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A B S T R A C T   

Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide 
learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time- 
consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where 
human learners select learning tasks and materials on their own without requiring hands-on guidance, has been 
shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human 
learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework 
for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including 
internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self 
data selection, self model selection, self optimization strategy selection and self evaluation metric selection 
through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process 
serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on 
multi-level optimization. Furthermore, we present case studies together with potential applications of SDML, 
followed by discussing future research directions. We expect that SDML could enable machines to conduct 
human-like self-directed learning and provide a new perspective towards artificial general intelligence.   

1. Introduction 

Machine learning has achieved substantial success in many areas 
such as natural language processing, computer vision, and robotics. 
Towards the ultimate goal of artificial general intelligence (AGI), re
searchers have kept working on reducing manual design in learning 
processes. Unsupervised learning, semi-supervised learning and self- 
supervised learning methods have shown their strength (Grira et al., 
2004; Qi and Luo, 2020; Schmarje et al., 2020; Jaiswal et al., 2020; Liu 
et al., 2020b) in reducing manual annotations, and active learning can 
help to reduce the cost for labeling data by interactively querying users 
or some other information sources to label “important” new data points 
(Wang and Hua, 2011; Kumar and Gupta, 2020; Ren et al., 2020). Be
sides, automated machine learning (AutoML) carries out neural archi
tecture search and hyperparameter optimization (Yao et al., 2018; He 
et al., 2019; Zöller and Huber, 2019) for the sake of reducing manual 
efforts in model design and selection. Meta learning utilizes a meta 
learner to quickly adapt machine learning algorithms to new tasks with a 
small amount of new data without manually transferring knowledge 
(Finn et al., 2017; Vanschoren, 2018; Hospedales et al., 2020). 

Despite all the above progress, current machine learning paradigm is 
still heavily dependent on manual design and human guidance, where 
human experts decide learning tasks, data, models, optimization algo
rithms and evaluation metrics. For example, to develop a rescue robotics 
system, human experts need to design how to train analogous reasoning 
models on manually-selected datasets, how to perform automatic 
knowledge graph construction, what evaluation metrics to use, etc. 
Manual design is labor-intensive, time-consuming, and lacks autonomy. 
To address this problem, we are interested in investigating whether it is 
possible to let machines select learning tasks, data, models, optimization 
algorithms, evaluation metrics autonomously and control learning 
processes in a self-directed manner? 

Self-directed human learning (SDHL) has been studied in education 
science for many years since the 1970s (Knowles, 1975; Garrison, 1997; 
Caffarella, 1993). Particularly, in adult education (Loeng, 2020; 
Brookfield, 1993) and online education (Song and Hill, 2007; LaTour 
and Noel, 2021), where learning initiatives of learners are strong 
required, self-directed human learning shows great effectiveness in 
improving learning outcomes. In self-directed human learning, in
dividuals take the initiative to determine proper learning tasks, selecting 
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appropriate learning materials, making suitable learning plans, devel
oping effective learning strategies, and adopting effective evaluation 
metrics. It has been shown that self-directed human learners who take 
the initiative in learning tend to learn more and better than those who 
passively wait for guidance from teachers (Knowles, 1975). 

Inspired by the concept of self-directed human learning, we propose 
self-directed machine learning (SDML). The comparison between 
conventional machine learning and SDML is illustrated in Fig. 1. While 
conventional machine learning mostly depends on manual designs from 
humans, SDML leverages self-awareness to perform a self-directed 
learning process with high degree of autonomy, where the learning 
process in turn can further improve self-awareness. Self-awareness in
cludes internal awareness and external awareness. The internal aware
ness reveals the states of machines themselves, while the external 
awareness represents machines’ perception abilities towards the phys
ical world and how they are seen by the external world. With the 
guidance of self-awareness, SDML is able to conduct a self-directed 
learning process through self task selection, self data selection, self 
model selection, self optimization algorithm selection and self evalua
tion metric selection in a more self-directed way. We propose a mathe
matical formulation for SDML based on multi-level optimization. 
Moreover, we present case studies together with potential applications 
of SDML, followed by discussing future research directions. 

The rest of the paper is organized as follows. Section II reviews self- 
directed human learning. In Section III, we introduce the principal 
concept and propose the framework of self-directed machine learning. In 
Section 4 we showcase the superiority of SDML over conventional ma
chine learning by discussing several case studies and potential applica
tions for SDML, such as autonomous driving/robotics and automated 
computer programming. We discuss future directions in Section 6, 
including equipping SDML with robustness, explainability and 
reasoning capability. 

2. Self-directed human learning 

The concept of self-directed human learning (SDHL) has been studied 
in educational science for decades (Knowles, 1975; Garrison, 1997; 
Caffarella, 1993), especially in adult education (Loeng, 2020; Brook
field, 1993) and online education (Song and Hill, 2007; LaTour and 
Noel, 2021) as the two scenarios both require high initiative of learners. 
The original definition of self-directed learning (Knowles, 1975) is 
provided by Knowles in 1975: 

In its broadest meaning, self-directed learning describes a process by 
which individuals take the initiative, with or without the assistance of others, 
in diagnosing their learning needs, formulating learning goals, identifying 
human and material resources for learning, choosing and implementing 
appropriate learning strategies, and evaluating learning outcomes. It has 
been shown that self-directed learners who take the initiative can learn 
more and better than those who passively learn under guidance from 

teachers (Knowles, 1975), and can know how they see themselves and 
how they are seen by others. 

Self-directed learning relies on self-awareness. In education science 
(Eurich, 2017), there are two types of self-awareness: internal awareness 
and external awareness. By combining internal awareness and external 
awareness, learners can identify what to improve and change the way of 
interacting with themselves, with others and with the physical world. As 
such, being able to master both internal and external awareness is 
regarded as a very crucial prerequisite for conducting self-directed 
(human) learning. 

3. Self-directed machine learning 

We propose a new machine learning concept and framework called 
self-directed machine learning (SDML), inspired by the concept of SDHL 
in education science. Conventional machine learning is mostly human- 
directed, which could handle well-defined specific tasks but is unable 
to automatically adapt to changing environments. In contrast, SDML 
takes the initiative in learning processes and pursues lifelong self- 
improvement, as shown in Figs. 1b and 2. 

In education science, self-directed learning views learners as 
responsible owners and managers of their own learning process (Hayati 
Abdullah, 2001). Internal awareness and external awareness are treated 
as two important components for improving and changing learners’ 
perceptions about themselves and others. Drawing inspirations from 
these facts, we design SDML as a self-directed learning process guided by 
self-awareness, including internal awareness and external awareness. 
During the learning process, SDML is towards being self-directed to 
select learning tasks, data, models, optimization algorithms, and eval
uation metrics. In turn, learning outcomes provide feedback on how to 
improve self-awareness. 

3.1. Self-awareness 

Motivated by discoveries in education science (Schunk and Zim
merman, 2012; Eurich, 2017), we propose a way of implementing 
self-awareness, including internal awareness and external awareness, as 
shown in Fig. 3. 

3.1.1. Internal awareness 
As SDML requires lifelong self-improvement of machines, it is 

essential to build machines’ internal awareness to better guide the 
learning process. Inspired by humans’ cognitive conditions in self- 
directed learning, we represent internal awareness with the following 
key factors: 

1. Capacity. We represent the long-term internal awareness of a ma
chine using capacity C := {C1,C2,…,CK}, where {Ci}

K
i=1 are different 

aspects of capacity such as computation speed and memory size. 

