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Abstract
Generating programs to describe visual observa-
tions has gained much research attention recently.
However, most of the existing approaches are
based on non-parametric primitive functions, mak-
ing them unable to handle complex visual scenes
involving many attributes and details. In this pa-
per, we propose the concept of parametric visual
program induction. Learning to generate para-
metric programs for visual scenes is challenging
due to the huge number of function variants and
the complex function correlations. To solve these
challenges, we propose the method of function
modularization, capable of dealing with numer-
ous function variants and complex correlations.
Specifically, we model each parametric function
as a multi-head self-contained neural module to
cover different function variants. Moreover, to
eliminate the complex correlations between func-
tions, we propose the hierarchical heterogeneous
Monto-Carlo tree search (H2MCTS) algorithm
which can provide high-quality uncorrelated su-
pervision during training, and serve as an efficient
searching technique during testing. We demon-
strate the superiority of the proposed method on
three visual program induction datasets involv-
ing parametric primitive functions. Experimental
results show that our proposed model is able to
significantly outperform the state-of-the-art base-
line methods in terms of generating accurate pro-
grams.

1. Introduction
Studying how to generate computer-executable programs is
one of the core interests of the AI community (Waldinger
& Lee, 1969; Manna & Waldinger, 1975), and has drawn

1Department of Computer Science and Technology, Ts-
inghua University, Beijing, China. Correspondence to:
Xin Wang <xin wang@tsinghua.edu.cn>, Wenwu Zhu
<wwzhu@tsinghua.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

line(lx=1,ty=8,rx=9,by=8,arrow=‘LEFT’)
line(lx=9,ty=1,rx=9,by=8,arrow=‘LEFT’)
for (i = [1, 2, 3]){

rectangle(
lx=2i+1,ty=6-i,rx=2i+2,by=8

)
}

while(noMarkersPresent){
putMarker()
move()
turnLeft()

}
(a) non-parametric function, no parameter, no variant.

(b) parametric function, many parameters, more than 104 variants.

Figure 1. (a): An example of the visual program induction task
that only generates non-parametric programs, within which, each
function has only one variant, and could be modeled as a symbolic
token. (b): An example of the parametric visual program induction
task studied in this paper, where parametric primitive functions
with many more variants are needed to describe the complex visual
scene. However, it is hard to tackle such many function variants.

lots of recent interests in the visual domain thanks to deep
learning (Ellis et al., 2020). By leveraging powerful deep
models, these works can successfully describe the logic
behind visual games (Sun et al., 2018), learn spatial patterns
hidden in images (Young et al., 2019), or conduct neural-
symbolic reasoning (Yi et al., 2018).

Despite their enormous success, most of the existing ap-
proaches are based on non-parametric primitive functions,
failing to meet the requirement of the increasing complexity
of visual observations, as well as the increasing elaboration
of programs. In this paper, we are the first to propose the
concept of Parametric Visual Program Induction, i.e.,
generating programs with parametric primitive functions
for complex visual observations, to the best of our knowl-
edge. By leveraging parametric primitive functions, we can
generate much more detailed programs to describe both the
hidden logic and visual details.

However, the challenges for solving parametric program
induction are two folds. First, the action space for a
single function can be huge. Compared with basic non-
parametric primitive functions, the parametric primitive
functions always have several heterogeneous parameters,
resulting in a huge number of function variants. For exam-
ple, in Figure 1(a), a basic visual program induction task
may contain simple primitive functions such as move(),
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turnLeft(); while in Figure 1(b), a parametric function
studied in this work tend to have more than 104 variants due
to different parameter combinations.

Second, the function space for the whole program is also
very huge. Given that parametric functions may contain
multiple parameters, and these parameters and functions are
correlated together, it becomes very challenging to model
the long-range function transitions within a program. This
problem is also known as program aliasing (Bunel et al.,
2018) in the non-parametric scenario, and becomes more
severe for parametric functions.

These two challenges make non-parametric visual program
induction methods hard to extend to the parametric domain.
To address these challenges, we propose the concept and
method of Function Modularization, which can model
numerous and complex parametric functions. In particu-
lar, we treat each function along with its parameters as a
self-contained module and learn the module to predict the
correct parameters given visual contexts, which is able to
solve the challenge of the huge action space. Furthermore,
based on the modularized functions, we propose a Hierar-
chical Heterogeneous Monto-Carlo Tree-Search (H2MCTS)
algorithm that can traversal all the program aliases, thus
providing uncorrelated training data during training and
serving as a powerful search method during inference. To
verify the superiority of the concept of function modular-
ization and the efficiency of the H2MCTS algorithm, we
conduct extensive experiments on a small hand-craft dataset
and two well-known datasets (Ellis et al., 2018; Dong et al.,
2019). Experimental results show that a modularized func-
tion is easier to learn and has higher accuracy compared
with vanilla baselines. Also, the proposed H2MCTS algo-
rithm is able to efficiently search over different function
combinations and reduce the inference time significantly. In
summary, we make the following contributions:

• To the best of our knowledge, we are the first to inves-
tigate the problem of parametric visual program induc-
tion by proposing the concept and method of Function
Modularization, which decouples the learning of func-
tion parameters and function transitions, resulting in
accurate and efficient learning of the parametric pro-
grams.

