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A B S T R A C T

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series
forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the
potential for accurate time-series predictions is often limited due to the overlooked relationships between data
records from independent sensors. Inferring relationships for a potential graph representation of a data center
is challenging due to complex relationships between nodes and multiple factors that may cause connections
between them. Moreover, graphs change dynamically in long-term predictions, but current methods do
not account for future graph changes. To address these challenges, we propose a long-term time-series
forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks
(MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in
long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation
(MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more
closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate
future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an
Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage
information pertaining to spatial and historical events. Our experimental results on datasets comprising of
temperature and IT power data collected from real-world data centers show that the proposed method
outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs
are explainable.
1. Introduction

A data center is a physical facility for centralized management and
processing of data, including servers, storage devices, and network
devices. Intelligent operation and maintenance of data centers [1–7]
refer to the utilization of machine learning and automation technolo-
gies to achieve intelligent monitoring and maintenance of data center
equipment, thereby enhancing the efficiency and reliability of the data
center. This approach to operations and maintenance can detect and
solve potential faults in real-time by way of continuous monitoring
and automated prediction, thereby reducing maintenance costs while
increasing data center productivity. Time series forecasting [8–11]
has been widely used in intelligent monitoring of data center equip-
ment [12,13]. For example, time series forecasting can analyze the
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performance indicators of data center equipment, predict potential
faults, and perform timely maintenance to avoid the adverse impact
of faults on business operations. It can also analyze business load and
resource utilization rates to predict future resource requirements, op-
timize resource planning, and enhance resource utilization efficiency.
Moreover, it can analyze energy consumption data, predict energy con-
sumption trends, plan energy consumption optimization, and reduce
energy consumption costs.

The data center infrastructure is outfitted with an array of sensors,
each responsible for monitoring the health status of a specific compo-
nent [14]. Regrettably, the information captured by these sensors is
often dissociated from its pertinent context, residing in isolation within
the database [2]. However, the detection and preservation of sensor
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relations in the form of a latent graph would be greatly beneficial to the
intelligent operation and maintenance of the data center, facilitating
predictions and causal discoveries. Consider, for example, a scenario
where the interconnections between cabinets in a single room are
unknown, but the prediction of cabinet temperature can be enhanced
through consideration of spatial dependencies. The latent relationships
between data center nodes can be ascertained from historical data
through the application of data-driven techniques. The utilization of
graph-based approaches for time series forecasting facilitates the adap-
tive learning of temporal patterns [15–17]. By analyzing and learning
from graphs, associations and patterns in time series data are automat-
ically discovered, which helps in handling complex multivariate time
series data. Graph-based time series forecasting has been applied in
various domains, including traffic flow prediction [18–20], stock price
forecasting [21–24], air quality prediction [25–27], disease occurrence
prediction [28], and others.

Accurate time series prediction [29–32] is indispensable in intel-
ligent operation and maintenance of data centers. For instance, the
temperature prediction of cabinets can be utilized to forecast the tem-
perature rise in the upcoming period or estimate the time required
for the temperature to reach the shutdown temperature, thus assisting
businesses in advance escape and migration under high-risk situations.
Furthermore, it can also be applied in emergency response to hypoth-
esize and deduce some intervention measures, thereby improving the
estimation of the impact surface of the entire temperature rise event.
Since graph neural networks (GNN) [33–35] can be utilized to learn
complex relationships between variables, they have achieved signifi-
cant success in spatial–temporal prediction. The pre-requisite for the
utilization of GNN entails the establishment of a graph that delineates
the inter-relationships between variables, which has consequently led
to notable efforts towards constructing graphs for time series forecast-
ing. For instance, the neural relational inference (NRI) [36] method
employs a variational autoencoder (VAE) [37] to discern interactions
within the encoder, subsequently utilizing the learned interactions in
the decoder for predicting physical system trajectories. Shang et al. [38]
proposed the graph for time series (GTS) as an improvement of NRI
to learn a fixed graph structure, as the output graph in the encoder
of NRI tends to change based on the input data. Additionally, MT-
GNN [15] learns connections through a graph learning layer with
learnable embeddings, and subsequently applies spatial–temporal pre-
diction in various domains such as traffic, electricity, and solar energy.
StemGNN [16] learns implicit relations employing the attention mecha-
nism, with spatial–temporal features obtained in the frequency domain.
The aforementioned methods are all aimed at time series forecasting
and learn connections by providing feedback on forecasting accuracy.

However, extant graph-based time series forecasting methods have
failed to consider the multifarious factors that contribute to the connec-
tion between nodes in intelligent operation and maintenance of data
centers. Specifically, these methods assume that edges between two
nodes belong to only one category, and do not permit edges to be
simultaneously classified according to multiple categories. To illustrate,
consider the prediction of cabinet temperature, a scenario in which the
reasons for the connection between two cabinets may include sharing
a cold aisle, exhibiting similar business loads, and being proximal in
space, as shown in Fig. 1. However, previous methods fail to account
for the various factors that may underlie connectivity and instead con-
flate these factors, which may mislead the model. For instance, these
models may erroneously conclude that the cabinet power consumption
characteristics of one node (a cabinet) are correlated with the cold
aisle characteristics of another node, which is patently nonsensical. By
contrast, if the features associated with distinct factors that influence
edge connectivity can be separated when learning graph structure, the
resultant graph will be more readily interpretable.

Moreover, previous graph-based time series forecasting methods
have been faulted for their lack of consideration of the ways in which
2

graphs may dynamically change over time in long-term prediction. For
instance, to predict cabinet temperature for the next day, temperature
is recorded every 2.5 min, necessitating the prediction of 576 time
points. However, given that different business processes may run dur-
ing the day and night, the temperature relationship graph between
cabinets may shift dynamically after 288 time points such that some
nodes that were previously disconnected may become connected, while
some nodes that previously enjoyed connectivity may no longer be
connected.

In light of these deficits, we propose a novel graph-based time series
prediction model that accounts for the complex factors that underlie
edge connectivity and considers the dynamic nature of graph evolution
in long-term prediction. The model’s framework is illustrated in Fig. 2
and is rooted in the VAE architecture, wherein the encoder infers the
relationship between nodes while the decoder is used for time-series
prediction and to utilize prediction results as feedback to rectify the
graph structure. This approach simulates the operational process of
real systems, thereby enabling the learned graph to provide feedback
on actual connections. To separate different factors influencing the
connections between the nodes, we introduce a multifactor separation
layer to infer the underlying factors behind each edge. In data centers,
there may be multiple factors causing the nodes to connect, and thus
separating the features of different factors helps in learning a graph
that is closer to reality. To tackle the problem of dynamic changes in
the graph during long-term prediction, we propose a graph prediction
module that uses auxiliary variable prediction to guide changes in the
graph structure. Additionally, we propose attention-enhanced spatial–
temporal dilated causal convolution to better utilize the separated
graph structure information and historical temporal information for
time-series forecasting. We conduct a comprehensive performance eval-
uation of our proposed model vis-à-vis contemporary approaches on
authentic datasets encompassing cabinet temperature and IT workload
in data centers. Our study establishes the efficacy of our model in
enhancing prediction accuracy as well as enabling interpretability.

Our main contributions can be summarized as follows:

• To enhance the graph representation of data center infrastructure
operation, we propose a Multi-factor Separation (MS) module that
captures connection relationships generated by various factors.

• We introduce a Graph Prediction (GP) module to address the
problem of changing graph structures in long-term prediction,
providing more accurate spatial information for time series pre-
dictions.

• We propose an Attention-enhanced Spatial–temporal causal con-
volution (AS-Conv) module, which better utilizes the spatial fea-
tures obtained from multifactor separation and addresses the
problem of periodic deviations.

2. Related work

In this section, we first review recent latest advancements in time se-
ries prediction algorithms without predefined graphs. We subsequently
delve into the discussion of time series prediction algorithms for graphs
with predefined structures. Lastly, we provide an overview of the
current state-of-the-art in the field of time series prediction and further
explore the limitations of existing graph-based time series prediction
methods in the context of intelligent data center operations.

The graph-based time series prediction methods can be roughly
divided into two categories: those without predefined graphs and those
with graph structures. In the former, the structure of the graph needs
to be learned before prediction, or the structure of the graph needs
to be learned while predicting, and in most time series predictions,
there is no predefined graph structure. On the other hand, the latter
utilizes existing graph structures and historical time series information
to predict future values. The incorporation of graph structures in time
series prediction has been shown to improve the accuracy and provide

a better understanding of the underlying dynamics of the system.
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Fig. 1. In data centers, an edge between two nodes may belong to multiple categories simultaneously. In the scenario of predicting the temperature of cabinets, there may be
three reasons why two cabinets are connected: they share the same cold aisle, have similar business loads, and are close in space.
2.1. Prediction with predefined graphs

The various variations of GNN have contributed to the expansion
of deep models to non-Euclidean spaces, ultimately leading to the
achievement of state-of-the-art performance in various applications
such as recommender systems, drug discovery and social networks.
Despite their remarkable success, GNN are impeded by static graph
structures, which restricts their performance when confronted with
dynamic data. To address this limitation, Spatial–temporal GNN have
been developed as an extension of GNN to incorporate the temporal
dimension. Recently, diverse Spatial–temporal Graph Neural Network
algorithms have been proposed and have exhibited superior perfor-
mance compared to other traditional and deep learning algorithms in
time-dependent applications.

Spatial–temporal graph convolutional networks (STGCN) [39] in-
troduces graph convolutional networks (GCN) [40–42] into spatial–
temporal prediction for the first time. STGCN eliminates the use of
recurrent neural network (RNN) [43,44] structures entirely, instead
utilizing only convolutional structures. The model constructs a tem-
poral gated convolution module (TGC) using a gated linear unit and
1d convolution structure, and then inserts a spatial graph convolution
module between two temporal gated convolution modules to form
a fundamental spatial–temporal convolutional unit. By stacking these
spatial–temporal convolutional units and introducing residual modules
between them, STGCN effectively extracts the medium- and long-term
spatial–temporal features of the spatial–temporal graph data while re-
ducing the number of model parameters and increasing training speed.
However, the STGCN model exhibits a relatively coarse extraction of
temporal features despite its fast training. In light of this, Guo et al. [45]
proposed the attention based spatial–temporal graph convolutional
networks (ASTGCN) model, which incorporates attention mechanisms
within the basic spatial–temporal feature extraction module. By inte-
grating attention mechanisms during the extraction of both temporal
and spatial features, the model is capable of capturing the dynamic and
complex spatial–temporal correlations of nodes.

Li et al. [46] propose the diffusion convolutional recurrent neural
network (DCRNN) framework, which is designed to capture both the
spatial and temporal dependencies in traffic flow. Specifically, DCRNN
leverages bidirectional random walks on the graph to capture spatial
dependency, and an encoder–decoder architecture with scheduled sam-
pling to capture temporal dependency. Wu et al. [47] proposes Graph
WaveNet for spatial–temporal graph modeling by developing a novel
adaptive dependency matrix and learning it through node embedding.
The model is equipped with a stacked dilated 1D convolution compo-
nent whose receptive field grows exponentially as the number of layers
increases, enabling it to handle very long sequences. Zheng et al. [48]
introduce the graph multi-attention network (GMAN) as a means of pre-
dicting traffic conditions at different locations on a road network graph.
GMAN utilizes an encoder–decoder structure where multiple spatial–
temporal attention blocks are incorporated into both the encoder and
decoder to model the influence of spatial–temporal factors on traffic
conditions. The encoder is responsible for encoding the input traffic
features while the decoder generates the output sequence. An attention
3

layer is employed between the encoder and decoder to convert the
encoded traffic features.