Fig. 1. Comparison of conventional machine learning (a) and self-directed machine learning (b).  
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Machine capacity specifies the maximum available resources of an 
SDML system.  

2. State. We represent the short-term internal awareness of a machine 
using state S := {S1,S2,…,SK}, where {Si}

K
i=1 are the current states of 

the corresponding capacity, {Ci}
K
i=1, such as current computation 

speed and currently available memory size. Machine state represents 
the current ability and available resources of an SDML system. 

3. Learning Tasks. The COPES model of learning tasks includes Condi
tions, Operations, Products, Evaluations, and Standards (Winne, 
1989, 1997). Inspired by this, we define a machine learning task as 
{TC, TO, TE, TS}, where TC is task conditions on inputs and system 
constraints, TO is task outputs (products), TE is evaluations and TS is 
standards. As machine learning tasks are related (e.g., VQA tasks are 
supported by visual and textual representation learning tasks), we 
organized the set of known tasks as graphs GT = {T,E}, where T is 
the set of machine learning tasks and E is their relations. GT can be 
initialized with prior knowledge and updated during the learning 
process/from external resources.  

4. Learning Strategies. People can develop various and personalized 
study strategies for different scenarios in their lifetime. We denote 
the set of machine learning strategies as Q, which consists of 

strategies for model constructions, parameters optimizations, eval
uation metrics and so on. It is worth noting that Q includes the 
models and parameters pre-trained or already trained in the machine 
learning task set T. 

Overall, we represent machine self-awareness as MA = {C,S,GK,GT,

Q}, which serves as a central controller and provides global guidance to 
the self-directed learning process. 

3.1.2. External awareness 
External awareness represents machines’ perception abilities to

wards the physical world and how the machine is seen by the external 
world. We represent external awareness using the following key 
components.  

● Relations. The physical world consists of entities. Different from 
previous works which mostly represent entities using texts, we define 
the set of entities 𝒱 = {V1,V2,…} in a multi-modal way. Each entity 

is defined as Vi = {Vj
i}

M
j=0, where M is the number of modalities. The 

entities in 𝒱 are interrelated. We define their relations ℛ in a 
recursive and hierarchical way. For example, the relation “is 
grandfather of” could be defined recursively by stacking the relation 
“is father of” twice. Formally, we have some basic relations in ℛ first. 
We perform statistical inference on basic relations to induce new 
relations and add statistically significant ones to ℛ.  

● Knowledge. Humans rely on commonsense and domain knowledge to 
perform tasks. We define knowledge as GK = {GC, GD}, where GC 
denotes commonsense knowledge and GD represents domain 
knowledge. Both GC and GD could be represented as graphs, where 
vertices represent concepts V and edges represent relations R. While 
commonsense knowledge remains roughly the same in SDML, 
domain knowledge may be updated frequently during the learning 
process. 

3.1.3. Construction of self-awareness 
We construct self-awareness by combining internal awareness and 

external awareness. To initialize the values of internal awareness, we 
collect information including computation speed and memory size of 
machines, task conditions on inputs, system constraints, et. To initialize 
the values of external awareness, we collect information including en
tities in the external world and their relations, seed commonsense 
knowledge such as ConceptNet, domain knowledge, etc. During the 

Fig. 2. Illustration diagram of Self-directed Machine Learning (SDML).  

Fig. 3. Self-awareness: i) Internal Awareness; ii) External Awareness.  
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SDML process, we leverage feedback collected from learning outcomes 
to update certain parts of self-awareness, including state, relationship 
between tasks, domain knowledge, etc. The update of self-awareness is 
conducted in a stable manner without catastrophic forgetting. Internal 
and external awareness are updated in a joint way instead of greedily to 
pursue globally optimal updates. 

3.2. Self-directed machine learning process 

With the guidance of our proposed self-awareness, machine algo
rithms can conduct self-directed learning processes. As shown in Fig. 2, 
we propose an implementation of a self-directed machine learning 
process. When interacting with the external dynamic environment, 
SDML can select learning tasks, data, models, optimization strategies 
and evaluation metrics in a self-directed way based on the guidance of 
self-awareness where the results will in turn provide feedback to 
improve self-awareness, thus distinguishing SDML from the conven
tional machine learning paradigm. Next, we will describe each compo
nent in detail, i.e., self task selection, self data selection, self model selection, 
self optimization strategy selection and self evaluation metric selection. 

3.2.1. Self task selection 
Humans could usually decompose a complex ultimate goal into 

several fine-grained tasks, which may be preconditioned or helpful to 
the final goal. For example, if we plan to cook a sumptuous meal, we will 
decompose this ultimate goal into the following tasks: buying the in
gredients, preparing the ingredients, cooking and seasoning. Each task 
could be split to even smaller tasks, and we will pay attention to the task 
which we perform the worst to lift our ability towards the ultimate goal 
to a large extent. 

Inspired by this, SDML is designed to decompose a complex goal into 
a sequence of fine-grained subtasks automatically. SDML can choose a 
subset of learning tasks and determine the order of executing them 
under the guidance of self-awareness. Formally, we define the ultimate 
goal as T∗ = {T∗

C, T∗
O, T∗

E, T∗
S}. Note that the graph of machine learning 

tasks GT are included in machine self-awareness. Thus, given T*, GT, 
machine capacity C, machine state S and evaluation results O, SDML is 
able to develop a function fT that generates a task sequence T =

{Ti}
NT
i=0 = fT(T∗,GT,C,S,O), where the NT tasks are selected from GT and 

could be duplicated. This function may be modeled by similarity 
matching among the inputs, outputs, evaluation metrics, and experi
mental outcomes of different tasks. The selected tasks affect the selec
tion of data, model and optimization strategies. 

3.2.2. Self data selection 
Humans have the ability to find the materials most related to a given 

task for learning, so that we could improve our ability on the given task 
in a rapid and effective way. Humans usually choose suitable materials 
to learn for the given problem, and SDML should have the similar ability 
to select proper data to learn with awareness of the ultimate goal, the 
selected task and its current state. 

Formally, given the task sequence T, machine state S, machine ca
pacity C, evaluation results O, and the ultimate goal T*, SDML selects 
the most suitable dataset for each task. That is, D = {Di}

NT
i=1 = fD(T∗,Ti,

C,S,O). The data selection process not only relies on the selected task 
but also the ultimate goal for better efficiency since it aims to choose 
data most related to the final target while discarding unrelated, noisy or 
even harmful data. Therefore, the SDML is designed to improve itself in 
an efficient and rapid way. The data selection results will also influence 
the model design and optimization strategy selection. 

3.2.3. Self model selection 
Humans are able to locate the potential candidate solutions given 

different learning tasks. Similarly, after adjusting the learning tasks, 
SDML is required to choose the learning models for each task. Formally, 

SDML designs models M = {M}
NT
i=0 = fM(Ti,Di,C,S,O) based on the task 

sequence T, machine capacity C, machine state S and evaluation results 
O. The design of learning models also influences the selection of opti
mization strategies, while the selected models together with the corre
sponding model performance may give feedback to the task selection 
component. 

