, l) = MI(c; l) − MI(c; v) (5)
= 𝐷KL (𝑝 (c, l) | |𝑝 (c)𝑝 (l) ) − 𝐷KL (𝑝 (c, v) | |𝑝 (c)𝑝 (v) )

= E𝑝 (c,l) [log
𝑃 (c, l)

𝑃 (c)𝑃 (l) ] − E𝑝 (c,v) [log
𝑃 (c, v)

𝑃 (c)𝑃 (v) ] .

However, the mutual information is usually difficult to calculate
in practice. To estimate mutual informationMI(x, y) , the variational
distribution 𝑞 (x |y) is introduced as follows,

MI(x, y) ≥ H(x) + E𝑝 (x,y) [log𝑞 (x |y) ],

where 𝐻 (x) = E𝑝 (x) [− log𝑝 (x) ] is the entropy of variable x. Thus,
we can get an upper bound of Eq.(5):

Linfo ≤ MI(c; l) −
[
H(v) + E𝑝 (c,v) [log𝑞𝜙 (v |c) ]

]
. (6)

Note that H(v) is constant, we only need to minimize

L̄info = MI(c; l) − E𝑝 (c,v) [log𝑞𝜙 (v |c) ], (7)

where the content representation c and location representation l
are expected to be independent by minimizing mutual information
MI(c; l) , while the content representation c should maximize the
log-likelihood E𝑝 (c,v) [log𝑞𝜙 (v |c) ] to contain sufficient information
from the video v.
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Algorithm 1 The DFM framework for debiased VG.
1: input: a series of sentence queries, video clip pairs and their correla-

tional scores S,M,Y , the given video𝑉
2: output: the predicted matching score map 𝑃

3: f𝑉 = I3D (𝑉 ) .
⊲ Extract video features with I3D or C3D algorithms

4: for𝑚𝑖 in M do
5: 𝑎 =𝑚𝑖 .start_index.
6: 𝑏 =𝑚𝑖 .end_index.
7: f𝑉𝑝

𝑎, 𝑏
= maxpool

(
f𝑉𝑎 , f𝑉

𝑎+1, . . . , f
𝑉
𝑏

)
.

⊲ Get video clip features by max pooling operation
8: F𝑉2𝐷 = temporal

(
f𝑉𝑝

)
, where F𝑉2𝐷 [𝑎,𝑏, :] = f𝑉𝑝

𝑎, 𝑏
.

⊲ Organize the video features into a 2D feature map
9: f𝑐 , f𝑙 = Disentangle𝑣

(
F𝑉2𝐷

)
.

10: for 𝑠𝑖 in S do
11: 𝑤𝑖 = GloVe(𝑠𝑖 ) .

⊲ Get the embedding of each word in the query sentence
12: f𝑆 = LSTM

(
{𝑤𝑖 }𝑙

𝑆 −1
𝑖=0

)
⊲ Input word embeddings into LSTM to obtain query sentence

representations
13: f𝑆mixup = mixup(f𝑆 , 𝑦)

⊲ Mix the representations of query sentences from the same video, and
the corresponding IoU scores are used as labels

14: Ffuse = f𝑐
⊗

f𝑆
𝑚𝑖𝑥𝑢𝑝

⊲ Fuse representations of two modal with Hadamard products
15: Fmatch = TAN

(
Ffuse

)
⊲ Obtain 2D matching feature maps

16: 𝑃 = Sigmoid
(
FC

(
F𝑚𝑎𝑡𝑐ℎ

))
⊲ Obtain matching score by FC layer and sigmoid function

17: return 𝑃

3.4 Learning Objectives
To train the proposed DFM framework, we employ the scaled tempo-
ral IoU as the supervised signal, which is subject to two thresholds
𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 ,

𝑦𝑖 =


0 𝑜𝑖 ≤ 𝑡𝑚𝑖𝑛

𝑜𝑖 − 𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
𝑡𝑚𝑖𝑛 < 𝑜𝑖 < 𝑡𝑚𝑎𝑥

1 𝑜𝑖 ≥ 𝑡𝑚𝑎𝑥

, (8)

where 𝑜𝑖 is the temporal intersection ratio between a candidate
moment and the true ground truth moment.