Hadou et al. [49] presents the space–time GNN (ST-GNN) which
specifically designed to process the latent space–time topology of time-
varying network data. The proposed architecture employs a compo-
sition of time and graph convolutional filters followed by pointwise
nonlinear activation functions, which can mimic the diffusion pro-
cess of signals. Chen et al. [50] propose the time-aware multipersis-
tence spatio-supra GCN (TAMP-S2GCNets), which combines the emerg-
ing field of topological data analysis with time-aware deep learning.
They leverage the tools of multipersistence to capture hidden time-
conditioned properties and summarize them as a time-aware multi-
persistence Euler-Poincar’e surface, which they prove to be stable. A
supragraph convolution module that concurrently accounts for intra-
and inter-spatio-temporal dependencies.

2.2. Prediction without predefined graphs

The algorithm for learning graph structures in the context of time
series prediction has gradually emerged since the inception of GNN.
NRI, proposed by Kipf et al. [36] is a GNN-based approach designed for
modeling and predicting the behavior of complex systems with inter-
acting components, such as physical systems. This approach combines
relational inference and message passing to learn the relationships
between the system’s components and their dynamics. The model has
been shown to achieve high precision in modeling the dynamics of
physical systems, real motion tracking, and sports analytics data, which
has established its potential to advance the understanding and pre-
diction of complex systems. GTS [38] introduces a novel method for
forecasting multiple time series using a GNN, which integrates structure
learning inspired by NRI and a recurrent graph convolution forecaster
based on the inferred graph as in DCRNN. The approach is centered
on the optimization of the expectation over the graph distribution,
which is parameterized by a neural network and formulated as a prob-
abilistic graphical model. This process culminates in a single differen-
tiable objective that encapsulates the graph distribution. Furthermore,
GTS demonstrates enhanced computational efficiency in comparison to
LDS [51], a recently developed meta-learning graph-based method.

MTGNN [15] presents a GNN framework for multivariate time
series (MTS) forecasting that automatically extracts directed relations
among variables using a graph learning module. A mix-hop propagation
layer and a dilated inception layer are proposed to capture spatial
and temporal dependencies within the time series. The model achieves
state-of-the-art performance on benchmark datasets and on-par per-
formance with other approaches on traffic datasets that provide extra
structural information. StemGNN [16] proposes the spectral temporal
GNN for multivariate time-series forecasting, which captures both intra-
series temporal correlations and inter-series correlations jointly in the
spectral domain using Graph Fourier Transform (GFT) and Discrete
Fourier Transform (DFT). The proposed model learns inter-series cor-
relations automatically from data without using pre-defined priors and
achieves improved accuracy on ten real-world datasets compared to
existing methods.
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Fig. 2. MSE-STGNN architecture. The encoder inputs the historical data and uses the multi-factor separation module to learn the latent graph. The decoder inputs the learned
graph and the separated time series to predict future values.
Shao et al. [52] proposes a framework that enhances Spatial-
Temporal Graph Neural Networks (STGNNs) for MTS forecasting by
incorporating a scalable time-series pre-training model (STEP). The
pre-training model is designed to learn temporal patterns from long-
term historical MTS data and generate segment-level representations
that provide contextual information for short-term time series input
to STGNNs, improving modeling of dependencies between time series.
Experiments on three real-world datasets demonstrate that the pro-
posed framework significantly enhances the performance of STGNNs
and captures temporal patterns effectively. Ye et al. [53] proposes a
method for MTS forecasting using GNN that can model dynamic and
evolving interactions of variables. The method includes a hierarchical
graph structure with dilated convolution to capture scale-specific corre-
lations among time series, and a recurrent manner to construct a series
of adjacency matrices representing evolving correlations at each layer.
The proposed method outperforms existing approaches in single-step
and multi-step forecasting tasks.

The connectivity relationships between nodes in data centers are
often unknown and require learning through data-driven approaches.
However, existing methods for predicting graphs without predefined
topologies have neglected the diversity of connections in data center
scenarios and the dynamic changes in graph structures in long-term
predictions. Consequently, there exists a need for novel approaches that
can effectively model the complexities of connectivity patterns in data
centers while accounting for temporal variations in graph structures.

3. Model structure

In this section, we present a long-term time series prediction al-
gorithm based on the multifactorial dissociation evolutionary graph,
which enhances the prediction performance by considering the diver-
sity of edges and the variation of the graph in the long-term prediction
process, and improving the network prediction structure. This section
aims to provide a comprehensive exposition on the following issues:
(1) the global architecture of the MSE-STGNN framework, as depicted
in the accompanying schematic diagram; (2) the algorithmic workflow
of the multi-factor separation module; (3) the intricate structure of
the causal convolution module enhanced by the attention mechanism;
and (4) the specific implementation details of the dynamic graph
augmentation module. By elucidating these key components and their
4

interconnections, we seek to establish a thorough understanding of the
MSE-STGNN methodology and its potential applications in the field of
data center intelligent operation and maintenance.

3.1. MSE-STGNN framework

Preliminary. The present study proposes a GNN model that operates
on a graph, where the input entails the historical data associated
with each node. Specifically, the historical value of the 𝑖th node is
represented as [𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝑇𝑖 ], where 𝑇 connotes the total number of

time steps recorded in history. Meanwhile, the value of all nodes at a
single time step is denoted as [𝑥𝑡1, 𝑥

𝑡
2,… , 𝑥𝑡𝑁 ], where 𝑁 represents the

total number of nodes. We can represent all time steps of all nodes
as 𝐱 = [𝐱1, 𝐱2,… , 𝐱𝑁 ]. Given the relationship between the sensors 𝑖
and 𝑗, denoted by 𝑎𝑖𝑗 , we posit that the GNN model has the capacity
to simulate the interconnections between different nodes and their
operational states. Notably, the types of connections that we learn in
this context are discrete.

Model structure. The MSE-STGNN model is comprised of two interde-
pendent modules that are concomitantly trained: an encoder that is
equipped with the capacity to infer connections through historical data
and a decoder that leverages the learned graph to predict future values.
The fundamental objective of the model is to conduct synchronized
learning of the interrelationships between the nodes, as well as the
forecast of the future states of each node. The graphical structure of
the model is exhibited in Fig. 2.

Specifically, the encoder produces a factorized distribution 𝑞𝜃(𝐀|𝐱)
of 𝑎𝑖𝑗 , where 𝑎𝑖𝑗 is a discrete variable representing the type of relation-
ship between nodes 𝑖 and 𝑗. On the other hand, the decoder models
𝑝𝜙(𝐱|𝐀) by leveraging the acquired graph structure and historical val-
ues, thereby enabling the exploitation of spatial–temporal properties to
predict future states.

3.2. Encoder: Multi-factor separation

In this section, we describe how the encoder learns the graph struc-
ture with multi-factor separation. The encoder deduces the relationship
by initializing a fully connected graph at the outset. Prior knowledge is
then harnessed to eliminate edges that would not feasibly exist between
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Algorithm 1 Multi-factor Separation

Input: 𝐱𝑜 ∈ R𝑑𝑖𝑛 : the feature vector of node 𝑜;
{

𝐱𝑛𝑒𝑖𝑔ℎ ∶ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸
}

:
the feature vectors of the neighbors of node 𝑜;

utput: The factor-separation representation of node 𝑜: 𝐲𝑜 =

[𝐫1, 𝐫2,⋯ , 𝐫𝑀 ], 𝐫𝑚 ∈ R
𝑑𝑜𝑢𝑡
𝑀 (1 ≤ 𝑚 ≤ 𝑀);

1: while 𝑖 ∈ 𝑜 ∪ {𝑛𝑒𝑖𝑔ℎ ∶ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸} do
2: for 𝑚 = 1, 2,… ,𝑀 do
3: 𝐮𝑖,𝑚 ←←←

𝛿(𝐖⊤
𝑚𝐱𝑖+𝐛𝑚)

‖𝛿(𝐖⊤
𝑚𝐱𝑖+𝐛𝑚)‖2

;
4: end for
5: end while
6: Initialize 𝑀 feature representations for node 𝑜: 𝑜𝑚 ←←← 𝐮𝑜,𝑚,∀𝑚 =

1, 2,… ,𝑀 ;
7: while iteration 𝑘 ≤ 𝐾 do
8: for 𝑛𝑒𝑖𝑔ℎ ∈ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸 do
9: 𝑝𝑛𝑒𝑖𝑔ℎ,𝑚 ←←← 𝐮𝑇𝑛𝑒𝑖𝑔ℎ,𝑚𝐨𝑚∕𝜖,∀𝑚 = 1, 2,⋯ ,𝑀

10: 𝑝𝑛𝑒𝑖𝑔ℎ,𝑚 ←←← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑛𝑒𝑖𝑔ℎ,𝑚),∀𝑚 = 1, 2,⋯ ,𝑀
11: end for
12: for 𝑚 = 1, 2,… ,𝑀 do
13: 𝐫𝑘+1𝑚 ←←←

𝐮𝑜,𝑚+
∑

𝑛𝑒𝑖𝑔ℎ∶(𝑜,𝑛𝑒𝑖𝑔ℎ)∈𝐸 𝑝𝑡𝑛𝑒𝑖𝑔ℎ,𝑚𝐮𝑛𝑒𝑖𝑔ℎ,𝑚
‖𝐮𝑜,𝑚+

∑

𝑛𝑒𝑖𝑔ℎ∶(𝑜,𝑛𝑒𝑖𝑔ℎ)∈𝐸 𝑝𝑡𝑛𝑒𝑖𝑔ℎ,𝑚𝐮𝑛𝑒𝑖𝑔ℎ,𝑚‖2
14: end for
15: end while
16: 𝐲𝑜 ←←← [𝐫1, 𝐫2,⋯ , 𝐫𝑀 ]

two nodes, thus resulting in a sparse graph. The encoder can be
modeled as 𝑞𝜃(𝑎𝑖𝑗 |𝐱) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑒𝑛,𝜃(𝐱)), given the input 𝐱1,… , 𝐱𝑁 . In a
data center, there are various factors that contribute to the connections
between nodes. Therefore, the encoder utilizes the proposed multi-
factor separation module to extract spatial features. Assuming that
there are 𝑀 factors responsible for the connection between two nodes,
an edge is denoted as (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸 to indicate the connection between
node 𝑜 and its neighbors 𝑛𝑒𝑖𝑔ℎ. Additionally, each node 𝑜 ∈ 𝑉 in the
graph 𝐺 is represented by a feature vector 𝐱𝑜 ∈ R𝑑𝑖𝑛 .

The neighbors of a node usually contain abundant information, the
majority of graph convolutional networks employ the information from
neighbors in order to enhance the representation of the node’s features.
The fundamental component of the majority of graph convolutional
networks is a functional layer denoted by 𝑓 (⋅), which yields a repre-
sentation for a given node by taking into account both the intrinsic
attributes of the node as well as those of its surrounding neighbors:

𝐲𝑜 = 𝑓 (𝐱𝑜,
{

𝐱𝑛𝑒𝑖𝑔ℎ ∶ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸
}

). (1)

The output 𝐲𝑜 ∈ R𝑑𝑜𝑢𝑡 represents the feature of node 𝑜. To differ-
entiate the characteristics of various latent factors, we aim for 𝐲𝑜 =
[𝐫1, 𝐫2,… , 𝐫𝑀 ] to be a factor-separation representation consisting of 𝑀
distinct independent components, where 𝐫𝑚 ∈ R

𝑑𝑜𝑢𝑡
𝑀 (1 ≤ 𝑚 ≤ 𝑀).

ach captures the specific characteristics of node 𝑜 with regards to
he corresponding latent factor. For a single node 𝑜 and its neighbors
𝑛𝑒𝑖𝑔ℎ ∶ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐸}, the feature vector of node 𝑜 is projected into

different subspaces:

𝑖,𝑚 =
𝛿(𝐖⊤

𝑚𝐱𝑖 + 𝐛𝑚)
‖𝛿(𝐖⊤

𝑚𝐱𝑖 + 𝐛𝑚)‖2
, (2)

here 𝐖𝑚 ∈ R𝑑𝑖𝑛×
𝑑𝑜𝑢𝑡
𝑀 and 𝐛𝑚 ∈ R

𝑑𝑜𝑢𝑡
𝑀 represent the parameters for

factor 𝑚 to be learned, and 𝛿 is the activation function. It is assumed
that 𝐮𝑖,𝑚 describes the feature of the 𝑚th factor of node 𝑖. We then
use 𝐮𝑖,𝑚,∀𝑚 = 1, 2,… ,𝑀 , to initialize the features of 𝑀 independent
components.