3.2.4. Self optimization strategy selection 
As people vary in their abilities and available learning time, each 

person has her own learning pace and style. Therefore, people tend to 
choose strategies that are most suitable for themselves. Inspired by this, 
SDML chooses optimization strategies under the guidance of machine 
self-awareness. To date, many optimization strategies are proposed by 
researchers in order to reduce human intervention in data, supervision, 
losses, and optimization. The set of optimization strategies are encoded 
and updated in self-awareness, which affects the learning speed, degree 
and cost etc. The optimization strategies are most flexible in SDML, 
which can be set according to the tasks and models. The set of strategies 
could also be a key factor for selecting tasks and designing models. 
Formally, the chosen optimization strategies are modeled through 
considering tasks, models as well as machine self-awareness: P = FP(T,

M, MA). Finally, the selected optimization strategies, outcomes and 
evaluations will provide feedback to further update all roles in the self- 
directed learning process. 

3.2.5. Self evaluation metric selection 
It is essential to set proper evaluation metrics in machine learning. In 

conventional machine learning, one or more evaluation metrics are set 
through manual design. However, there exist various evaluation metrics 
and even researchers are not clear which metrics should be used under 
different circumstances. Besides, different evaluation metrics often lead 
to different optimization directions during model training. We expect 
SDML to make evaluation in a self-directed way, e.g., choosing evalua
tion metrics adaptively from a large set of candidates or even develop 
new evaluation metrics. When solving a complex goal without clearly 
well-defined objectives, machines will achieve lifelong self- 
improvement in the world upon successful self evaluations. 

3.3. Mathematical formulation of SDML 

In this section, we present a mathematical formulation of self- 
directed machine learning, by integrating the elements and processes 
introduced in earlier sections. Specifically, we propose a multi-level 
optimization based framework to formulate SDML. In this framework, 
there are multiple joint optimization problems, each corresponding to 
one process outlined in Section 3.2. These processes are organized into a 
directed acyclic graph (DAG). If there is a directed edge from process A 
to process B, then B is dependent on A: specifically, the optimal solution 
of A’s optimization problem is used as a variable in B’s optimization 
problem. These optimization problems are organized into six levels. 

At the first level, we construct self-awareness, by solving the 
following optimization problem: 

B∗(M) = arg minB Lsac(B,M). (1)  

where B denotes self-awareness, Lsac denotes a self-awareness con
struction loss, and M are meta parameters. The optimization is con
ducted over B. M is tentatively fixed at this stage and will be updated 
later on. Note that the optimal solution B* is a function of M since B* is a 
function of the loss function which is a function of M. 

At the second level, we perform task selection. Given the constructed 
self-awareness B*(M), a set of candidate tasks 𝒯 = {tn}N

n=1 and a textual 
description E of the target application, the goal of task selection is to 
select a subset of tasks 𝒮 ⊆ 𝒯 and form them into a DAG. The task DAG 
specifies the dependency between tasks and the execution order of tasks. 
At this stage, we solve the following optimization problem: 
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𝒮∗(B∗(M)) = arg min𝒮⊆𝒯 Lts(𝒯 ,𝒮,E,B∗(M)). (2)  

Lts is a task selection loss specifying the criteria of how to select the 
optimal subset of tasks and form them into a DAG. It is defined on the 
entire set of tasks 𝒯 , a candidate subset of tasks 𝒮, the application 
description E, and self-awareness B*(M). The optimization is conducted 
over 𝒮. 

At the third level, there are two processes: one is training data se
lection; the other is model selection. Data selection is defined as follows. 
For each task s(M) in the selected task subset 𝒮∗(B∗(M)), from the 
training data Ds(M) of task s(M), we select a subset of training examples 
Cs(M) ⊆ Ds(M). Data selection for task s(M) amounts to solving the 
following optimization problem: 

C∗
s(M) = arg minCs(M)⊆Ds(M)

Lds(Ds(M),Cs(M)). (3)  

Lds is a data selection loss specifying the criteria of how to select the 
optimal subset of training data. It is defined on the entire set of training 
data Ds(M) of task s(M) and a candidate subset Cs(M) of data examples. 
The optimization is conducted over Cs(M). 

Model selection is defined as follows. For each task s(M) in the 
selected task subset 𝒮∗(B∗(M)), given the search space of architectures 
and hyperparameters of the model used to perform the task s(M), we 
select the optimal architecture and hyperparameters. The corresponding 
optimization problem is: 

A∗
s(M) = arg minAs(M)

Lms(As(M), s(M)). (4)  

Lms is a model selection loss specifying the criteria of setting the optimal 
architecture and hyperparameters. As(M) represents candidate archi
tectures and hyperparameters in the search space. Optimization is 
conducted over As(M). 

At the fourth level, there is a single process, which is optimizer se
lection. For each selected task s(M), given a set of candidate optimizers 
ℴ = {on}

P
n=1, we select the optimal one o∗s(M)

∈ ℴ to train the selected 
model on the selected data. The corresponding optimization problem is: 

o∗
s(M) = arg minos(M)∈ℴ

Los(os(M),A∗
s(M),C

∗
s(M)). (5)  

Los is a loss specifying the criteria of selecting the best optimizer. The 
selection of the optimizer depends on the selected model A∗

s(M)
and 

selected data C∗
s(M)

. 
At the fifth level, there is a single process, which is to train weight 

parameters of the selected model on the selected data, using the selected 
optimizer, which amounts to solving the following optimization prob
lem: 

W∗
s(M) = arg minW Lwt(Ws(M),A∗

s(M),C
∗
s(M), o

∗
s(M)). (6) 

At the sixth level, there is a single process, which is to evaluate 
models trained at the fourth stage on a validation set F. Meta parameters 
M are updated by minimizing the validation loss, which amounts to 
solving the following optimization problem: 

minM Lval({W∗
s(M)|s(M) ∈ S∗(M)},F), (7)  

where Lval is the validation loss. 
Putting these pieces together, we have the following multi-level 

optimization problem. 

minM Lval({W∗
s(M)|s(M) ∈ S∗(M)},F),

s.t. W∗
s(M) = arg minW Lwt(Ws(M),A∗

s(M),C
∗
s(M), o

∗
s(M)),

o∗
s(M) = arg minos(M)∈ℴ

Los(os(M),A∗
s(M),C

∗
s(M)),

A∗
s(M) = arg minAs(M)

Lms(As(M), s(M)),

C∗
s(M) = arg minCs(M)⊆Ds(M)

Lds(Ds(M),Cs(M)),

𝒮∗(B∗(M)) = arg min𝒮⊆𝒯 Lts(𝒯 ,𝒮,E,B∗(M)),

B∗(M) = arg minB Lsac(B,M).

(8)  

4. Case studies and potential applications 

In this section, we showcase how to leverage the proposed self- 
directed learning framework to solve practical problems, in two case 
studies: 1) autonomous rescue robotics, and 2) automated computer 
programming. Besides, we discuss a few other potential applications of 
SDML. 