The binary cross-entropy loss function (BCE) is used, which can
be expressed as follows,

Lbce =
1
𝐶

𝐶∑︁
𝑖=1

𝑦𝑖 log𝑝𝑖 + (1 − 𝑦𝑖 ) log (1 − 𝑝𝑖 ) , (9)

where 𝑝𝑖 denotes the predicted match score of a video clip.
In summary, a linear combination of three losses is employed to

train our proposed DFM framework as follows,

L = Lbce + 𝜆1Lrecon + 𝜆2Linfo , (10)

where 𝜆1 and 𝜆2 are hyperparameters that control the reconstruc-
tion loss L𝑟𝑒𝑐𝑜𝑛 and the information constraint lossL𝑖𝑛𝑓 𝑜 in the
disentanglement module, respectively.

3.5 Disentangled Feature Mixup for Debiasing
The overall framework of our proposed Disentangled FeatureMixup
framework for debiasing VG is shown in Figure 2. The input un-
cropped video is first passed through a pre-trained convolutional
neural network to extract features f𝑉 ∈ R𝑑𝑉 , where 𝑑𝑉 represents
the dimensionality of the video representation. We specifically use
C3D [53] and I3D [5] as the video understanding model to extract
the video clip features, the process of which is described in detail in
Section 4. The extracted video clip features are processed by max
pooling operation and temporal position arrangement to obtain
a two-dimensional temporal feature map as the final video repre-
sentation F𝑉2𝐷 ∈ R𝑁 ×𝑁 ×𝑑𝑉 . The position on the feature map (𝑖, 𝑗 )
represents of a candidate moment which starts at 𝑖𝜏 and ends at
( 𝑗 + 1)𝜏 . The two-dimensional temporal feature map is then fed into
the content-location disentanglement module, which disentangles
the video representation into content representation and location
representation via reconstruction and information constraints. The
input query sentence 𝑆 is firstly passed to the pre-training word
vector model (GloVe model [48]) to obtain the word embedding
of each word {𝑤𝑖 }𝑙

𝑆 −1
𝑖=0 . The word embedding vectors are then fed

sequentially into the LSTM network to obtain the representations
of the corresponding sentences f𝑆 ∈ R𝑑𝑆 , where 𝑑𝑆 represents the
dimensionality of the sentence representations. The extracted rep-
resentations encode the linguistic structure of the query sentence,
thus describing the corresponding target video clip.

Subsequently, based on the twomixup strategies, either word em-
beddings (Word Mixup) or sentence embeddings (Sentence Mixup)
are fed into the mixup augmentation module to mix multiple query
embeddings with IoU scores accordingly. The mixup augmentation
encourages the model to make predictions for queries involving
different locations, thus reducing temporal biases and enhancing
the generalization of the model. In this process, the query embed-
dings for mixup are ensured to come from the same video and are
matched with their corresponding moments for cross-modal predic-
tion. The content representations from the disentanglement and the
query representations after the mixup augmentation are normalized
and fused across modalities by Hadamard product operations to
obtain a two-dimensional feature map. Temporal Adjacent Network
(TAN) [67] is then employed to enable the two-dimensional fused
feature map to obtain matching results through a convolutional
neural network, and the output of the network maintains the same
shape as the input fused feature map by complementary zeros.

Finally, the matching scores of candidate moments with a given
query sentence are predicted based on a two-dimensional temporal
graph. The output features of the temporal adjacency network are
passed through a fully connected layer and a Sigmoid function to
generate a two-dimensional score graph. Each value on the score
graph 𝑝𝑖 represents the match score between the candidate moment
and the query sentence, and the maximum value corresponds to the
best matched moment. Algorithm 1 presents the implementation
details of our proposed DFM framework.