After initializing the features of 𝑚 components for all nodes, the
similarity between each component of their features is calculated for
each neighbor node of 𝑜. This similarity is then used to perform multi-
label classification tasks for all neighbor nodes, where the classes
5

that neighbor nodes belong to indicate which factor will lead to the
connection between the two nodes:

𝑝𝑛𝑒𝑖𝑔ℎ,𝑚 = 𝐮𝑇𝑛𝑒𝑖𝑔ℎ,𝑚𝐨𝑚∕𝜖,∀𝑚 = 1, 2,… ,𝑀 (3)

𝑝𝑛𝑒𝑖𝑔ℎ,𝑚 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑛𝑒𝑖𝑔ℎ,𝑚),∀𝑚 = 1, 2,… ,𝑀, (4)

where 𝜖 is the parameter that determines the level of probability hard-
ness following similarity calculation. In the data center scenario, there
may be multiple categories of connections between nodes. Thus, we
utilize the sigmoid function for multi-label classification. For instance,
the probability of connection between cabinets could be 0.9 due to
spatial proximity or 0.9 due to sharing the same cold aisle, which
cannot be achieved by a single classification using the softmax function.

After obtaining the connection probability for each factor, we pro-
ceed to identify the largest cluster for each factor. In our approach,
we allow each neighbor to belong to multiple clusters across multi-
ple subspaces simultaneously. This means that the neighbors between
subspaces will have overlapping parts:

𝐫𝑘+1𝑚 =
𝐮𝑜,𝑚 +

∑

𝑛𝑒𝑖𝑔ℎ∶(𝑜,𝑛𝑒𝑖𝑔ℎ)∈𝐸 𝑝𝑡𝑛𝑒𝑖𝑔ℎ,𝑚𝐮𝑛𝑒𝑖𝑔ℎ,𝑚
‖𝐮𝑜,𝑚 +

∑

𝑛𝑒𝑖𝑔ℎ∶(𝑜,𝑛𝑒𝑖𝑔ℎ)∈𝐸 𝑝𝑡𝑛𝑒𝑖𝑔ℎ,𝑚𝐮𝑛𝑒𝑖𝑔ℎ,𝑚‖2
. (5)

Eqs. (3)–(5) are iterated for 𝐾 times to search for the largest cluster.
The ultimate output feature is the result of concatenating each of the
representations produced by factor-separation: [𝐫1, 𝐫2,… , 𝐫𝑀 ].

Next, a graph is sampled from 𝑞𝜃(𝑎𝑖𝑗 |𝐱). Since the edge variables
𝑎𝑖𝑗 are discrete, we adopt the Gumbel Softmax strategy [54,55] that
samples from a continuous approximation of the discrete distribution,
followed by the reparameterization trick. Finally, the factor-separation
features form a distribution that can be sampled using the Gumbel
Softmax strategy:

𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(([𝐫1,… , 𝐫𝑀 ] + [𝐠1,… , 𝐠𝑀 ])∕𝜆), (6)

where 𝐠𝑚 ∈ R
𝑑𝑜𝑢𝑡
𝑀 is the vector samples from the 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) dis-

ribution and 𝜆 is the parameter controlling the smoothness of each
ample.

.3. Decoder: Spatial–temporal prediction

The decoder leverages the historical time series and learned graph
tructure to forecast future values, wherein the predicted outcomes
erve as feedback to assist the relational inference stage in achieving a
ore accurate graph that captures the operational state of the system.
o achieve this, the decoder formulates a conditional distribution as
ollows:

𝜙(𝐱𝑡+1,… , 𝐱𝑡+𝑇 |𝐱1,… , 𝐱𝑡, 𝑠1,… , 𝑠𝑡+𝑇 ,𝐀), (7)

where [𝑠1,… , 𝑠𝑡+𝑇 ] is a time-dependent covariate vector that is assumed
to be known for all time steps, e.g., hour-of-the-day. The variable 𝑎
serves as the representation of the acquired graph structure, which the
prediction is reliant on. To accomplish this goal, a spatial–temporal ar-
chitecture has been implemented in the decoder module, as evidenced
by the schematic diagram depicted in Fig. 2.

Time series decomposition. In the current study, each time series is sub-
jected to a decomposition process that divides it into trend and seasonal
components, which are then processed individually for prediction. The
trend component is derived using a moving average kernel, which is
also employed in other state-of-the-art models such as Autoformer [56]
and FEDformer [57]. Additionally, the seasonal component is obtained
by subtracting the trend component from the original time series,
resulting in a more nuanced understanding of the underlying patterns
at play:

𝐱𝑡𝑟 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝐱))
(8)
𝐱𝑠 = 𝐱 − 𝐱𝑡𝑟.
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Fig. 3. Periodicity deviation attention.
3.3.1. Attention-enhanced graph-based dilated causal convolution
Following the process of temporal decomposition, the seasonal com-

ponent is subsequently channeled into the temporal feature extraction
module. We utilize the encoder–decoder architecture and compare it
with other similar approaches based on their decoder designs. For
example, FEDformer employs a frequency-domain attention mechanism
in the decoder, while Autoformer introduces an Auto-Correlation mod-
ule to capture dependencies and aggregate similar patterns between
sub-sequences. In contrast to the decoder modules in Transformer-
based methods [58] such as Autoformer and FEDformer, we intro-
duce a novel attention-enhanced conditional dilated causal convolu-
tion module. The dilated convolution module enhances the receptive
field to capture longer sequence features comprehensively, and the
attention mechanism can differentiate contributions at different time
steps and handle periodic offsets. Furthermore, we incorporate spatial
information from graphs into this module.

Graph-based dilated causal convolution. Initially, we introduce the first
part of AS-Conv, the graph-based dilated causal convolution. Dilated
causal convolution for time series data is first used for speech synthesis,
and its distinctive feature is learning long-term dependencies with high
computational efficiency. We employ two activation functions, namely
sigmoid and tanh, to facilitate the learning process of amplitude, phase,
and frequency components of the time series data. This approach
demonstrated superior fitting performance on waveforms with certain
periodicity. Specifically, sigmoid function contributes to the learning
of amplitude, while tanh function is responsible for the learning of
phase and frequency. In order to effectively leverage the information
contained in learned graph structures, we propose utilizing the multi-
factor separated spatial feature representation within the encoder as a
global condition:

𝐳 = 𝑡𝑎𝑛ℎ(𝐖𝑓,𝑙 ∗ 𝐱 + 𝐄⊤
𝑓,𝑙𝐠)⊙ 𝜎(𝐖ℎ,𝑙 ∗ 𝐱 + 𝐄⊤

ℎ,𝑙𝐠), (9)

where 𝐸∗,𝑙 refers to a linear projection that can be learned, with the
vector 𝐸∗,𝑙𝑔 being broadcast over the time dimension. Here we use the
residual connection which effectively mitigates the model overfitting.
To speed up convergence and enable the training of much deeper
models, both residual connections and parameterized skip connections
are utilized throughout the network. Fig. 2 displays a residual block of
our model, which is stacked multiple times in the network.
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Periodicity deviation attention. Although the dilated causal convolution
can significantly increase the receptive field, it is unable to distinguish
the different impact of the preceding temporal values on predicting the
current value. The contribution of the preceding temporal values to
predicting the next temporal value may vary, for instance, in predicting
the temperature of a cabinet tonight, the temperature of the cabinet
last night may be more informative than that of today. Furthermore, to
address the issue of periodic offset, feeding the attention module with
truncated data of various periods could better capture the features of
different periods.

In the context of data centers, both data from environmental mon-
itoring system (EMS) and IT data exhibit their own periodicity. How-
ever, certain nodes may not show clear periodicity, and periodicity may
sometimes exhibit a deviation of 1–2 time points. To address this issue,
we propose a periodic offset attention mechanism, which incorporates
input data with artificially shifted time points, such as offset by 3–5
time points, 13–15 time points, 26–28 time points, etc. The time points
for offset can be determined based on the observed actual periodic
shifts in the time series. These features are concatenated together and
reshaped using a 1 × 1 convolutional layer before being aggregated
with the results of the graph-based dilated causal convolution. The
framework of this module is shown in Fig. 3.

Causal convolution attention. The self-attention mechanism in the Trans-
former model [58] has been widely adopted in various natural lan-
guage processing (NLP) tasks due to its ability to capture long-term
dependencies. However, when dealing with time series data, the con-
ventional point-wise attention generated by queries and keys may not
be sufficient to accommodate the local patterns exhibited by values at
successive time points. For instance, in a data center, the temperature
of a single point may appear normal, but when considering continuous
points over time, abnormal fluctuations may occur compared to the
previous pattern. To address this issue, this study proposes a novel
approach that utilizes a 1×𝑘 causal convolution with stride 1 to gener-
ate queries and keys, instead of the conventional matrix multiplication
approach. This approach enables the generated queries and keys to
capture more pattern changes, which is crucial for detecting anomalies
in data centers. Specifically, the 1×𝑘 causal convolution is applied only
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to the seasonal component, and the attention vector of seasonal features
is generated as follows:

𝐐𝑠 = 𝐶𝑜𝑛𝑣1𝑑_𝑄(𝐱𝑠)
𝐊𝑠 = 𝐶𝑜𝑛𝑣1𝑑_𝐾(𝐱𝑠)
𝐕𝑠 = 𝐶𝑜𝑛𝑣1𝑑_𝑉 (𝐱𝑠)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐𝑠,𝐊𝑠,𝐕𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐𝑠𝐊⊤

𝑠 ⋅𝐌𝐀𝐒𝐊
√

𝑑𝑘
)𝐕𝑠,

(10)

where 𝐶𝑜𝑛𝑣1𝑑_𝑄 and 𝐶𝑜𝑛𝑣1𝑑_𝐾 have the filter size of 1 × 𝑘 and stride
1 while 𝐶𝑜𝑛𝑣1𝑑_𝑉 has the filter size of 1 × 1 and stride 1. The mask
matrix 𝐌𝐀𝐒𝐊 is used to prevent the use of future information by setting
elements of the upper triangular to −∞.