4.1. Case study I: autonomous rescue robotics 

4.1.1. Problem definition 
In robotics applications such as autonomous search and rescue, it is 

crucial for the agents to derive analogous solutions based on learned 
knowledge, such as opening a window based on the learned skills of 
opening a door. This requires the agents to perform analogical 
reasoning, including understanding which jobs (e.g., manipulation, 
locomotion, navigation, assembly, etc.) are analogous, adapting the 
actions of performing source jobs to an analogous target job, etc. 
Existing research on analogical reasoning (Gentner et al., 2012; Cass, 
1993) heavily requires humans to manually build knowledge bases 
about the analogy relationships between jobs and to manually craft 
symbolic systems for adapting actions between analogous jobs, which is 
labor-intensive, expensive, difficult to evolve over time, and less robust. 
In existing works on job planning (Galindo Juan-Antonio Fernández-
Madrigal et al., 2008; Cambon et al., 2009), given a novel job, a software 
program (e.g., policy, job plan, PDDL (Aeronautiques et al., 1998) 
description, etc.) operating on a robotic system needs to be written by 
human experts to execute this job, which is time-consuming and not 
scalable. There have been a few data-drive approaches (Dantam et al., 
2018; Grover et al., 2020) aiming to reduce the dependency on humans. 
However, they require a lot of experts-provided annotations for model 
training and such annotations are difficult to obtain practical robotics 
systems. 

4.1.2. An SDML-based solution 
To address the limitations of existing works, we can leverage our 

proposed SDML framework to develop analogical reasoning systems 
(shown in Fig. 4) that enable autonomous agents to master a much wider 
range of jobs without heavily relying on humans to provide supervision. 
Given a large set of analogous jobs, once the agent learns to solve one of 
them, our system enables it to automatically figure out how to solve the 
rest. This will make the autonomous agents more adaptive, autonomous, 
robust, and intelligent. Specifically, our solution aims to automatically 
synthesize a correct and efficient program (e.g., an application domain 
definition written by the Planning Domain Definition Language (Aero
nautiques et al., 1998), which specifies the sequence of actions needed 
to accomplish a job and their preconditions and effects) to execute a 
previously unseen job by drawing analogies with previously seen jobs. 

4.1.2.1. Self task selection.  

● Automatic construction of analogy job graph: automatically build an 
analogy job graph (AJG) including jobs with analogy relationships 
and programs that can be used to perform these jobs. To perform 
analogical reasoning, we first need to know which jobs are analogous 
to each other. The AJG needs to be constructed automatically 
without heavily relying on human annotations.   

● Program-job association: for each job in the AJG, we aim to extract a 
program (represented using a syntax tree containing actions with 
preconditions and effects) from the robotics literature where the 
program can be used to perform this job.  
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● Program synthesis: given the AKB, synthesize a target program to 
execute a novel job from the source programs of analogous jobs in 
the AKB. 

4.1.2.2. Self model selection.  

● Graph-to-graph (G2G) construction model. The model is used for 
automatic construction of AJG. It takes unstructured texts in the 
robotics and job-planning literature and a small-sized seed AJG 
(created by domain experts) as inputs and constructs a more 
comprehensive graph containing previously unseen jobs and analogy 
relations. The G2G model constructs a group of inter-correlated jobs 
and analogy relations collectively as a graph. In the construction 
process, high-order reasoning is performed to construct jobs having 
unobvious analogy relations. To train the G2G model, we construct 
training examples, each containing a graph G sampled from the seed 
graph and a subgraph S of G, where the goal is to construct G from S. 
We use the jobs and analogy relations in S as queries to retrieve 
relevant paragraphs P from the unstructured texts. Then we use a 
graph neural network to encode S and use a BERT model trained on 
the entire collection of unstructured texts to encode P. Then the 
graph embedding of S and BERT embedding of P are fed into a two- 
layer hierarchical long short-term memory (LSTM) network to 
construct new nodes. Given the constructed nodes, a Siamese 
network is used to construct edges: two jobs are connected if they are 
analogous. Given the constructed graph, we compare it with the 
ground-truth graph G using graph edit distance. Since the objective is 
not end-to-end differentiable, we use policy gradient to learn the 
weight parameters, where the reward is defined based on the graph 
edit distance.   

● Cross-modal hashing model. We leverage a program extractor which 
analyzes the robotics literature and extracts all programs used for job 
planning. The number of extracted programs and the number of jobs 
in the AJG can be very large, which incurs huge computational costs 
when associating programs to jobs. We leverage a cross-modal 

hashing model to address this issue. We use a graph convolutional 
network to encode the AJG and learn a latent representation vector 
(whose elements are probability values) for each job in the graph. 
From the representation vector of each job, a hash code is sampled to 
represent this job. For programs extracted from robotics literature, 
we represent them using syntax trees and encode these trees using 
tree-structured LSTM networks. A hash code is sampled from the 
encoding of each program to represent this program. Given the hash 
codes of jobs and the hash codes of programs, we associate programs 
to jobs by calculating the Hamming distance between their hash 
codes. Hamming distance can be calculated extremely efficiently in 
memory, which enables the association to be done with minimal 
latency.   

● Program-to-program synthesis model. Given the learned analogy job 
graph where each job is associated with a program that can execute 
this job, we leverage it for analogical job planning. In previous job- 
planning approaches, a program (e.g., a PDDL description) needs 
to be pre-defined by human experts before the robot can start its job. 
If a robot encounters a previously unseen job where a program has 
not been written for, the robot is unable to conduct this job. We 
leverage a program-to-program (P2P) synthesis model to solve this 
issue. The P2P model automatically generates a program for a novel 
job J by leveraging programs pre-defined for jobs that are analogous 
to J. Specifically, from the analogy job graph, the P2P model re
trieves the neighboring jobs that are analogous to J. The program 
associated with each retrieved job is represented using a syntax tree, 
which is encoded using a tree-structured LSTM model. Then these 
program encodings are fed into a tree-structured LSTM decoder to 
generate the program for executing J. 

For the graph-to-graph construction model, the following aspects are 
included in the model selection decision space: architecture of the graph 
neural network, architecture of the BERT model, architecture of the 
hierarchical long short-term memory network, and architecture of the 
Siamese network. 

Fig. 4. Illustration diagram of autonomous rescue robotics.  
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For the cross-modal hashing model, the following aspects are 
included in the model selection decision space: architecture of the graph 
convolutional network, architecture of the tree-structured LSTM 
network, and dimension of the hash codes. 

For the program-to-program synthesis model, the following aspects 
are included in the model selection decision space: architecture of the 
tree-structured LSTM encoder, architecture of the tree-structure LSTM 
decoder, and number of hidden units in LSTM networks. 

4.1.2.3. Self data selection. 

● Data for training the graph-to-graph construction model: 1) un
structured texts in the robotics and job-planning literature; 2) a 
small-sized seed AJG (created by domain experts) as inputs. We 
construct training examples in the following way: sample a graph G 
from the seed graph, sample a subgraph S from G. Jobs and analogy 
relations in S are used as queries to retrieve relevant paragraphs P 
from the unstructured texts. The (S, P, G) tuple forms a training 
example where S and P are the inputs and G is the output.   

● Data for training the cross-modal hashing model: 1) programs used 
for job planning, extracted from robotics literature; 2) jobs in the 
AJG. We utilize a program extractor to analyze the robotics literature 
and extract all programs used for job planning.   

● Data for training the program-to-program synthesis model: jobs in 
the AJG and programs associated with these jobs. 

For each training example x, we automatically learn a weight a ∈ [0, 
1]. If a is close to 1, it means that x tends to be selected; otherwise, x 
tends to be excluded. a can be parameterized using a deep neural 
network which takes a latent representation of x as input and produces a 
scalar between 0 and 1. 

4.1.2.4. Self optimization strategy selection. In the aforementioned tasks, 
some of them have differentiable objective functions and some do not. 