4 EMPIRICAL EXPERIMENTS
We conduct experiments to test our proposed DFM framework
on popular datasets covering diverse video scenes, different data
distributions, with multiple evaluation metrics.
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4.1 Experimental Setup
Datasets. Three popular datasets, TACoS [49], ActitvityNet Cap-
tions [34], and Charades-STA [16], are used for the experiments.
In addition, following existing literature [61], we also adopt the
reorganized datasets based on ActivityNet Captions and Charades-
STA, which are denoted as ActivityNet-CD and Charades-CD, with
varying distributions. Specifically, each dataset is repartitioned into
four groups, i.e., the training set, the validation set, the i.i.d. test set,
and the o.o.d. test set. All samples in the training, validation, and
i.i.d. test sets follow independent identical distributions, and the
samples in the o.o.d. test set are in an out-of-distribution setting.
Clearly, the performance gap between the i.i.d. test set and the o.o.d.
test set can be used to effectively assess the generalization ability
of the model. Further details of the data repartitioning process are
described below.
Feature Extraction. The feature extraction of query text for VG
is performed by the GloVe word embedding model [48]. A 300-
dimensional word vector pre-trained on a corpus of 840B size by
the official open source project is used in our experiment. For each
word in the query sentence 𝑆 , its word embedding is obtained as
𝑤𝑖 , and then the word embedding vector {𝑤𝑖 }𝑙

𝑆−1
𝑖=0 is fed into the

LSTM network in turn to obtain the representation of sentence 𝑆 .
To represent videos, we use features extracted from the C3D

model [53] for the TACoS and ActivityNet Captions datasets, and
the I3D model [5] for the Charades-STA dataset.
Metrics. There are two common types of metrics for VG tasks,
which are introduced in [16] for the first time. One of those ismIoU
(i.e., average IoU), which simply takes the average of the tempo-
ral IoU of all test samples to evaluate the performance. Another
commonly used metric is R@n, IoU@m [24]. For sample 𝑖 , if there
exists a moment with a temporal IoU exceeding𝑚 among top 𝑛

retrieval moments, then 𝑟 (𝑛,𝑚,𝑞𝑖 ) = 1. Otherwise, 𝑟 (𝑛,𝑚,𝑞𝑖 ) = 0.
R@n, IoU@m is the percentage of positive samples over all samples:

R@n,IoU@m =
1
𝑁𝑞

∑︁
𝑖

𝑟 (𝑛,𝑚,𝑞𝑖 ), (11)

where it is common practice to set𝑛 ∈ {1, 5, 10} and𝑚 ∈ {0.3, 0.5, 0.7}.
Usually, when the model uses a proposal-free (or anchor-free) ap-
proach, 𝑛 = 1.

For different types of experiments, we use R@n, IoU@m and
mIoU scores. Due to the difficulty of VG, previous works often
choose an IoU threshold𝑚 of 0.1 or 0.3 to evaluate the prediction
results, while such metrics often do not credibly and accurately
reflect the true performance of the model in some cases [61]. So in
our experiments we primarily choose𝑚 ≥ 0.5 in R@n, IoU@m to
achieve a more rigorous performance test. We also report the results
with the unbiased metric dR@n, IoU@m [61] that further discounts
the recall values of R@n, IoU@m based on temporal distances.

4.2 Model Performance
We compare DFM with several state-of-the-art models over the
above benchmark datasets, including CTRL [16], ACRN [41], ABLR [63],
SCDM [62], DRN [17], 2D-TAN [67] and VSLNet [66]. Our results
show that DFM achieves the best performance on three benchmark
datasets with different criteria in various scenarios. Notably, on the
TACoS dataset, ActivityNet-CD dataset, and Charades-CD dataset,

Table 1: Overall performance (%) comparisons with other
VG models on TACoS dataset (the best results are in BOLD,
second in both BOLD and underline and third in underline ).