3.3.2. Graph prediction block
In the context of long-term temporal prediction, the generated graph

utilized is an unchanging graph learned by the encoder. However, in
many prediction scenarios within a data center, the connectivity of the
graph may vary. For instance, at the IT power consumption level, two
cabinets may have a considerable degree of correlation in the front half
of an hour, but no business relationship in the latter half. When using a
static graph for long-term temporal prediction, inaccurate predictions
may occur towards the end of the period. Therefore, we propose a
graph prediction block that assists long-term forecasting and achieves
more precise results by predicting future graph structure. In the graph
prediction block, we predict the future values of auxiliary variables that
affect the target variable to construct the future graph. For instance,
in predicting cabinet temperature, we construct the future graphs by
utilizing the predicted values of the IT power consumption and the
cold aisle temperature respectively, both of which have an impact on
the cabinet temperature. The graph learning layer is tailored to extract
one-way relationships, as demonstrated below:

𝐏1 = 𝑡𝑎𝑛ℎ(𝛼𝐄1𝛩1) (11)

𝐏2 = 𝑡𝑎𝑛ℎ(𝛼𝐄2𝛩2) (12)

𝐀𝑝𝑟𝑒𝑑 = 𝑅𝑒𝐿𝑈 (𝑡𝑎𝑛ℎ(𝛼(𝐏1𝐏⊤
2 − 𝐏2𝐏⊤

1 ))). (13)

In our approach, the node embeddings, 𝐄1 and 𝐄2, are initialized
randomly and are learnable during training. The model parameters,
𝛩1 and 𝛩2, are used to train the embeddings. The saturation rate of
the activation function is controlled by 𝛼. The graph adjacency matrix
achieves asymmetry through Eq. (13). The subtraction term and ReLU
activation function help regularize the adjacency matrix such that if
𝑎𝑖𝑗 is positive. To make the adjacency matrix sparse while reducing
computation cost for graph convolution, we select the top-k closest
nodes as neighbors for each node, retaining the weights for connected
nodes, and setting the weights of non-connected nodes to zero.

To handle scenarios where multiple auxiliary variables influence the
predictive variable, a separate prediction of each auxiliary variable is
required, followed by the construction of an internal graph for each
variable. The combination of these graphs is obtained as follows:

𝐀𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑟𝑚
𝑀
∑

𝑚=1
𝐀𝑝𝑟𝑒𝑑
𝑚 (14)

where 𝑟𝑚 assigns a weight to each variable based on its importance,
𝐀𝑝𝑟𝑒𝑑
𝑚 is the graph generated from each predicted auxiliary variable,

and 𝐀𝑓𝑢𝑡𝑢𝑟𝑒 is the final graph structure generated by the GP module.
Notably, the GP module can be executed concurrently with the encoder,
thereby incurring no additional time overhead.

The integration of the learned graphs from the graph prediction
block and multi-factor separation module is accomplished as follows:

𝑎𝑓𝑢𝑡𝑢𝑟𝑒 = [1 − (
𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑒𝑝

)𝜇]𝑎𝑖𝑗 + (
𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑒𝑝

)𝜇𝑎𝑝𝑟𝑒𝑑 , (15)
7

𝑖𝑗 𝑝𝑟𝑒𝑑_𝑙𝑒𝑛 𝑝𝑟𝑒𝑑_𝑙𝑒𝑛 𝑖𝑗
where 𝑎𝑓𝑢𝑡𝑢𝑟𝑒𝑖𝑗 is the probability of the relation type in the graph learned
by the multi-factor separation module and 𝑎𝑝𝑟𝑒𝑑𝑖𝑗 is the probability of
the relation type in the graph learned by the graph predicting block.
𝜇 represents the rate of increase in the weight of 𝑎𝑝𝑟𝑒𝑑𝑖𝑗 . The parameter
𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑒𝑝 represents the speed at which the coefficient to increase,
indicating the number of steps after which growth will occur. 𝑝𝑟𝑒𝑑_𝑙𝑒𝑛
stands for the total number of predicted steps. As the prediction time
steps increase, the GP module gradually becomes active, as shown in
Fig. 4. With the increase of prediction steps, the weight of the GP
module automatically increases, and the weight is multiplied by a
growth coefficient every 𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑒𝑝 time points.

3.3.3. Spatial–temporal feature fusion
The effective extraction and utilization of spatial features are critical

to the training and performance of the model. In order to preserve
the spatial information features, we directly pass the feature factors
separated by the encoder to the decoder, and further fuse them with the
spatial–temporal feature-extracted features before passing them to the
next layer. Spatial features are crucial for comprehensive understanding
and correct learning of graph structures. This strategy is adopted to
encourage the encoder to learn the connections that simulate the
system’s operational state through feedback from the decoder.

3.3.4. The manner of generating predictions
The generation of predictions can generally be divided into two

methods: iterative approach and generative approach. The iterative
method obtains predictions through a sequential process, while the gen-
erative method directly generates multiple values. The iterative method
boasts the advantage of obtaining a lower variance due to its au-
toregressive nature. However, it may accumulate errors gradually and
significantly decrease the prediction speed. On the other hand, when
unbiased single-step prediction cannot accurately acquire predictions,
the generative approach can generate more accurate predictions and
significantly expedite the prediction process. Therefore, it is commonly
used for long-term sequence prediction. For generative approach, the
decoder inputs the following vector:

𝐱𝑑𝑒 = [[𝐱1,… , 𝐱𝑡], [𝐱𝑡+1,… , 𝐱𝑡+𝑇 ]], (16)

where [𝐱1,… , 𝐱𝑡] is input historical time series while [𝐱𝑡+1,… ,
𝐱𝑡+𝑇 ] is the placeholder for the target to be predicted. When the
prediction time step is less than a certain threshold value 𝛾, an iterative
method is used, and when the prediction time step is greater than 𝛾, a
generative method is used to generate the predicted values. Since this
paper focuses more on long-term prediction, a generative method is
employed.

3.3.5. Loss function
Given the input samples 𝐱, the encoder outputs the distribution

𝑞𝜃(𝐚𝑖𝑗 |𝐱) for each edge. Then a graph 𝐀 is sampled from the continuous
estimation of the distribution. The decoder inputs the learned graph 𝐀
and historical time series, then outputs the predicted value 𝑝𝜙(𝐱̂|𝐀). The
loss function consists of two parts:

 =
∑

𝑖

𝑇
∑

𝑡=1
‖𝐱𝑡𝑖 − 𝐱̂𝑡𝑖‖

2 −
∑

𝑖≠𝑗
𝐻(𝑞𝜃(𝐚𝑖𝑗 |𝐱)). (17)

The first term is related to the prediction accuracy of the decoder,
calculating the gap between the ground-truth values and the predicted
values. The second term represents the sum of entropies and the design
of the second term is to avoid the nodes between each separated part
overlapping too much. Thus the negative value of the sum of entropies

of the edge type is utilized to reduce confusion.
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Fig. 4. The schematic diagram of the GP module.
3.4. Requirements and limitations

The proposed method requires multivariate time series prediction
with various interdependent relationships between variables. If the
target variable is influenced by upstream information, upstream node
features must be added to the GP module in order to aid in the
learning of more accurate graph structures and features. For time series
prediction where there is no obvious relationship between variables,
non-graph-based prediction methods may be more suitable. Addition-
ally, in real-world scenarios with a large number of variables, the graph
can be partitioned into multiple subgraphs for learning.

3.5. Time and space complexity analysis

For the MSE-STGNN model, the multi-factor separation module
requires the most analysis of time and space complexity, while the time
and space complexity of other parts of the model can be easily obtained
by referring to [59]. In this section, we provide a detailed analysis of
the time and space complexity of the proposed multi-factor separation
module, which is described in Algorithm 1.

The multi-factor separation module can be divided into two main
parts. The first part is feature mapping, consisting of steps 1–5 in
Algorithm 1. This part maps the features of 𝑀 factor types from the
original space to 𝑀 feature spaces. For each node, the time complexity
of this part is 𝑂

(

𝑁𝑑𝑜𝑢𝑡 𝑑𝑖𝑛
)

and the space complexity is 𝑂
(

𝑁𝑑𝑜𝑢𝑡
)

,
where 𝑁 is the number of nodes, 𝑑𝑖𝑛 is the dimensionality of the
input feature vector, and 𝑑𝑜𝑢𝑡 is the dimensionality of the output fea-
ture vector. The second part is obtaining the features of each factor
through the Expectation-Maximization (EM) algorithm in steps 7–15 in
Algorithm 1, which has a time complexity of 𝑂

(

𝐾𝑁𝑑𝑜𝑢𝑡
)

and a space
complexity of 𝑂

(

𝑑𝑖𝑛𝑑𝑜𝑢𝑡
)

, where 𝐾 is the number of iterations, 𝑁 is the
number of nodes, and 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 are the input and output dimensions
of the feature vector, respectively. In particular, this part has been
proven in [5] to converge to a point estimate of {𝑜}𝑀𝑚=1 that max-
imizes the marginal likelihood 𝑝

(

𝐮𝑖,𝑚 ∶ 𝑖 = 𝑜 ∪ (𝑜, 𝑛𝑒𝑖𝑔ℎ) ∈ 𝐺, 1 ≤ 𝑚 ≤
𝑀 ; {𝑜}𝑀𝑚=1

)

.
Taking into account the above analysis, the overall time complexity

of the multi-factor separation module is 𝑂
(

𝑁𝑑𝑜𝑢𝑡(𝑑𝑖𝑛 +𝐾)
)

, and the
space complexity is 𝑂

(

𝑑𝑜𝑢𝑡
(

𝑑𝑖𝑛 +𝑁
))

. It can be seen that both the time
and space complexity are independent of the number of factors 𝑀 .
Therefore, even in complex systems with a large number of factors, the
time and space complexity will not increase.
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Fig. 5. Cabinets arrangement and locations of cold aisles.

Fig. 6. The distributions of the normal cabinet temperature and the cabinet
temperature with alarm records.

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
Here we provide a description of three real-world datasets for the

following experiments.

• DC-Temp-Normal. This dataset consists of temperature and re-
lated metrics from a data center, encompassing 369 cabinets
without alarms between January 2022 and January 2023. The
dataset includes three key variables: cabinet temperature, cold
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aisle temperature, and IT power consumption. Data is sampled at
a rate of one data point every 2.5 min. The cabinet temperature
reflects the impact of several factors, including the heat generated
by the IT workload, the cold air from the cold aisle, and the tem-
perature effects of other cabinets, which are accounted for using
the proposed model. Fig. 5 illustrates the relationship between the
cabinets and the cold aisle within the data center.

• DC-Temp-Abnormal: This dataset includes temperature data from
145 cabinets with temperature alarms that occurred in three
rooms of a data center between January 2022 and January 2023.
Alarms are triggered when the cabinet temperature exceeded a
certain threshold or when a temperature rise is detected. Each
cabinet includes three data points: the cabinet temperature, the
cold aisle temperature, and the IT power consumption of the
cabinet. Data is sampled every 2.5 min per point. Fig. 6 illustrates
the distribution of data with and without temperature alarms.

• DC-Power: This dataset includes IT power consumption data for
77 cabinets over time in three rooms of a data center between
January 2022 and January 2023. Data is sampled every 2.5 min
per point.

• DC-Air-Normal: This dataset comprises data collected from air
conditioning sensors, IT power consumption, and cold aisle tem-
perature from three separate rooms between June 2022 and
June 2023. The air conditioning sensor data includes water inlet
temperature, water valve opening, return air temperature, fan
speed, and supply air temperature. Each room contains 20 air
conditioners and 18 cold aisle temperature measurement points.
The data in the dataset is sampled every 2.5 min. In this dataset,
the simultaneous prediction of the supply air temperature and
cold aisle temperature results in the existence of two types of
nodes in the graph, resulting in a total of 38 nodes. Other air
conditioning sensor data and IT power consumption serve as
influencing factors for predicting the supply air temperature and
cold aisle temperature.