For differentiable objectives, we can use gradient based methods for 
optimization; and for non-differentiable ones, we can resort to rein
forcement learning algorithms. The candidate optimizers include: sto
chastic gradient descent, Adam, AdaGrad, RMSProp, policy gradient, 
deep deterministic policy gradient, actor-critic, asynchronous advantage 
actor-critic, trust region policy optimization, proximal policy optimi
zation, and Q-learning. 

4.1.2.5. Self evaluation metric selection. Each of the aforementioned 
models can be evaluated from multiple perspectives. The candidate 
evaluation metrics include precision, recall, F1, area under ROC curve, 
accuracy, BLEU, NIST, perplexity, etc. 

4.2. Case study II: automated computer programming 

4.2.1. Problem definition 
Developing AI systems to automatically write computer-executable 

programs has attracted much research attention recently. Given a text 
describing a target functionality to implement, an automated pro
gramming system takes the textual description as input and automati
cally generates a program to execute the function. Existing works for 
automated programming require a lot of training data which is difficult 
to obtain and do not perform reasoning to improve semantic correctness 
of generated programs. We aim to leverage our proposed self-directed 
ML framework to address these two problems, as shown in Fig. 5. 

4.2.2. An SDML-based solution 
To apply SDML for automated programming, we configure the 

following elements and processes. 

4.2.2.1. Self task selection. 

● Program generation: given a textual description describing a func
tionality, generate a preliminary program that can fulfill this 
functionality.  

Fig. 5. Illustration diagram of automated computer programming.  
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● Self-supervised pretraining: pretrain the program generator to alle
viate overfitting.  

● Abductive reasoning: perform abductive reasoning to improve se
mantic correctness of generated programs. 

4.2.2.2. Self model selection.  

● Function-to-program (F2P) generation model. It takes a functionality 
description f as input and generates a program p that can fulfill this 
functionality. The program is represented using a sequence of con
stituent parse trees where on the nodes are symbols. The F2P model 
is based on an encoder-decoder architecture. The encoder takes the 
functionality description f as input and generates a latent embedding 
for f. We use BERT as the encoder. The decoder takes the embedding 
of f as input and generates a program. The architecture of the 
decoder is a sequence-of-trees long short-term memory (LSTM) 
network. Given the embedding, the decoder first uses a sequential 
LSTM to decode a sequence of hidden states, each corresponding to 
one constituent tree. Then each hidden state is fed into a top-down 
tree-structured LSTM to generate the corresponding constituent tree.  

● Generative self-supervised pretraining model. To train the compli
cated F2P model, a lot of (functionality description, program) pairs 
are needed, which is difficult to obtain. Without sufficient training 
data, the F2P model is prone to overfitting. To address this problem, 
we leverage a generative self-supervised pretraining approach to 
alleviate overfitting: we define a generative SSL task to learn a better 
decoder of programs. Given an original program represented as a 
tree, we perform tree-alteration operations (e.g., removing a node, 
inserting a new node, moving a subtree of one node to another node, 
swap a parent node with its child node, etc.) to create a sequence of 
augmented programs A1, …, AK. Then we define the generative SSL 
task as: given AK, predict the reverse sequence of programs 
(including the augmented ones and the original one) AK− 1, AK− 2, …, 
O from which AK is generated. We develop an encoder-decoder 
model to perform this prediction task where an encoder is used to 
encode AK and a decoder is used to decode the sequence of programs 
AK− 1, AK− 2, …, A1, O. We use a bottom-up tree-structured LSTM 
network as the encoder which produces a latent embedding for AK. 
Then the embedding is fed into a sequence-of-trees LSTM decoder 
(Xie and Xing, 2017) to generate a sequence of trees, each corre
sponding to a program in AK− 1, AK− 2, …, A1, O.   

● Abductive reasoning model. Programs generated by the F2P model 
may contain semantic errors and fail to execute. To address this 
problem, we perform abductive reasoning on the generated pro
grams to revise them. The abductive reasoning model consists of a set 
R of abduction rules. Each rule takes a set of statements as inputs and 
produces a new statement. Given the statements S in a program 
generated by the F2P model, the abductive reasoning model selects a 
subset T of statements from S, selects an abduction rule r ∈ R, and 
applies r to T to generate a new statement s, which is added to S. This 
procedure repeats several times until enough new statements are 
generated. Now the learning problem is which abduction rules 
should be applied to T. We develop an end-to-end reinforcement 
learning based approach to perform this learning task. This RL-based 
framework learns an abductive reasoning policy (ARP) network 
which takes a set S of statements and a set R of abduction rules as 
inputs and produces a new statement. The ARP network is composed 
of three sub-networks: a statement selection (SS) network, an 
abduction rule selection (ARS) network, and a termination network. 
The SS network takes S as input and selects a subset T of statements. 
The ARS network takes R and T as inputs and selects a rule r from R. 
Then the rule r is applied to T to infer a new statement. Note that it 

could be possible that r is not compatible with T, meaning that there 
is no way to perform inference of r on T. In this case, a negative 
reward will be assigned to guide the SS and ARS networks not to 
select invalid T and r. The termination network takes the initial set of 
statements and the newly generated statements as inputs and pro
duces a binary variable indicating whether the process of generating 
new statements should stop. The three sub-networks work together 
as follows. First, the termination network determines whether the 
generation process should continue. If so, the SS network selects T ⊆
S. Then the ARS network selects r ∈ R. Afterwards, r is applied to T to 
infer a new statement s, which is added to S. This procedure con
tinues until the termination network determines to stop it. 

For the function-to-program generation model, the following aspects 
are included in the model selection decision space: architecture of the 
BERT encoder, dimension of functionality embeddings, architecture of 
the sequence-of-trees LSTM decoder, and Attention mechanism. For the 
generative self-supervised pretraining model, the following aspects are 
included in the model selection decision space: program augmentation 
policies, architecture of the bottom-up tree-structured LSTM encoder, 
architecture of the sequence-of-trees LSTM decoder, and dimension of 
program embeddings. For the abductive reasoning model, the following 
aspects are included in the model selection decision space: 1) architec
ture of the statement selection network, architecture of the abduction 
rule selection network, and architecture of the termination network. 

4.2.2.3. Self data selection. 

● Data for training the function-to-program generation model: (func
tionality description, code) pairs in the IBM CodeNet dataset.   

● Data for generative self-supervised pretraining: programs crawled 
from GitHub.   

● Data for training the abductive reasoning model: 1) abduction rules 
in computer programming; 2) (functionality description, code) pairs 
in the IBM CodeNet dataset. 

The data selection mechanism is the same as that described in the 
previous section. 

4.2.2.4. Self optimization strategy selection. This application involves 
both differentiable and non-differentiable objective functions, which 
can be optimized using gradient based methods and reinforcement 
learning methods. The candidate optimizers are the same as those listed 
in the previous section. 

4.2.2.5. Self evaluation metric selection. We evaluate each model using 
multiple metrics from different perspectives. The candidate evaluation 
metrics are the same as those listed in the previous section. 

4.3. Potential applications 

Our SDML framework can be broadly applied to a variety of appli
cations in NLP, CV, data mining and multimedia etc., beyond the two 
case studies described above. Here we present some examples.  