Models R@1 mIoU
IoU@0.3 IoU@0.5 IoU@0.7

CTRL [16] 18.32 13.30 - -
ACRN [41] 19.52 14.62 - -
ABLR [63] 18.90 9.30 - 13.40
SCDM [62] 26.11 21.17 - -
DRN [64] - 23.17 - -
2D-TAN [67] 37.29 21.94 11.20 23.97
VSLNet [66] 29.61 24.27 20.03 24.11

DFM (+2D-TAN) 40.04 28.57 14.77 27.35
DFM (+VSLNet) 33.85 29.40 22.36 27.29

our DFM framework significantly outperforms the state-of-the-art
models to a large extent. In addition, DFM also outperforms the
top-ranked methods on both the i.i.d. and o.o.d. distributed test
sets. This verifies that the proposed model can predict the query-
moment matching patterns more accurately and obtain a better
matching ability with better robustness and generalization.
Results Analysis. We evaluate baseline models and the DFM
framework on the TACoS dataset, respectively, to verify the ef-
fectiveness of the proposed framework on the dataset with original
distributions. We use R@n, IoU@m, andmIoU as evaluation metrics.
The experimental results are shown in Table 1. As can be observed
from the experimental data, our proposed DFM achieves the best
performance in almost all metrics, regardless of the values of 𝑛 and
𝑚. This proves that the model obtains great improvement on the
representation learning and cross-modal matching ability for VG.

Further, we conduct evaluations on the ActivityNet-CD and
Charades-CD datasets with reorganized distributions [61] to verify
the effectiveness of the proposed method on the i.i.d. and o.o.d.
datasets, i.e., the ability in removing data bias. The overall results
are shown in Table 2. We observe that the proposed DFM frame-
work achieves excellent experimental performance on both datasets
reorganized for the o.o.d. problem, ranking first in almost all met-
rics. DFM achieves superior results on both i.i.d. and o.o.d. test data,
outperforming baseline approaches to a large extent. In particular,
DFM is able to beat the baselines comprehensively on the o.o.d. test
set, indicating its robustness in o.o.d. environment, and validating
its capability of generalization as well as being resilient to the bias
of temporal location annotations.

The results show that our proposed DFM framework plays an
important role in enhancing the model’s out-of-distribution gen-
eralization ability and its performance with respect to debiased
VG.
Comparison with Existing Debiased Models. We investigate
and compare DFM with several existing debiasing methods in de-
tail, as shown in Table 2. A simple bias-based baseline model (Bias-
based) [61] is employed as a comparative approach. The experimen-
tal results of the comparative analysis show that our proposed DFM
framework achieves quite competitive results compared with vari-
ous existing debiasing models, and achieves optimal or suboptimal
performance in various evaluation metrics on the ActivityNet-CD
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Table 2: Overall performance (%) comparisons with other VG models on Changing-Distribution datasets (the best results are in
BOLD, second in both BOLD and underline and third in underline).

Models
Charades-CD ActivityNet-CD

dR@1,IoU@0.3 dR@1,IoU@0.5 dR@1,IoU@0.7 dR@1,IoU@0.3 dR@1,IoU@0.5 dR@1,IoU@0.7
i.i.d. o.o.d. i.i.d. o.o.d. i.i.d. o.o.d. i.i.d. o.o.d. i.i.d. o.o.d. i.i.d. o.o.d.

CTRL [16] 42.65 44.97 29.80 30.73 11.86 11.97 19.42 15.68 11.27 7.89 4.29 2.53
ACRN [41] 47.50 44.69 31.77 30.03 12.93 11.89 20.06 16.06 11.57 7.58 4.41 2.48
ABLR [63] 52.26 44.62 41.13 31.57 23.50 11.38 46.86 33.45 35.45 20.88 20.57 10.03
SCDM [62] 58.14 52.38 47.36 41.60 30.79 22.22 46.44 31.56 35.15 19.14 22.04 9.31
TSP-PRL [57] 46.44 31.93 35.43 19.37 17.01 6.20 44.93 29.61 33.93 16.63 19.50 7.43
2D-TAN [67] 53.71 43.45 46.48 30.77 28.76 13.73 49.18 30.86 40.87 18.86 27.36 9.77
VSLNet [66] 55.51 48.08 47.60 32.72 29.88 19.61 49.47 30.90 39.86 19.57 26.45 11.14
DRN [64] 51.35 40.45 41.91 30.43 26.74 15.91 48.92 36.86 39.27 25.15 25.71 14.33
TCN-DCM [60] - - 52.50 40.51 35.28 21.02 - - 42.15 20.86 29.69 11.07
MDD [36] - - 52.78 40.39 34.71 22.70 - - 43.63 20.80 31.44 11.66
Multi-NA [35] 64.21 52.21 53.82 39.86 34.47 21.38 49.91 32.32 41.67 20.78 28.82 11.03
DFM (+2D-TAN) 64.52 55.10 56.38 44.01 34.87 22.28 58.84 40.27 45.92 24.32 32.18 12.72
DFM (+VSLNet) 64.50 56.49 57.97 41.65 35.37 23.34 57.21 38.82 46.05 25.27 30.17 12.55
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Figure 3: Comparison with other debiased VG models.