• DC-Air-Abnormal: DC-Air-Abnormal is another dataset that in-
cludes data collected from air conditioning sensors, IT power
consumption, and cold aisle temperature from three different
rooms between June 2022 and June 2023. Any cold aisle tem-
perature measurement point that exceeds a certain threshold or
displays a temperature rise is referred to as abnormal. The air
conditioning sensor data still includes water inlet temperature,
valve opening, return air temperature, fan speed, and supply air
temperature. Each room contains 20 air conditioners and 18 cold
aisle temperature measurement points. The data in the dataset is
sampled every 2.5 min. In this dataset, we predict the future val-
ues of cold aisle temperature, with other air conditioning sensor
data and IT power consumption used as influencing factors.
It is worth noting that these datasets are all based on real physical
operation systems, with very complex influencing factors. Taking
the DC-Air-Abnormal dataset as an example, there are six types of
factors that affect the cold aisle temperature, including five types
of air conditioning measurement points (supply air temperature,
water inlet temperature, valve opening, return air temperature,
fan speed) and the IT power consumption. However, within a sin-
gle room in the dataset, there are 20 measurement points for each
air conditioning sensor data type (20 × 5), and each cold aisle
temperature measurement point corresponds to one IT power
consumption data point (18 cold aisle temperature measurement
points), resulting in a total of 118 influencing factors. Therefore,
the influencing factors are numerous and complex.

.1.2. Data preprocessing, parameter tuning, and overfitting prevention
The data preprocessing procedure involves several steps aimed at
9

nsuring the quality and reliability of the data:
• Eliminating outliers. The first step is identifying and filtering out-
liers based on industry knowledge and data distribution. Outliers
are values that are inconsistent with the expected behavior of
the system, such as a rise in cold aisle temperature without a
corresponding increase in cabinet temperature or a cold aisle
temperature that exceeds a certain threshold.

• Smoothing the data. Exponential smoothing is used to further
refine the data and filter out noise. The smoothing constant is set
to 0.9, which strikes a balance between filtering out noise and
preserving important features of the data.

• Normalizing the data. Finally, the data is normalized using the
Gaussian normalization to ensure all features in the dataset have
the same scale. This prevents any single feature from dominating
the model.

In the following, we will describe the setting of model parameters,
including the number of kernels in the dilated causal convolution, the
length of the periodic offset window in the attention vector, the number
of factors in the multi-factor separation module, and other training
parameter settings.

Causal convolution structures. In the realm of time series forecast-
ing, the periodicity of a sequence often remains uncertain. To address
the challenge of expanding the receptive field swiftly, many exper-
iments have employed an exponential causal convolution structure
featuring lengths of 1, 2, 4, 8, and 16, which constitutes a generalized
structured design. Nonetheless, in the context of predicting the cabinet
temperature, IT power consumption and cold aisle temperature, a
conclusion can be reached by observing the historical cabinet data,
as illustrated in Fig. 7. Specifically, the cabinet temperature exhibits
a cyclic pattern in the range of 10–14, and a periodicity of length 14
stands out as a robust feature. Correspondingly, the IT power consump-
tion manifests a periodicity of length 48. There is no obvious periodic
feature observed in the dataset of cold aisle temperature. For predicting
the cold aisle temperature, capturing the influence of upstream features
on its variation is crucial to enhance the accuracy of the prediction.
Notably, the exponential causal convolution structure solely captures
the periodicity of 14 cycles for the cabinet temperature cycle in an
implicit manner. In response, we optimize the structure of the model by
replacing the exponential causal convolution structure with the causal
convolution structures of 1, 2, 3, 4, 10, 12, and 14. By doing so, our
model can directly learn the periodicity of both 14 and 576 cycles.

Periodic deviation. The periodic instability of the temperature in
the server cabinet sometimes causes a deviation of 1–2 points in a pe-
riod. Therefore, in addition to the aforementioned improvements, based
on the cyclic properties of the data we introduce several additional
feature window sets, such as 5–7, 13–15, and 27–29 as the input group
of the attention layer. The weight of the attention vector for each group
is calculated through a 1d convolution layer. All of the groups of win-
dow features are flattened and concatenated, followed by another 1d
convolution layer to adjust the feature vector dimension. The adjusted
feature vector is then aggregated with the causal convolution to predict
the final result.

Overfitting prevention. To avoid overfitting, we implement the
following measures: Firstly, we ensure an ample amount of data, with
each dataset containing one year’s worth of data, totaling 210, 240
time points, enabling the model to absorb the diversity of the data.
Secondly, during the training phase, we add dropout layers with a
certain probability after each sublayer in each module of the model,
randomly setting some neuron outputs to zero to prevent overfitting.
Additionally, we apply batch normalization to normalize the inputs of
each output layer, reducing the interdependence between neurons in
each layer. Furthermore, during training, we employ early stopping
technique by monitoring the loss function value on the validation set. If
the loss function on the validation set does not decrease within a certain
number of epochs, we stop the training process. Lastly, we employ

cross-validation by dividing the training set into multiple subsets and
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Fig. 7. Periodic changes of the cabinet temperature, IT power consumption and cold aisle temperature.
Table 1
The model parameters and training parameters of the proposed method.

Parameter Value

MS module

MS block numbers 2
Number of hidden units per factor 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛 48
Mapping matrix 𝐖⊤

𝑚 (𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚,𝑀 × 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛)
Dropout rate 0.35
Number of iterations 6
Size of the sampled neighborhood 10
Number of graph convolution layers 5

GP module Rate of increase in the weight 𝜇 0.75
Growth step 4

AS-Conv

As-Conv block numbers 2
Number of the graph-based dilated causal convolution layer 2
Periodicity deviation (3∼5, 13∼15, 26∼28)
Causal convolution filter size (1 × 2, 1 × 3, 1 × 4, 1 × 10, 1 × 12, 1 × 14)

Others

Dimension of fully connected layer 2048
Epochs 25
Learning rate 0.01
Extra iterations before early-stopping 8
Optimizer Adam
using one subset as the validation set in each iteration. We train the
model multiple times, obtaining multiple models, and average the
results or conduct voting to obtain the final result.

Due to the fact that the temperature of cabinets is influenced by
three distinct factor types, the default number of factor types in the
factor separation module for the cabinet temperature datasets has
been established as 3. Conversely, the IT power consumption of server
cabinets is unaffected by external environmental factors and is solely
reliant upon the operating patterns of the business and the model of the
server itself. Therefore, within the factor separation module, the default
number of factor types has been established as 1 for this specific vari-
able. For the DC-Air-Normal dataset, there are five factors that affect
the supply air temperature and cold aisle temperature, and the default
number of factor types is set to 5. Similarly, for the DC-Air-Abnormal
dataset, there are six factors that affect the cold aisle temperature,
and the default number of factor types is set to 6. However, these are
just default values, and the optimal number of factor types needs to
be obtained through hyperparameter tuning. The model parameters
and training parameters are summarized in Table 1. The format of
the training samples is predetermined as a four-dimensional array with
dimensions of [32, ∗, 3, 48] and [32, ∗, 3, 96], where the initial dimension
indicates the batch size, followed by the number of nodes, channel,
and time steps, respectively. To ensure an unbiased evaluation, the
dataset is partitioned into a training subset (70%), a validation subset
(15%), and a test subset (15%) utilizing the time series data partition-
ing approach. In order to determine the efficacy of the model, both
Mean Squared Error (MSE) and Mean Absolute Error (MAE) have been
employed as evaluation metrics. The experiments are conducted using
PyTorch [60], repeated three times, on four NVIDIA Tesla V100 32 GB
GPUs.
10
4.2. Inspired experiments

In this study, we conduct an empirical comparison between ad-
vanced Transformer-based methods, namely Informer, Autoformer, and
FEDformer, and WaveNet [61] in three datasets. WaveNet is chosen
due to its demonstrated superior performance in time series prediction
tasks. In addition to comparing with the original methods, we also eval-
uate the performance of these methods when combined with graphs.
Specifically, we adopt an encoder–decoder architecture, where we learn
the graph structure in the encoder and embed the original method
for spatial–temporal prediction in the decoder. The comparisons are
focused on the MSE and MAE at different prediction horizons. The
results, presented in Table 2, lead to several conclusions.

Firstly, the incorporation of graph structures in short-term predic-
tion can significantly reduce prediction errors compared to algorithms
without graph structures. This finding suggests that graph structures
contain rich information in the data center scenario and can facilitate
better multivariate time series prediction. Secondly, the introduction of
graph structures increases prediction errors as the prediction horizon
increases. This indicates that graph structures only act on short-term
prediction and are unable to support long-term prediction, likely due to
the dynamic changes that may occur in the graph structures over time.
Thirdly, WaveNet achieves the lowest prediction errors in short-term
prediction, while FEDformer performs the best in long-term prediction.
This suggests that the structure of WaveNet helps capture short-term
time series features, while FEDformer’s frequency-enhanced attention
mechanism can better capture longer-term features. Lastly, as the pre-
diction horizon increases, we observe that the prediction error of the
cabinet and the cold aisle temperature dataset shows an upward trend
while the prediction error of the cabinet IT power consumption dataset
decreases or remains relatively stable, except for WaveNet which shows



Knowledge-Based Systems xxx (xxxx) xxxF. Shen et al.
Table 2
Empirical study on the inspiration sources: a comparative analysis of predictive performance between Transformer-based methods and WaveNet, as well as their combination with
graphs.

Methods Metric DC-Temp-Normal DC-Temp-Abnormal DC-power DC-Air-Normal DC-Air-Abnormal

24 48 96 192 24 48 96 192 24 48 192 576 24 48 96 192 24 48 96 192

Autoformer with
Graph

MSE 0.602 0.951 1.019 1.293 0.776 0.990 1.211 1.281 0.695 0.322 0.452 0.449 0.194 0.226 0.265 0.279 0.272 0.253 0.668 0.877
MAE 0.621 0.771 0.892 0.966 0.658 0.885 0.902 0.989 0.605 0.401 0.498 0.552 0.342 0.398 0.439 0.499 0.338 0.422 0.678 0.761

Autoformer MSE 0.654 0.954 1.018 1.263 0.782 0.992 1.209 1.278 0.712 0.341 0.378 0.423 0.203 0.248 0.277 0.315 0.279 0.256 0.675 0.885
MAE 0.625 0.794 0.855 0.957 0.705 0.896 0.890 0.988 0.668 0.465 0.485 0.527 0.360 0.414 0.456 0.511 0.343 0.431 0.683 0.774

FEDformer with
Graph

MSE 0.562 0.676 0.883 0.884 0.581 0.665 0.957 0.969 0.692 0.621 0.352 0.353 0.174 0.217 0.211 0.249 0.182 0.192 0.246 0.311
MAE 0.575 0.643 0.762 0.798 0.591 0.627 0.804 0.826 0.609 0.580 0.458 0.452 0.328 0.369 0.354 0.428 0.246 0.254 0.336 0.458

FEDformer MSE 0.567 0.681 0.887 0.892 0.589 0.689 0.902 0.862 0.704 0.625 0.327 0.323 0.190 0.223 0.226 0.272 0.219 0.226 0.263 0.322
MAE 0.588 0.654 0.776 0.761 0.601 0.659 0.792 0.776 0.613 0.582 0.444 0.449 0.347 0.395 0.392 0.467 0.330 0.359 0.398 0.487

Informer with
Graph

MSE 0.961 1.332 1.499 2.400 0.954 1.429 1.554 2.455 0.231 0.252 0.331 0.469 0.311 0.422 0.452 0.462 0.318 0.328 0.348 0.384
MAE 0.822 0.974 1.114 1.517 0.826 0.956 1.254 1.368 0.352 0.350 0.455 0.554 0.455 0.554 0.527 0.539 0.458 0.519 0.576 0.451

Informer MSE 0.970 1.334 1.496 2.384 0.979 1.431 1.500 2.355 0.233 0.259 0.329 0.460 0.320 0.431 0.500 0.432 0.329 0.334 0.353 0.392
MAE 0.838 0.988 1.051 1.307 0.845 0.995 1.157 1.329 0.371 0.393 0.423 0.528 0.465 0.567 0.602 0.564 0.474 0.531 0.591 0.488

WaveNet with
Graph

MSE 0.134 0.311 1.445 1.486 0.140 0.511 1.592 1.599 0.214 0.183 0.451 1.399 0.079 0.189 0.253 0.336 0.142 0.168 0.302 0.309
MAE 0.305 0.629 0.981 0.987 0.314 0.608 0.988 0.923 0.450 0.366 0.624 1.658 0.292 0.348 0.322 0.491 0.243 0.232 0.464 0.471

WaveNet MSE 0.138 0.500 1.423 1.478 0.142 0.523 1.522 1.183 0.234 0.188 0.447 1.369 0.180 0.234 0.288 0.335 0.151 0.179 0.455 0.676
MAE 0.324 0.617 0.911 0.967 0.329 0.627 0.932 0.899 0.489 0.385 0.595 1.644 0.346 0.429 0.373 0.453 0.299 0.293 0.574 0.760
Fig. 8. The trend of the MSE as the prediction horizon increases.
an increase in MSE, as shown in Fig. 8. This suggests that cabinet
temperature exhibits short-period fluctuations while cabinet power
consumption displays long-period fluctuations.