● I) Commonsense-grounded controllable story writing. Controllable 
story writing, which automatically writes stories given control fac
tors such as sentiment and storylines, finds broad applications. To 
write meaningful and informative stories, it is necessary for ML 
models to incorporate external commonsense knowledge. For 
example, given a control factor “On a sunny day, we go for exercise.” 
which is a storyline, a story writing model would not be able to write 
an interesting and informative story such as “Yesterday was a sunny 
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day. We wanted to do some exercise. Sunny weather is good for 
hiking and hiking is a popular exercise in California. So we went 
hiking.” without knowing the commonsense knowledge that hiking 
is an exercise and is preferable on sunny days. Developing a 
commonsense-grounded story writer has several technical chal
lenges: 1) how to automatically or semi-automatically collect 
commonsense knowledge? 2) how to efficiently retrieve relevant 
commonsense when writing stories? 3) how to train highly- 
performant commonsense-grounded story writing systems when 
the size of the story corpus covering commonsense knowledge is 
limited? We leverage our proposed SDML framework to automati
cally solve these problems via self-directed selection of tasks, data, 
models, and optimizers. 
● II) Controllable video captioning aims to control the video caption 
generation process by auxiliary information guidance, e.g., the sty
listic label (romantic, humorous) (Gan et al., 2017), POS (Part-of-
Speech) tag sequence (Deshpande et al., 2019), or one exemplar 
sentence (Yuan Lin et al., 2020). The most challenging one is 
leveraging the exemplar sentence, which means generating a corre
sponding video caption sharing the same syntactic structure with one 
exemplar sentence. For example, when the groundtruth caption is “A 
group of people are dancing” with the example sentence “Bunch of 
green bananas hanging in front of a banana tree”. The model may 
output “Group of young people dancing in front of a live audience”. 
So the model needs to extract the syntactic structure of the exemplar 
sentence, incorporate it into the caption generation process reason
ably and avoid being distracted from the extra noisy semantic in
formation. The difficulties can be summarized as follows: 1) how to 
effectively extract syntactic information for further caption genera
tion with limited exemplar sentences. 2) how to preserve video se
mantics in the generated captions despite the disturbances from 
exemplar sentences. Therefore, the capability of the SDML frame
work in the self-directed selection of tasks, data, models, and opti
mizers can be utilized for addressing the challenges mentioned 
above. 

● I) Semantics-aware chatbots. In open-world dialog systems, espe
cially goal-oriented dialog systems, it is very important to under
stand the semantics of conversation histories and perform reasoning 
on the semantics, in order to give informative, correct, and useful 
responses. For example, given a human utterance “I want to drink 
some coffee. How far is the coffee shop?“, without understanding the 
semantics of this utterance, the chatbot tends to give an uninfor
mative and boring response such as “Sounds cool”. In contrast, if 
using semantic parsers to parse the query “How far is the coffee 
shop?” into a logical form which represents the semantics of this 
query and performing reasoning on the logical form together with an 
external knowledge base, the chatbot is able to give a useful and 
informative response such as “It’s about half mile.” To develop 
semantics-aware chatbots, several technical challenges need to be 
addressed: 1) given limited annotated (utterance, logical forms) 
pairs, how to train highly accurate semantic parsers? 2) given limited 
(logical forms, response) pairs, how to train a semantics-aware 
response generation model that is resilient to overfitting? 3) how 
to train reasoning systems to infer deeper semantics? Leveraging the 
capability of SDML in performing self selection of tasks, data, 
models, and optimizers, the aforementioned challenges can be 
automatically coped with. 
● II) Video dialogues. This is also known as the task of audio-visual 
scene-aware dialog (AVSD) (Huda et al., 2019; Das et al., 2017), 
which requires an agent to hold the conversation with humans in 
natural, conversational language about video content and audio 
content in the format of dialog box. In real world dialog systems, 
applied into daily use including tools for early childhood education, 
it is important to understand the semantics of conversation histories 
and the multi-modal representation of video, audio, and text, so as to 
give responses with high relevance as well as enough information. 

For example, given a video with audio about a person walking by a 
bag and leaving a book, and then given a question in natural human 
language “Does she walk quickly or slowly?, without understanding 
the video, the response could be random “Quickly” or “Slowly”. 
While an agent who fully understands the video context can give the 
response “She walks pretty slowly back and forth before putting 
down the book”, which obviously gives more information in a softer 
description (Huda et al., 2019; Liu et al., 2020a). To develop 
audio-visual scene-aware dialog agents, several technical challenges 
need to be addressed: 1) how to train highly accurate semantic 
parsers? Since all the questions and responses are given in the textual 
format, precisely understanding the question is the key part. 2) how 
to train systems to fuse and understand multi-modal information 
including the dynamic scene, the audio, and the history (previous 
rounds) of the dialog? Leveraging the capability of SDML in per
forming self selection of tasks, data, models, and optimizers, the 
challenges mentioned above could be easily coped with. 

5. Related works 

In a section, we discuss several existing works that are related to our 
proposed SDML paradigms. In concrete, Curriculum Learning, Meta 
Learning, Automated Machine Learning, Lifelong/Continual Learning and 
Reinforcement Learning are all related to SDML. 

5.1. Curriculum Learning 

Curriculum learning (CL) (Bengio et al., 2009; Wang et al., 2021a) is 
a training strategy of machine learning that selects the most suitable 
examples or tasks (with adjustable loss weights) for each current 
training step, aiming to improve the model’s generalization ability, 
robustness, convergence speed, etc. CL can be seen as a self-directed 
learning strategy, since the learning algorithm itself makes efforts to 
handle the biases (e.g., class imbalance, label noise, etc.) of the training 
set by autonomously re-weighting the training samples, which is also 
one of the most crucial advantage of CL (Ren et al., 2018). 

Existing CL strategies can be roughly categorized into three groups: 
original CL, hard example mining (HEM), and automatic CL. Original CL 
(Bengio et al., 2009) proposes to train the machine learning model with 
easier data subsets (or easier subtasks), and then gradually increase the 
difficulty level of data (or subtasks) until the whole training dataset (or 
the target task(s)). Imitating human learning from easy to hard, CL helps 
to improve the performance on test set (or target tasks) and the 
convergence speed. Predefined CL methods measure data difficulty with 
task-specific domain knowledge. For example, longer sentences are 
often supposed as harder training data in NLP tasks, and audios with 
lower Signal to Noise Ratio are expected to be more noisy and thus 
harder in speech recognition tasks. On the other hand, self-paced 
learning (SPL), a primary branch of CL, takes the example-wise 
training loss of the current model as the criteria for difficulty measure
ment. SPL alternatively optimizes the re-weighting variables for each 
data example and the model parameters. Other methods also decide 
difficulty measurement by the losses of pretrained teacher models. Hard 
example mining (HEM) (Shrivastava et al., 2016) is another well-studied 
and popular data selection strategy that proposes to assign higher 
weights to harder data at each training step, taking an opposite para
digm to CL. The basic assumption of HEM is that the harder examples are 
more informative than easier examples and thus more beneficial for 
model learning. The difficulty in HEM is often defined according to the 
current model losses on examples or the gradient magnitude. Automatic 
CL methods discard the prior assumptions on the data difficulty and 
training strategies and aim to learn the loss weights of data examples at 
each training step according to a specific target (e.g., higher training 
efficiency, higher validation/testing performance, etc.). A typical way to 
achieve automatic CL is to make a reinforcement learning (RL) agent 
learn to assign weights to data. Concretely, the state in RL is the data, 
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current state of model, training epoch, etc., the action in RL is to assign 
weights to the data, and the reward is defined according to the 
requirement of tasks. Other automatic CL methods optimize the 
re-weighting strategies by Bayesian Optimization (Tsvetkov et al., 
2016), meta-learning (Ren et al., 2018), gradient descent (Jiang et al., 
2018; Kim and Choi, 2018), adversarial learning (Zhang et al., 2020), 
etc. 