and Charades-CD datasets. This demonstrates the effectiveness
and superiority of our proposed framework, and verifies that the
mixup augmentation and content-location disentanglement mod-
ules achieve strong generalization ability at a low cost.

In addition, as shown in Figure 3, the𝑑𝑟𝑜𝑝 metric indicates the de-
crease of model’s performance from the i.i.d. test set to the o.o.d. test
set, and is calculated as 𝑑𝑟𝑜𝑝 = (𝑖𝑖𝑑_𝑠𝑐𝑜𝑟𝑒 − 𝑜𝑜𝑑_𝑠𝑐𝑜𝑟𝑒)/𝑖𝑖𝑑_𝑠𝑐𝑜𝑟𝑒
, which reflects the model’s representation learning and matching
performance for VG. If the model only fits the data distribution
without learning the multimodal representation and matching pat-
terns of query-video clip pairs well, it cannot generalize well to
out-of-distribution data, and the performance reflected in the o.o.d.
test set will be significantly degraded. Our proposed DFM also per-
forms best on this metric, demonstrating that the DFM is effective
at handling bias and learning essential cross-modal representations
and matching patterns.

4.3 Ablation Studies
In this section, we evaluate the impact of different factors on the
performance of the proposed DFM framework. We adopt the im-
plementation based on 2D-TAN [67] to perform ablation studies.
Hyperparameter Analysis. Different implementations of the
mixup augmentation module, i.e., word mixup and sentence mixup,
tend to fuse and augment text embedding in different ways. As

Table 3: Ablation study on mixup type and size on the TACoS
dataset.

mixup
type

mixup
size

R@1 R@5

IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

- 32 21.91 11.20 44.06 22.44

word
32 22.06 11.22 45.24 23.10
16 26.99 14.27 48.01 25.49
8 28.15 14.76 48.30 25.97

sentence
32 22.51 11.84 45.46 24.32
16 24.52 12.67 46.69 25.57
8 28.57 14.77 49.36 26.59

such, different mixup augmentation strategies may generate text
representation structures with different characteristics, imposing
different effects on the model performances. Meanwhile, since the
mixup augmentation is performed in each batch during the training
process, too large batch size will lead to redundant mixing results,
thus slowing down convergence of the model, while too small batch
size will lead to insufficient number of samples available for aug-
mentation, thus limiting the generalization of representations. We
conduct ablation experiments on both implementations over the
TACoS dataset, and the experimental results are presented in Table 3.
The experimental results demonstrate that ii) the sentence mixup
yields better performance than word mixup for DFM, and ii) using
a relatively small mixup size (e.g., 8) during training also yields
better results. This is consistent with the intuitive common sense,
since sentence embeddings tend to be more representative of the
semantics hidden in the entire query statement than word embed-
dings. Given that the sentence embeddings are better matched with
the corresponding video clip, the sentence mixup augmentation
will result in better representation quality.

Mixup hyperparameter 𝛼 and the number of mixup augmenta-
tion 𝑟𝑜𝑢𝑛𝑑𝑠 are two hyperparameters that need to be balanced. The
original work on mixup [65] recommends to choose 𝛼 ∈ [0.1, 0.4].
However, mixup implicitly controls the complexity of the model,
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0s Query:  A man runs up and does several consecutive lay ups.

Annotation Distribution (i.i.d)

Groundtruth

Base Model

DFM

36.7s11.1s

13.6s 170.1s

181s

12.9s 38.2s

0s Query:  A dog plays behind and with the groomed dog.