Fig. 9 showcases a comparative analysis between the sophisticated
time-series prediction algorithm, FEDformer, and the causal convolu-
tion model WaveNet for short-term forecasting. The presented result
unequivocally demonstrates that the causal convolution model closely
approximates the actual curve, thus attesting to its efficacy in short-
term prediction. In contrast, WaveNet, which relies on two activation
functions, sigmoid and tanh, respectively, is better suited for fitting
periodic signals. This is because the sigmoid function enables the
framework to learn the oscillation amplitude of the signal, while the
tanh function facilitates the learning of phase and frequency. The skip
connections module in WaveNet endows the original data with the
ability to influence the prediction results, thus enabling the learning
of additional information when the periodicity is not apparent and
cannot be learned by the convolution layers. The residual connections
module enhances the algorithm’s ability to train effectively on large
datasets, thereby circumventing potential issues of gradient vanishing
or exploding.

Based on these findings, we identify several shortcomings of existing
models. Graph-based prediction cannot support long-term prediction,
while WaveNet struggles with long-term prediction despite performing
11
well in short-term prediction. To address these issues, we propose a GP
module and an AS-Conv module.

4.3. Main results

To authenticate the effectiveness of the proposed model, a com-
prehensive evaluation is conducted by comparing its prediction perfor-
mance against that of other state-of-the-art algorithms, encompassing
both graph-based and non-graph-based methodologies. The compara-
tive algorithms employed in this paper are as follows:

• ARIMA: The auto-regressive integrated moving average [62]
• TPA-LSTM: The temporal pattern attention long short-term mem-

ory network [32]
• Autoformer: A decomposition architecture with an auto-

correlation mechanism based on Transformer [56]
• Informer: An efficient transformer-based model for long sequence

time-series forecasting [63]
• FEDformer: Frequency enhanced decomposed transformer for

long-term series forecasting [57]
• WaveNet: A generative model based on the PixelCNN [61,64]
• MTGNN: Multivariate time series forecasting with graph neural

networks [15]
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Fig. 9. Comparative analysis of predicted curves by FEDformer and the causal convolution model WaveNet for short-term forecasting.
Table 3
The comparative evaluation of MSE-STGNN’s predictive capability vis-à-vis baseline models with respect to MSE and MAE metrics.

Methods Metric DC-Temp-Normal DC-Temp-Abnormal DC-power DC-Air-Normal DC-Air-Abnormal

24 48 96 192 24 48 96 192 24 48 192 576 24 48 96 192 24 48 96 192

ARIMA MSE 0.854 1.125 1.499 1.277 0.810 1.446 1.296 2.481 0.688 0.359 0.486 1.371 0.387 0.385 0.467 0.554 0.392 0.495 0.526 0.802
MAE 0.772 1.022 1.067 1.057 0.804 1.028 0.953 1.423 0.547 0.424 0.558 1.651 0.438 0.433 0.517 0.603 0.449 0.559 0.697 0.962

TPA-LSTM MSE 0.368 0.648 1.446 1.479 0.993 1.025 1.216 2.357 0.761 0.458 0.451 1.296 0.264 0.370 0.450 0.395 0.281 0.292 0.625 0.798
MAE 0.559 0.704 0.958 0.972 0.869 0.890 0.919 1.331 0.699 0.497 0.605 1.503 0.420 0.524 0.568 0.538 0.352 0.442 0.646 0.812

Autoformer MSE 0.654 0.954 1.018 1.263 0.782 0.992 1.209 1.278 0.712 0.341 0.378 0.423 0.203 0.248 0.277 0.315 0.279 0.256 0.675 0.885
MAE 0.625 0.794 0.855 0.957 0.705 0.896 0.890 0.988 0.668 0.465 0.485 0.527 0.360 0.414 0.456 0.511 0.343 0.431 0.683 0.774

Informer MSE 0.970 1.334 1.496 2.384 0.979 1.431 1.500 2.355 0.239 0.259 0.297 0.460 0.320 0.431 0.500 0.432 0.329 0.334 0.353 0.392
MAE 0.838 0.988 1.051 1.307 0.845 0.995 1.157 1.329 0.371 0.393 0.423 0.528 0.465 0.567 0.602 0.564 0.474 0.531 0.591 0.488

FEDformer MSE 0.567 0.681 0.887 0.852 0.589 0.689 0.902 0.862 0.704 0.625 0.327 0.323 0.190 0.223 0.226 0.272 0.151 0.179 0.263 0.322
MAE 0.588 0.654 0.776 0.761 0.601 0.659 0.792 0.776 0.613 0.582 0.444 0.449 0.347 0.395 0.392 0.467 0.299 0.293 0.398 0.487

WaveNet MSE 0.138 0.511 1.423 1.478 0.152 0.523 1.522 1.183 0.234 0.188 0.447 1.369 0.180 0.234 0.288 0.335 0.219 0.226 0.455 0.676
MAE 0.324 0.622 0.911 0.967 0.339 0.627 0.932 0.899 0.450 0.385 0.595 1.644 0.346 0.429 0.373 0.453 0.330 0.359 0.574 0.760

MTGNN MSE 0.643 0.952 1.020 1.281 0.775 0.994 1.213 1.277 0.693 0.319 0.453 0.448 0.256 0.283 0.239 0.276 0.243 0.278 0.387 0.417
MAE 0.630 0.774 0.901 0.971 0.652 0.889 0.912 0.974 0.598 0.398 0.503 0.549 0.360 0.425 0.395 0.417 0.375 0.429 0.523 0.546

StemGNN MSE 0.959 1.329 1.495 2.398 0.955 1.430 1.556 2.459 0.233 0.258 0.334 0.356 0.260 0.292 0.250 0.285 0.310 0.344 0.316 0.394
MAE 0.820 0.971 1.112 1.512 0.831 0.959 1.258 1.369 0.359 0.360 0.458 0.458 0.362 0.430 0.407 0.425 0.511 0.580 0.494 0.485

GTS MSE 0.564 0.671 0.901 0.878 0.579 0.664 0.956 0.902 0.691 0.628 0.355 0.363 0.147 0.203 0.192 0.169 0.141 0.170 0.260 0.317
MAE 0.577 0.635 0.889 0.805 0.591 0.631 0.809 0.833 0.609 0.581 0.471 0.475 0.309 0.397 0.357 0.325 0.251 0.281 0.391 0.481

NRI MSE 0.561 0.673 0.899 0.871 0.578 0.662 0.954 0.894 0.689 0.619 0.349 0.352 0.104 0.156 0.168 0.153 0.149 0.160 0.237 0.278
MAE 0.573 0.639 0.885 0.795 0.588 0.624 0.801 0.821 0.604 0.572 0.452 0.451 0.255 0.344 0.331 0.308 0.296 0.311 0.389 0.429

I2A-RI MSE 0.562 0.676 0.882 0.869 0.566 0.635 0.951 0.895 0.692 0.628 0.345 0.353 0.081 0.124 0.151 0.141 0.091 0.096 0.108 0.113
MAE 0.301 0.617 0.761 0.765 0.551 0.623 0.793 0.826 0.625 0.583 0.449 0.454 0.222 0.305 0.312 0.294 0.253 0.261 0.271 0.278

Our method MSE 0.131 0.500 0.878 0.853 0.137 0.510 0.889 0.849 0.227 0.179 0.283 0.301 0.051 0.086 0.149 0.117 0.073 0.088 0.095 0.106
MAE 0.301 0.617 0.761 0.765 0.319 0.604 0.772 0.754 0.326 0.359 0.394 0.418 0.182 0.242 0.327 0.287 0.232 0.246 0.260 0.267
• StemGNN: Spectral temporal graph neural network [16]
• GTS: Graph for time series [38]
• NRI: Neural relational inference [36]
• I2A-RI: Inter-and-intra domain attention relational inference [65]

To facilitate a more rigorous comparison of predictive performance,
we have established fixed input sequence lengths of 48 for the temper-
ature dataset and 96 for the IT power consumption dataset. These fixed
sequence lengths are utilized both during the training and evaluation
stages of our model. Furthermore, the predicted sequence lengths are
also fixed at 24, 48, 96, and 192 for temperature datasets, and at 24,
48, 192, and 576 for the IT power consumption dataset. Here, we set
a longer prediction horizon for the IT power consumption dataset due
to the observation of longer periods exhibited by the dataset. In the
design of the prediction horizon, we take both short-term and long-term
predictions into account, demonstrating the versatility of our proposed
method. To ensure a fair comparison, the input format of other methods
is kept consistent with the proposed method, and hyperparameters are
set based on the best parameters reported in the paper or selected
using a hyperparameter search for optimal performance. The parameter
settings of the comparison methods are summarized in the Section A of
the supplementary material.

The comparative results between our proposed approach and state-
of-the-art methods are presented in Table 3. Upon observation of the
table, it is evident that MSE-STGNN consistently achieves the best
predictive performance across various prediction horizons on each
dataset. Overall, on the DC-Temp-Normal dataset, MSE-STGNN reduces
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the MSE by 21% compared to the second-best graph-based time se-
ries prediction method (I2A-RI). On the DC-Temp-Abnormal dataset,
MSE-STGNN reduces the MSE by 23%. On the DC-Power dataset,
MSE-STGNN reduces the MSE by 51%. On the DC-Air-Normal dataset,
MSE-STGNN reduces the MSE by 19% and on the DC-Air-Abnormal
dataset, MSE-STGNN reduces the MSE by 11%. Notably, on the chal-
lenging DC-Temp-Abnormal dataset with unstable cycles, MSE-STGNN
outperforms the second-best graph prediction method (I2A-RI) by 76%
(0.566 ←←→ 0.137) in the input-48-predict-24 setting, by 19% (0.635 ←←→
0.510) in the input-48-predict-48 setting, by 6% (0.951 ←←→ 0.889) in
the input-48-predict-96 setting, and by 5% (0.895 ←←→ 0.849) in the
input-48-predict-192 setting. The results of this study demonstrate that
the MSE-STGNN algorithm consistently attains maximum predictive
proficiency for both short-term and long-term temperature forecasts in
data center operations. As temperature monitoring is a pivotal task for
intelligent data center management, MSE-STGNN can effectively iden-
tify early indications of anomalous temperature patterns and provide
more accurate predictions of temperature trends once such patterns
have already emerged. Our findings thus offer valuable insights into
the potential deployment of the MSE-STGNN algorithm as a resilient
and dependable predictive instrument within the realm of data center
intelligent maintenance and operation.