CL has been theoretically and practically proven an effective strategy 
to improve the model’s robustness (Chen et al., 2021a), performance on 
target data/task, convergence speed (Chen et al., 2021b), etc. It will be 
interesting to exploit more self-directed methodologies by letting the 
algorithm itself decide the most suitable loss functions (or learning 
objective), training data (with automated data generation), and hy
pothesis space for the model optimization. 

5.2. Meta Learning 

Last decade has witnessed a prosperous development for supervised 
learning, which usually depends on large labeled datasets and trains a 
huge model with a large number of parameters from scratch. Thus, the 
requirement for data and computing resources is relatively high. How
ever, there are many applications where data is difficult or expensive to 
collect, or computing resources are limited. Since the lack of training 
data, supervised learning is not suitable for these tasks and shows bad 
performances. 

For the sake of human-like learning, meta-learning which targets at 
simulating the concept of “learning to learn”, provides a paradigm 
where machine learning models are built based on experience with 
related tasks. Meta-learning has been becoming a very hot research topic 
in both academy and industry since the year of 2017, covering many 
research communities including machine learning, computer vision, 
natural language processing, data mining and multimedia. 

We summarize meta-learning as a series of techniques that can learn 
prior experience across tasks in a systematic, data-driven manner. We 
define the problem of meta-learning in two views, i.e., task distribution 
view and learner and meta-learner view. 

Task Distribution View A good meta-learning method should help the 
model fθ gain the ability of learning to learn across tasks and improve its 
performance on a distribution of tasks p(τ), including potentially unseen 
tasks. The optimal model parameters are: 

θ∗ = arg min
θ

Eτi∼p(τ)[ℒθ(τi)]. (9) 

To implement the optimization goal Eq. (9), we usually sample M 
meta-train tasks from p(τ), with which we learn meta-knowledge ω. The 
meta-knowledge ω guides the optimization of the model across tasks, 
and can have different meanings, such as parameter initialization, gra
dients, and optimization strategy. The training and validation sets of a 
meta-train task are often called support set and query set. Formally, we 
denote the set used in the meta-train stage as 𝒟meta− train =
{
(𝒟𝒮

meta− train, 𝒟
𝒬
meta− train)

(i)
}M

i=1
. After meta-train stage, the model gets the 

optimal meta-knowledge ω*: 

ω∗ = arg max
ω

log p(ω|𝒟meta− train). (10) 

Similarly, we denote the N sampled tasks used in the meta-test stage 

as 𝒟meta− test =
{
(𝒟𝒮

meta− test, 𝒟
𝒬
meta− test)

(i)
}N

i=1
. We use the learned meta- 

knowledge to train the model on each previously unseen task and get 
the optimal model parameters: 

θ∗ = arg max
θ

log p(θ|ω∗,𝒟𝒮
meta− test). (11) 

We can evaluate the meta-learning algorithm by the performance of 
θ*(i) on the corresponding meta-test query set 𝒟𝒬

meta− test. 
Learner and Meta-learner View Another common view is that meta- 

learning decomposes the process of parameter update into two stages: 
base-learning stage and meta-learning stage. As aforementioned, the 
dataset for each task τi ~ p(τ)is divided into support set 𝒮(i) and query set 
𝒬(i). During the base learning stage, an inner learner model fθ is trained 
on the support set 𝒮(i) for solving a given specific task. During meta- 
learning stage, an outer meta-learner gω is applied to improve an outer 
objective ℒmeta that is calculated on the query set 𝒬(i). The outer opti
mization problem contains the inner optimization as a constraint. Using 
this notation, the parameter ω of meta-learner gω can be regarded as 
meta-knowledge. The meta-learning algorithm can be formulated as 
follows: 

ω∗ = arg min
ω

∑N

i=1
ℒmeta( θ∗(i)(ω),ω,𝒬(i)), (12)  

s.t. θ∗(i)(ω) = arg min
θ

ℒbase( θ,ω,𝒮(i)), (13)  

where ℒmeta and ℒbase refer to the outer and inner objective losses 
respectively, such as cross entropy in the case of few-shot classification. 

5.3. Automated machine learning 

Most machine learning methods have a plethora of design choices 
that need to be made beforehand, and their performance is shown to be 
very sensitive to these choices. Furthermore, the desirable choices of 
algorithm design often vary over different tasks and hence the algorithm 
configuration requires intensive expertise, which becomes a substantial 
hurdle for new users and further restricts the applicability and feasibility 
of modern machine learning methods in a wider range of public fields. 
To remedy this issue, automated machine learning (AutoML) is devel
oped to configure machine learning methods in a data-driven, object- 
oriented and automatic way. AutoML aims to learn the configuration of 
machine learning methods that attains the best performance on the 
specific task. In this way, AutoML largely reduces the background 
knowledge needed to customize modern machine learning methods in 
specific application domains, which makes machine learning technolo
gies more user-friendly (He et al., 2020; Yao et al., 2018). Complete 
AutoML pipelines have the potential to automate every step of machine 
learning, including auto data collection and cleaning, auto feature en
gineering, and auto model selection and optimization, etc. Due to the 
popularity of deep learning models, hyper-parameter optimization 
(HPO) (James et al., 2011; Wang et al., 2021b; Liu et al., 2021) and 
neural architecture search (NAS) (Guan et al., 2021; Wei et al., 2021; 
Qin et al., 2021) are most widely studied. AutoML has achieved or 
surpassed human-level performance (Zoph Quoc, 2017; Liu et al., 2018; 
Pham et al., 2018) with little human guidance in areas such as computer 
vision (Zoph et al., 2018; Esteban Real et al., 2019). 

5.4. Lifelong learning/continual learning 

Lifelong learning models are designed by humans to obtain an ability 
to continually learn new skills and knowledge, while not forgetting what 
has been learned. This ability is already available to humans, but re
mains a challenge for computational systems and autonomous agents 
(Parisi et al., 2019). In the lifelong learning approaches, the idea of 
self-directed learning is reflected in many places, such as selection of key 
parameters, pruning network architecture, and replaying memories. 

The existing methodologies for Lifelong learning can be divided into 
three categories: regularization-based methods, parameter isolation- 
based methods, and replay-based methods. Regularization-based 
methods (Kirkpatrick et al., 2017; Lopez-Paz et al., 2017) limit how 
far the parameters can move from values that were optimal for previous 
learning. They automatically determine which parameters are essential 
and then penalize the change to these parameters in future training. 
Parameter isolation-based methods (Mallya and Packnet, 2018; Li et al., 
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2019) autonomously dedicate different subsets of the model parameters 
to different skills and knowledge. As the model learns new things, the 
capacity of the model may increase as needed, while some redundant 
parameters may be reinitialized or pruned. Replay-based methods 
(Rebuffi Alexander et al., 2017; Hou et al., 2019) need a memory 
component to store data from the previous learning process. The stored 
data are strategically sampled and help the model avoid forgetting in 
future learning. 