Annotation Distribution (i.i.d)

Groundtruth

Base Model

DFM

68.9s57.7s

42.4s 97.3s

140s

53.1s 63.8s

Figure 4: Qualitative analysis of VG cases from the test-ood set of ActivityNet-CD dataset.

Table 4: Ablation study on mixup 𝛼 and 𝑟𝑜𝑢𝑛𝑑𝑠 on the
Charades-CD dataset.

mixup
𝛼

mixup
𝑟𝑜𝑢𝑛𝑑𝑠

dR@1,IoU@0.5 dR@1,IoU@0.7

i.i.d. o.o.d. i.i.d. o.o.d.

0.2 1 53.46 43.21 31.11 19.16
1.3 1 54.07 42.91 33.78 19.31
8 1 53.22 40.18 31.59 17.14
0.2 3 51.76 40.57 33.17 19.07
1.3 3 54.68 40.87 33.29 20.08
8 3 56.38 44.01 34.87 22.28

where a larger 𝛼 helps to enhance the generalizability of the model,
while running the risk of underfitting and degrading the model
performance. The number of mixup 𝑟𝑜𝑢𝑛𝑑𝑠 refers to the number
of batches that yield augmented samples. Smaller mixup 𝑟𝑜𝑢𝑛𝑑𝑠

may not yield sufficiently rich samples for the model to learn more
generalized representations, yet larger mixup 𝑟𝑜𝑢𝑛𝑑𝑠 increase com-
putational cost and induce the model to learn redundant features.
Therefore, we investigate the ablation study of these two parame-
ters on the Charades-CD dataset for o.o.d. problem in Table 4. The
experimental results show that there is indeed a trade-off in choos-
ing the hyperparameter 𝛼 and 𝑟𝑜𝑢𝑛𝑑𝑠 . A relatively larger 𝛼 will
eventually produce better performance, but a too large 𝛼 exceeding
a certain threshold will degrade the model performance, which also
applies to mixup 𝑟𝑜𝑢𝑛𝑑𝑠 . We finally select 𝛼 = 8, 𝑟𝑜𝑢𝑛𝑑𝑠 = 3 on the
Charades-STA dataset.

Table 5: Performance comparison of DFM w/o mixup aug-
mentation module and content-location disentanglement
module on the Charades-CD dataset.

Model settings dR@1,IoU@0.5 dR@1,IoU@0.7

i.i.d. o.o.d. i.i.d. o.o.d.

base 46.48 30.77 28.76 13.73
base+mixup 54.73 40.74 33.05 19.96
base+mixup+disentangle 56.38 44.01 34.87 22.28

Module Analysis. In order to verify the contributions of each
component of our proposed DFM framework, we conduct ablation
experiments on each module of DFM, i.e., mixup augmentation

module and content-location disentanglement module. As shown
in Table 5, with the addition of the mixup augmentation module,
the model achieves a considerable performance improvement. After
further disentangling the representations of video content and tem-
poral location, the model eliminates the location bias and achieves
even better performance. The results show that both modules of
DFM are coordinated and compatible, and contribute to achiev-
ing significant improvement on the representation learning and
generalization performance of the VG model.

4.4 Qualitative Evaluation
We report the qualitative results of VG cases that are relatively
difficult to ground (c.f. Figure 4). We observe that in some cases
where the video content is indistinguishable throughout or the
target moment location is infrequently spotted, the base model may
tend to exploit the temporal distribution bias to return an unreliable
prediction. Under these circumstances, our proposed DFM is able to
utilize comprehensive and intrinsic representations within a larger
context, and is less affected by the biased factors, thus achieving
better performance compared to the base model.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we study temporally biased video grounding via
feature-level mixup augmentation and content-location disentangle-
ment. we propose a Disentangled Feature Mixup (DFM) framework
for debiased VG, which is capable of performing unbiased ground-
ing to tackle the temporal bias issue. Our proposed DFM framework
conducts feature-level augmentation and disentanglement, capable
of being applied to most baselines simply yet effectively. Experi-
ments show that the proposed method achieves SOTA results in
various metrics under i.i.d. and o.o.d. scenes. We conclude that our
proposed DFM framework is superior over existing baslines both
quantitatively and qualitatively.
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