Furthermore, we present a comparative analysis in Figs. 10 and 11
between the predicted curve and the ground-truth curve. In cabinet
temperature prediction, we highlight three distinct prediction scenar-
ios, namely the normal case, data prior to an alarm, and data post an
alarm. It can be observed that the predicted curve of MSE-STGNN mani-
fests an exceptional proximity to the ground-truth curve in both normal
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Fig. 10. Comparison of the predicted values and the ground-truth values for the proposed method in the cabinet temperature prediction.
and abnormal conditions, thereby validating that MSE-STGNN effec-
tively leverages the temperature-affecting characteristics. Moreover, it
adeptly captures and assimilates the influences of the IT power con-
sumption and cold aisle temperature, ultimately utilizing the acquired
relationships to efficiently predict future trends. In the prediction of
cold aisle temperature, we present prediction curves for two scenarios:
normal and abnormal cold aisle temperatures. From Fig. 11, it can be
observed that the predicted curves closely match the true curves. The
cold aisle temperature is mainly influenced by the upstream air condi-
tioning water inlet temperature and water valve opening. To provide a
clearer explanation, we only show the effects of these two key factors.
Under normal conditions, the water valve opening typically remains
constant, and it can be seen that the predicted trend of the cold aisle
temperature is consistent with that of the air conditioning water inlet
temperature. This indicates that the model effectively utilizes the water
inlet temperature information during the prediction process. Under
anomalous conditions, the water valve opening changes, and the figure
shows that the predicted sudden change point trend is consistent with
that of the water inlet temperature and water valve opening sudden
change points. This indicates that the model is capable of capturing
the influence of multiple key factors on the prediction.

4.4. Ablation study

In this section, we present our ablation experiments to evaluate
the effectiveness of the proposed modules in improving the predictive
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performance of the proposed method. We add modifications to the most
primitive NRI in three areas: the graph learning module (GL) in the
encoder, the prediction module in the decoder, and the proposed GP
module. The GL module is divided into the Multi-Factor Separation
(MS) module and the Non-Multi-Factor Separation (MS) module. The
prediction module includes three types: Gated Recurrent Unit (GRU),
FEB+FEA (the same as the decoder of FEDformer), and AS-Conv. The
GP is divided into two cases, with and without this module. We report
the results using datasets for the cabinet temperature prediction and the
cold aisle temperature prediction, which have more factors to consider.
MSE-STGNN has four variants: (1) MSE-STGNN V1: Only using the MS
module; (2) MSE-STGNN V2: Only using the AS-Conv module; (3) MSE-
STGNN V3: Using both the MS module and the AS-Conv module, and
(4) MSE-STGNN V4: Simultaneously using the proposed MS, AS-Conv,
and GP modules.

Table 4 summarizes the results of our ablation experiments. As
a baseline, we use the original NRI method and compare it with
the other methods, with it being placed first in the comparison. If
the results of the other methods are better than the baseline, the
results are highlighted. From the table, we see that both NRI with
GP and NRI+FEDformer with GP show improvement in 16/16 cases.
This indicates that both NRI and NRI+FEDformer methods improve
prediction accuracy after adding GP modules, suggesting that the model
can better predict future changes after adding GP modules. MSE-
STGNN V1 shows predictive performance improvement in 13/16 cases,
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Fig. 11. Comparison of the predicted values and the ground-truth values for the proposed method in the cold aisle temperature prediction.
Table 4
Ablation studies: Seven variants of NRI are compared with baselines. The results are highlighted if they outperform the baseline.

Methods GL Pred GP DC-Temp-Normal DC-Temp-Abnormal DC-Air-Normal DC-Air-Abnormal
24 48 96 192 24 48 96 192 24 48 96 192 24 48 96 192

NRI MS GRU GP MSE 0.561 0.673 0.899 0.871 0.578 0.662 0.954 0.894 0.104 0.156 0.168 0.153 0.149 0.160 0.237 0.278
MAE 0.573 0.639 0.885 0.795 0.588 0.624 0.801 0.821 0.255 0.344 0.331 0.308 0.296 0.311 0.389 0.429

NRI MS GRU GP MSE 0.560 0.672 0.883 0.861 0.577 0.639 0.937 0.876 0.099 0.152 0.163 0.149 0.145 0.153 0.231 0.269
MAE 0.572 0.633 0.879 0.782 0.574 0.604 0.772 0.803 0.252 0.339 0.329 0.301 0.291 0.302 0.381 0.411

NRI+FEDformer MS FEB+FEA GP MSE 0.562 0.676 0.883 0.874 0.581 0.665 0.957 0.899 0.103 0.155 0.169 0.156 0.151 0.163 0.227 0.258
MAE 0.575 0.643 0.762 0.798 0.591 0.627 0.804 0.826 0.250 0.341 0.334 0.309 0.298 0.316 0.378 0.395

NRI+FEDformer MS FEB+FEA GP MSE 0.559 0.672 0.879 0.866 0.576 0.639 0.917 0.871 0.091 0.148 0.158 0.144 0.123 0.150 0.198 0.213
MAE 0.570 0.633 0.759 0.772 0.583 0.602 0.785 0.803 0.249 0.342 0.321 0.299 0.273 0.296 0.311 0.322

MSE-STGNN V1 MS FEB+FEA GP MSE 0.560 0.673 0.880 0.872 0.579 0.659 0.944 0.884 0.089 0.145 0.153 0.141 0.118 0.148 0.195 0.201
MAE 0.572 0.639 0.761 0.789 0.588 0.619 0.792 0.813 0.246 0.339 0.319 0.295 0.269 0.292 0.302 0.313

MSE-STGNN V2 MS AS-Conv GP MSE 0.134 0.511 0.879 0.872 0.140 0.511 0.955 0.897 0.102 0.122 0.150 0.140 0.089 0.094 0.106 0.109
MAE 0.305 0.629 0.759 0.794 0.314 0.608 0.806 0.823 0.252 0.298 0.314 0.291 0.251 0.259 0.268 0.275

MSE-STGNN V3 MS AS-Conv GP MSE 0.134 0.511 0.879 0.869 0.141 0.511 0.913 0.870 0.054 0.089 0.158 0.121 0.079 0.092 0.102 0.108
MAE 0.305 0.629 0.759 0.791 0.316 0.608 0.783 0.803 0.188 0.246 0.338 0.293 0.239 0.251 0.269 0.271

MSE-STGNN V4 MS AS-Conv GP MSE 0.131 0.500 0.878 0.853 0.130 0.510 0.889 0.849 0.051 0.086 0.149 0.117 0.073 0.088 0.095 0.106
MAE 0.301 0.617 0.745 0.765 0.319 0.617 0.761 0.754 0.182 0.242 0.327 0.287 0.232 0.246 0.260 0.267
indicating that without the MS module, it is more difficult to extract
better information advantageous for prediction from the graph. MSE-
STGNN V3, with the addition of the MS module, shows prediction
performance improvement in 16/16 cases, although the improvement is
14
not significant. However, the MS module not only improves prediction
performance but also improves model interpretability. MSE-STGNN V4
also shows prediction performance improvement in 16/16 cases, and
the improvement is more significant, indicating that the GP module can
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Fig. 12. Ablation study: Prediction curves of different modules with a prediction length of 48.
effectively improve prediction performance. The results also show that
the GP module is more helpful for long-term prediction than short-term
prediction, which further reflects the dynamic nature of the graph in
the scenario of the data center intelligent operation and maintenance.
If long-term prediction is required, it is indeed necessary to estimate the
future changes of the graph first. Overall, the three proposed modules
have practical value in data center scenarios for dynamic graph-based
time-series prediction and model interpretability.

We also compare the prediction performances of the original NRI
method, the NRI method with the causal convolution with attention
(CCA) module, and the proposed method with three modules. We
present the comparison using various prediction curves, as depicted in
Figs. 12 and 13. The results for different prediction horizons of three
datasets are shown in the figures, where only the predictions with a
horizon of 48 and 96 could be clearly displayed. It is observed that
the proposed method demonstrates the closest fit to the true curves
across all three datasets. It is worth noting that while the predictions
for the DC-Power dataset appeared relatively smoother compared to
the true curve, our proposed method outperforms the other methods in
capturing the trends and fluctuations in the data.
15
4.5. The selection of the number of factor types

In order to validate the efficacy and interpretability of the MS mod-
ule in capturing real-world scenarios, we conduct a thorough analysis
of the MSE for each factorization configuration ranging from 1 to 6
factor types. The results are presented in Fig. 14. Our findings reveal
that the optimal number of factor types for the DC-Temp-Normal and
DC-Temp-Abnormal datasets is 𝑀 = 3, as the cabinet temperature is
influenced by the heat generated by IT power consumption, the cold air
generated by the cold aisle temperature, and the ambient temperature
of the surrounding cabinets, which aligns with the three-factor influ-
ence model established by the MS module. Similarly, for the DC-Power
dataset, 𝑀 = 2 emerges as the optimal configuration, indicating that IT
power consumption is not only affected by its own factor types, but also
by other variables such as server models, providing us with valuable
insights for more accurate predictions of future IT power consumption.
Regarding the DC-Air-Normal and DC-Air-Abnormal datasets, the opti-
mal number of factor types is 𝑀 = 3. However, we input more than
three factor types into the model, specifically five and six factor types,
which indicates that the model is capable of automatically selecting
the most useful factor types for prediction. Importantly, our results
demonstrated that when 𝑀 = 1, the proposed method degrades to a
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Fig. 13. Ablation study: Prediction curves of different modules with a prediction length of 96.

Fig. 14. The impact of the number of factors in the factor separation module on prediction results.
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Table 5
The Kolmogrov–Smirnov test P-values generated by various graph-based temporal prediction models on temperature datasets with different prediction horizons are presented. A
higher P-value indicates a lower likelihood of rejecting the hypothesis that the input sequence and predicted output originate from the same distribution. The optimal results are
highlighted for further analysis.

Methods MTGNN StemGNN GTS NRI I2A-RI MSE-STGNN True

DC-Temp-Normal

24 0.0221 0.0192 0.0463 0.0431 0.0616 0.0812 0.0461
48 0.0122 0.0104 0.0423 0.0407 0.0482 0.0562 0.0393
96 0.0181 0.0125 0.0227 0.0223 0.0258 0.0383 0.0291
192 0.0096 0.0044 0.0279 0.0259 0.0291 0.0351 0.0224

DC-Temp-Abnormal

24 0.0212 0.0134 0.0338 0.0363 0.0474 0.0521 0.0163
48 0.0091 0.0043 0.0112 0.0134 0.0192 0.0211 0.0128
96 0.0011 0.0013 0.0024 0.0023 0.0051 0.0032 0.0079
192 0.0004 0.0005 0.0007 0.0008 0.0022 0.0014 0.0013

DC-Power

24 0.0001 0.0001 0.0007 0.0008 0.0008 0.0009 0.0010
48 0.0001 0.0001 0.0007 0.0011 0.0017 0.0018 0.0020
192 0.0102 0.0093 0.0136 0.0196 0.0236 0.0411 0.0390
576 0.0141 0.0002 0.0129 0.0168 0.0087 0.0496 0.0480

DC-Air-Normal

24 0.0031 0.0023 0.0037 0.0149 0.0088 0.0446 0.0580
48 0.0013 0.0009 0.0018 0.0109 0.0328 0.0369 0.0360
96 0.0132 0.0098 0.0201 0.0106 0.0547 0.0598 0.0550
192 0.0103 0.0106 0.0121 0.0122 0.0167 0.0165 0.0170

DC-Air-Abnormal

24 0.0016 0.0001 0.0001 0.0001 0.0178 0.0188 0.0190
48 0.0046 0.0098 0.0032 0.0048 0.0258 0.0296 0.0310
96 0.0001 0.0001 0.0009 0.0009 0.0008 0.0100 0.0101
192 0.0001 0.0002 0.0008 0.0008 0.0288 0.0457 0.0488

Count 0 0 0 0 3 17
prediction level similar to that of I2A-RI, underscoring the generality
of the MS module.