However, in lifelong learning/continual learning, what learning 
sequence to follow and what learning regime to use between different 
knowledge and skills are still not self-directed. In the future, making 
lifelong learning/continual learning work in a more and even complete 
self-directed way will be an interesting and exciting area. 

5.5. Reinforcement learning 

Reinforcement Learning (RL), which emits a sequence of actions in 
the Markov Decision Process (MDP), is sometimes seen as a new cate
gory of machine learning method (Haydari and Yilmaz, 2020). Other 
than having an explicit ground-truth target, RL models are usually 
optimized to maximize a long-term reward. In another word, RL tasks 
usually do not have an immediate target like “this image should be an 
apple” but have a long-term goal like “win the game of Go with a 
sequence of actions” (Silver et al., 2017). As both RL and our SDML are 
optimized towards a long-term goal and do not have explicit supervi
sion, the two paradigms have a lot of features in common. But, there are 
also some subtle and crucial differences in between. In the following, we 
briefly introduce Reinforcement Learning considering these differences. 

Firstly, the optimization target. An RL model is usually designed for a 
specific task, e.g., chess (Silver et al., 2017), games (Mnih et al., 1312) 
robotics (Kober et al., 2013), auto-driving (Sallab et al., 2017). Given a 
task, the current RL method would construct a model and sample data 
traces from the task data distribution. Recently, equipped with Deep 
Learning as a power function fitting tool, RL methods tend to leave most 
of the work to its underlying deep learning model and focus on the 
optimization methods. As a comparison the target of SDML is much 
bigger, which the target is far more than a specific task, also includes the 
process of finding a proper model (self data selection), data (self-data 
selection), and optimization method (self optimization strategy selec
tion) to optimize the task. It would be possible to model the target of 
SDML as an RL target and optimize that target in the abstract. Still, it 
would not be technically possible because the target of SDML would be 
too complicated and comprehensive to be modeled with a single RL 
model. 

An RL model is usually optimized via the samples drawn by sam
pling. Early sampling strategies are inspired by the multi-arm bandit 
that tries to balance exploration and exploitation. The observation in RL is 
more likely the “data point” in supervised learning, all the observations 
come from the same distribution, and the goal is to select the best “ac
tion” under that circumstance. While in SDML, we work with “task 
distribution” rather than “data distribution”. The goal is more general 
and difficult, as there may be dozens of different data distributions that 
SDML is required to handle, and our observation is a task distribution 
rather than a single data point. 

From the perspective of modeling, RL agents could be categorized 
into model-free and model-based (Thrun and Littman, 2000). The 
former is known for policy-gradient methods that directly learn the 
mapping from observation ℴ to the best action a, which has achieved 
great success in early times (Sutton et al., 2000). The latter has been 
studied recently in (Schrittwieser et al., 2020; Hafner et al., 2019), 
where besides the policy is modeled, the environment is also modeled to 
predict the possible reward R[a] given an action a. The modeling of 
reward helps model-based RL methods have dominated several RL areas. 
Modeling the environment as a “reward function” is an ingenious 
abstraction as the whole environment would be hard to model. In SDML, 
we have to model more than the “reward function”. Usually, we humans 

have an understanding of the world so as to abstract commonsense in
formation from different environments and make decisions for each of 
them. While in the scope of SDML, the environment could cover more: 
task distribution, model distribution, and even knowledge distribution. 
A SDML model has to model all these distributions at the same time so as 
to master them all. 

6. Conclusions and future directions 

Drawing inspiration from humans’ self-directed learning, we intro
duce the principal concept and propose the framework of self-directed 
machine learning (SDML). SDML aims for high autonomy, which con
ducts self task selection, self data selection, self model selection, self 
optimization strategy selection as well as self evaluation metric selection 
instead of requiring humans to manually perform the selections. Our 
proposed SDML framework consists of key elements including internal 
awareness and external awareness and key processes including self- 
directed task selection, data selection, model selection, and optimizer 
selection. We propose a multi-level optimization based framework to 
formulate SDML. In the two case studies including autonomous rescue 
robotics and automated computer programming, we illustrate how to 
leverage SDML to solve complicated practical problems autonomously. 

It is worth noting that our proposed SDML framework is agnostic to 
specific ML applications and can be broadly applied to improve a variety 
of ML tasks including but not limited to: classification, regression, 
clustering, text generation, dialog systems, machine translation, docu
ment summarization, object detection, semantic segmentation, visual 
question answering, time series prediction, link and node prediction in 
graphs, etc. 

For future work, we plan to investigate the following research 
directions.  

● Interpretable SDML Being reliable is almost a must for ML models 
to be willingly used by humans. To gain trust from humans, we will 
develop interpretable SDML methods which generate explainable 
and transparent predictions. Most of the prior approaches for inter
pretable ML focus on finding out key evidence from the input data 
(such as phrases in texts and regions in images) that is most relevant 
to a prediction, then using this evidence to justify the meaningfulness 
of the prediction. However, in many cases, the attributed evidence 
does not make sense to the human. A fundamental reason is that the 
reasoning processes of ML models and humans are not aligned, 
though they reach the same prediction outcome. To address this 
issue, we plan to study weakly supervised model-interpretation. 
Specifically, we will develop natural language processing methods 
to analyze texts and automatically extract the decision-making pro
cesses of humans therefrom, then inject these structured processes 
into the SDML framework as an inductive bias to achieve human- 
machine alignment. As a longer-term goal, we will collaborate 
with cognitive scientists to deeply understand the fundamental 
mechanisms of how humans interpret phenomena and decisions and 
use these mechanisms to guide the design of SDML frameworks.  

● Robust SDML In many applications such as healthcare, finance, etc., 
decisions are mission-critical. ML-aided decision support software is 
required to be secure and robust against malicious attacks. The 
existing clinical ML models are shown to be vulnerable to adversarial 
examples. For example, given a chest X-ray that is predicted by a 
convolutional neural network as containing pneumonia, adding tiny 
perturbations (that are not perceivable by the human) could render 
the model thinks this image has no pneumonia. Most of the prior 
defense methods are highly customized to specific attacks; thus they 
may easily become futile when the attacks change. We will develop 
SDML frameworks which represent attacks and defenses in a unified 
way and accordingly devise defense techniques that are able to cope 
with various forms of attacks and robust to the changes of attacks. As 
a longer-term goal, we will collaborate with cryptographers to 
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develop ML-specific homomorphic encryption (HE) methods that 
allow SDML training and inference on ciphertexts. 

● Sample-efficient SDML In many applications, due to privacy con
cerns and administrative regulations, the amount of data that the 
SDML framework could access for model training is usually quite 
limited. And the cost (regarding time and financial budget) of 
attempting to obtain more data grows super-linearly with the 
amount of data. We are interested in answering a research question: 
under circumstances where we do not have a large amount of data 
due to cost-control purposes, can we still be able to learn highly 
performant ML models via SDML? This question has been investi
gated in previous studies based on few-shot learning, meta-learning, 
transfer learning, etc. However, these approaches do not perform 
reasoning to mitigate data deficiency. We plan to bridge this gap. We 
will develop neural-symbolic reasoning systems to understand the 
relationship between high-level variables in data, develop logical 
and inductive reasoning systems to discover the causality between 
tasks, and leverage the reasoning outcomes to guide self-directed 
learning processes. We will develop graph neural network based 
reasoning systems to automatically discover logical rules and 
conduct long-range multi-step complex reasoning to determine the 
execution order and interactions between models. 
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