4.6. Analysis of distribution in predictive results

In this section, we first analyze the similarity between the input se-
quence and the predicted sequence distributions of various graph-based
time series prediction models. Furthermore, we conduct an investiga-
tion to determine whether there exists statistical significance among
the prediction outcomes of different models. Kolmogrov–Smirnov test
is employed to examine whether the prediction results generated by
different models are consistent with the input sequences. The results
are presented in Table 5. In the experiment, the input sequence length
is fixed at 48, and the null hypothesis is that the two sequences,
input and prediction, are derived from the same distribution. On all
the datasets, a common P-value of 0.01 is set. As can be observed
from the results presented in the table, MTGNN and StemGNN exhibite
smaller P-values compared to other methods. In contrast, the P-values
of I2A-RI and MSE-STGNN are much larger, while MSE-STGNN has
an average increase of 40.1% compared to I2A-RI, indicating that the
output sequences generated by MSE-STGNN are more similar to the
distribution of the input sequence compared to other models. These
findings provide further evidence for the efficacy of the three designed
modules.

We employ the Kruskal–Wallis test to compare the statistical signif-
icance between the prediction curves obtained from other graph-based
prediction methods and those obtained from the proposed method.
We set a significance level of 0.01, and if the P-value is less than
he significance level, we consider there to be a significant difference
etween the two prediction methods. The results are presented in
able 6, where we highlight the results with P-values greater than 0.01
or each method. From the table, we can observe that the prediction
esults of NRI and I2A-RI are not significantly different from those of
he proposed method in 13/20 cases, which are significantly better
han the other three methods. Both NRI and I2A-RI share a similar
rchitecture with the proposed method, as they also adopt the VAE
ramework. The comparison table of the methods also indicates that
hese two methods outperform other graph-based prediction methods,
urther demonstrating the superiority of this architecture.
17
Table 6
The P-values obtained from the Kruskal–Wallis test between the predictive curves
obtained from other graph-based prediction methods and those obtained from the
proposed method. A higher P-value indicates a smaller likelihood of rejecting the null
hypothesis that the predictive results of the two methods are from the same distribution.
Results with a P-value greater than 0.01 for each method are highlighted.

Methods MTGNN StemGNN GTS NRI I2A-RI

DC-Temp-Normal

24 0.0001 0.0001 0.0001 0.0001 0.0072
48 0.0001 0.0001 0.0000 0.0001 0.0026
96 0.0056 0.0025 0.0002 0.1539 0.2556
192 0.2119 0.2003 0.0002 0.6407 0.7804

DC-Temp-Abnormal

24 0.0468 0.0314 0.0688 0.0696 0.0726
48 0.0002 0.0002 0.0002 0.0357 0.2600
96 0.0001 0.0001 0.0001 0.2482 0.4544
192 0.3012 0.2905 0.3074 0.2094 0.2261

DC-Power

24 0.0001 0.0001 0.0001 0.0001 0.0001
48 0.0000 0.0000 0.0000 0.0001 0.0001
192 0.0101 0.0056 0.0371 0.0107 0.0049
576 0.5059 0.7247 0.8952 0.9741 0.6710

DC-Air-Normal

24 0.0096 0.0466 0.1588 0.2357 0.0239
48 0.0143 0.0405 0.0214 0.0238 0.5406
96 0.0002 0.0003 0.0001 0.0009 0.0061
192 0.0001 0.0000 0.0014 0.0006 0.1968

DC-Air-Abnormal

24 0.0764 0.0065 0.0266 0.0889 0.0926
48 0.1933 0.0044 0.1417 0.0233 0.1859
96 0.0001 0.0001 0.0103 0.0018 0.0002
192 0.0001 0.0001 0.0088 0.6915 0.7099

Count 8 6 9 13 13

4.7. Visual analysis

4.7.1. Visualization of attention maps
We analyze the impact of the periodicity deviation attention on the

results. The addition of the attention module is intended to compen-
sate for the inherent inability of the causal convolution to effectively
capture periodic shifts. To this end, we visualize the parameters of the
attention vector, as illustrated in Figs. 15, 16 and 17. The horizontal
axis represents the 24 historical time points preceding the prediction,
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Fig. 15. Attention map for the MSE-STGNN training on the cabinet temperature dataset. The illustration exhibits the attention vector’s capability to capture the deviation of
periodicity and the abrupt points of anomalies.
Fig. 16. Attention map for the MSE-STGNN training on the IT power dataset. The illustration delineates the remarkable ability of the attention vector to discern the subtle
deviations in the periodicity of the IT power consumption of cabinet units.
whereas the vertical axis represents the 24 time points to be predicted
in the future. We randomly select 8 cabinets and cold aisles for demon-
stration purposes, with darker colors indicating higher attention vector
weights.

In Fig. 15, our findings reveal that the attention vector is highly
effective in capturing periodic shifts. In particular, within the DC-
Temp-Normal dataset, Cabinet 1 displays a significant level of attention
towards the nearest two time points and the future values between
the 10th and 13th time points. This is indicative of the attention
vector’s ability to effectively capture periodic shifts, thereby serving
as an excellent complement to the causal convolution. Moreover, the
results depicted in the figure demonstrate that the attention mechanism
is capable of identifying exceptional instances. For instance, in the
DC-Temp-Abnormal dataset, Cabinet 2 displays a considerable level
of attention towards the value around the 10th historical time point,
which corresponds to an unusual temperature change. Consequently,
the attention vector can effectively capture sudden changes, serving as
a potent auxiliary variable for predicting future values.

Within the DC-Power dataset, as shown in Fig. 16, our analysis
reveals that the attention vector is highly adept at capturing various
types of periodic shifts. As the IT power consumption cycle is relatively
unstable, the attention mechanism is capable of effectively capturing
their different cycles. As such, the attention vector proves to be highly
effective in facilitating the capture of periodic shifts and exceptional
instances, thereby enhancing the accuracy of the predictions.

The attention maps for the DC-Air-Normal and DC-Air-Abnormal
datasets are presented in Fig. 17. The figure illustrates that for the
cold aisle temperature in the normal state, the model uniformly relies
on the values at different previous time steps during prediction. In
contrast, for the abnormal state, the model tends to focus more on the
values at specific previous time steps. This observation implies that the
model can effectively capture changes in historical time steps during
the abnormal state, resulting in more accurate predictions of future
time steps. Additionally, the figure reveals that despite the relative
18
instability of the cold channel temperature dataset compared to the
cabinet temperature dataset, the attention mechanism can still capture
temporal features of different periods.

4.7.2. Visualization of the dynamic change process of the graph
To illustrate the evolution of the graph structure during the training

process, we use the prediction of cold aisle temperature as an example.
The results are presented in Fig. 18, which shows the changes in
the graph as the number of epochs increases, with a graph plotted
every five epochs. The first 20 nodes in the graph represent the air
conditioning supply temperature, while the last 18 nodes represent the
cold aisle temperature. The graph contains multiple types of nodes. To
better visualize the impact of each node on the others, the nodes are
colored according to their influence, with darker colors indicating a
greater influence on the other nodes.

Initially, we input a fully-connected graph and removed self-
connected edges. Fig. 18(a) shows the graph after training for five
epochs, with a relatively uniform distribution of edges, indicating sig-
nificant interactions between the air conditioning supply temperature,
the cold aisle temperature, and nodes of the same type. Fig. 18(b)
shows the graph after training for 10 epochs, with a significant reduc-
tion in the number of edges, indicating that the model automatically
eliminates redundant edges during the iteration process to reduce com-
putational costs. Fig. 18(c) shows the graph after training for 15 epochs,
with a sparser structure, but still with a relatively uniform distribution
of edges. Fig. 18(d) shows the graph after training for 20 epochs, with
significant changes in the structure, and the high-weight edges mainly
concentrated on the right half of the graph, which represents the impact
of air conditioning supply temperature on the cold aisle temperature.
This is consistent with the physical system. Fig. 18(e) shows the graph
after training for 25 epochs, with a converged model and a sparse graph
structure, where the high-weight edges are mainly concentrated on
the air conditioning supply temperature and the interactions between
the cold aisle temperature nodes. Thus, we can conclude from the
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Fig. 17. Attention map for the MSE-STGNN training on the cold aisle temperature dataset.
Fig. 18. The visualization of the dynamic change process of the graph.
Fig. 19. The relations between the cabinets after disentanglement.
evolving graphs that the model can learn interpretable graphs step by
step, which can be used not only for prediction but also for root cause
analysis and other scenarios.

4.7.3. Visualization of the MS graph
We visualize the graph after the MS module using an example from

the cabinet temperature dataset. In the cabinet temperature dataset, it
is hypothesized that the connectivity between cabinets is influenced by
three factors: close IT workloads, close proximity in physical space, and
sharing the same cold aisle. This paper presents the learned matrices
and graphs obtained by separating these three factors, as shown in
19
Fig. 19. The degree of correlation between two nodes is indicated by the
grid color of the matrix, with darker colors indicating stronger corre-
lations. The graphs display only the edges with the highest connection
probabilities for clarity.

Fig. 19(a) illustrates the relationships inferred through the close-IT-
workloads factor. The matrix indicates that cabinets in the A-column
have a greater influence on the other cabinets, which is further sup-
ported by the graph where cabinets A01-A12 have more out edges
than B01-B12. This can be attributed to the fact that A01-A12 are
network cabinets, and thus exert a greater impact on other cabinets
in the system.
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Fig. 19(b) depicts the relationships inferred through the close-in-
space factor. The graph reveals that cabinets B01, B12, C01, and C12
have a higher number of edges than the other cabinets. This can be
explained by the fact that these four cabinets are closest to the air
conditioner, and thus the air conditioner has a stronger influence on
these cabinets than on others.

Finally, Fig. 19(c) presents the relationships inferred through the
sharing-the-same-cold-aisle factor. The graph shows that each cabinet
is connected to other cabinets, which is attributed to the fact that B-
column and C-column cabinets share the same cold aisle. Therefore, all
the cabinets are interconnected through this shared space.

Overall, the MS module successfully segregates the three factors and
produces interpretable relationships that demonstrate the feasibility of
building a latent graph in this manner.

5. Conclusions

This paper proposes a method for constructing the graph among
variables in data centers and utilizing it for multivariate time series
forecasting. The framework first considers the diversity of edges in
the process of constructing the graph, and proposes a multi-factor
separation module to separate the factors that affect node connectivity,
thus obtaining a graph that is more consistent with the actual situation.
Then, considering the changes in graph structure in long-term fore-
casting, the graph prediction module is proposed to gradually include
the future graph structure during the prediction process, in order to
correct the errors in graph structure that multi-step prediction depends
on. In addition, this paper also proposes an attention-enhanced spatial–
temporal dilated causal convolution module to more effectively utilize
information related to space and historical events. We conducted exten-
sive comparative experiments and validation experiments on real data
center datasets, and the experimental results show that the framework
proposed in this paper outperforms other advanced prediction methods
in terms of prediction accuracy, and the learned graph structure is
interpretable.

Certainly, this work has some limitations. Firstly, the number of
factor types required for the model to achieve optimal performance
needs to be determined through hyperparameter search. Furthermore,
although this graph-based prediction method outperforms non-graph-
based methods in time series prediction with interrelationships between
variables, it may be less efficient. Therefore, two areas are worth
investigating based on this work in the future: firstly, enabling the
model to automatically learn the optimal number of factor types, which
is crucial as it significantly impacts the prediction results. Secondly, the
learned graph is sparse, and exploring more efficient spatial–temporal
prediction on sparse graphs is of great importance in improving the
prediction efficiency of the model.
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