• We propose the H2MCTS algorithm to assist the learn-
ing of modularized functions. Our proposed algorithm
can provide uncorrelated data to train modularized
functions and serve as an efficient search method dur-
ing inference.

• We conduct extensive experiments to demonstrate that
our proposed model can significantly outperform state-
of-the-art baselines on all three datasets.

2. Related Work
Learning to generate programs has a long history in
AI (Waldinger & Lee, 1969; Manna & Waldinger, 1975;
1980). Traditionally, the process of generating programs
is based on search-based induction, and one of the most
famous works is the Excel FlashFill system (Gulwani,
2011). These methods rely on syntax-based pruning (Feser
et al., 2015), or use satisfiability modulo theories-based
solvers (Lezama, 2008; Feser et al., 2015). With the devel-
opment of deep learning, this area has gained new atten-
tion as learning to generate a program from data directly
(Parisotto et al., 2017; Devlin et al., 2017; Ling et al., 2017;
Chollet, 2019), including previously unsolvable visual do-
main tasks (Bunel et al., 2018; Sun et al., 2018; Shin et al.,
2019). Besides, the combination of search and learning is
also appealing by leveraging advantages from both sides
by combining learning and searching (Balog et al., 2016;
Irving et al., 2016; Ellis et al., 2020). Balog et al. (2016)
and Irving et al. (2016) propose to use neural networks to
predict the probability of the next word, and lead into s
guided-search schema; Ellis et al. (2020) propose the EC2
algorithm to iteratively learn and search over a Domain-
Specific Language. Despite the success of these methods,
most existing approaches work with non-parametric or few-
parameter primitive functions and solve the task by treating
programs as “a sequence of tokens” to learn the token transi-
tion dynamics, which cannot effectively handle parametric
programs. Besides, Nye et al. (2019) had also tried to solve
the problem of generating complex programs, which focus
on generating longer programs with complex control flows
by proposing a series of control-flow sketches and learning
to fill the “sketch-hole”.

Besides, as visual scenes become prevalent, researchers
start to work with much more complex visual scenes like
LATEX drawings and computer-aided design objects (Eslami
et al., 2016; Ellis et al., 2018; Young et al., 2019; Tian et al.,
2019; Zhou et al., 2021). Most of these tasks are based
on parametric functions and thus make the traditional view
of “treating the program as a sequence of tokens” collapse
due to a large number of variants of parametric functions.
Ellis et al. (2018) uses STN (Jaderberg et al., 2015) to model
multiple parameters, Tian et al. (2019) aligns all the function
parameters such that they could be modeled with the same
neural network, while Zhou et al. (2021) uses a grammar-
encoded LSTM model. Though obtained remarkable results,
these methods are not easy to generalize.

Compared with existing methods, we follow the combi-
nation of learning and searching, while, at the same time,
tackling those parametric primitive functions. We propose
to model each parametric function along with its parameters
as a module and propose the H2MCTS algorithm that could
benefit both training and inference.
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3. Problem Formulation
3.1. Notations and Problem Formulation

Following Piantadosi (2011), we define a program as
a logical collection of primitive functions. Specifically,
given a set of primitive functions F, a program P =
(fΘ1

1 , fΘ2
2 , · · · , fΘT

T ), where fΘi
i ∈ F is a primitive func-

tion f with parameters Θi = (Θi,0,Θi,1, · · · ,Θi,nf
), nf

is the number of parameters for f , and T is a program-
dependent parameter that indicates the length of the pro-
gram P . Besides, in the main text of this paper, we focus on
the parametric functions and simplify our program syntax
as context-free grammar (CFG) (Zhou et al., 2021), i.e.,
programs without loops and other control commands, and
we show in the experiments (Section 6.3) and Appendix B
that our method could be easily extended to context-based
scenarios.

The task of parametric visual program induction is defined
as: given an input-output observation pair (OI ,OO), find a
parametric program P to transform the input to the output:

P(OI)→ OO. (1)

Moreover, based on CFG, Eq. (1) can be rewritten as

fΘT

T ◦ fΘT−1

T−1 · · · ◦ f
Θ1
1 (OI)→ OO, (2)

where fΘi
i ◦ fΘj

j is the composition of two functions, i.e.,

fΘi
i ◦ fΘj

j (Oin)
.
= fΘi

i

(
f
Θj

j (Oin)
)

.

3.2. The Existing Methods

To generate the desired program P in Eq. (1), most of the
existing works adopt the method of tokenization, i.e., trans-
forming (fΘ1

1 , fΘ2
2 , · · · , fΘT

T ) into (t1, t2, ...tN ), where ti
is a token and N is the number of tokens. The probability of
program P is calculated by assuming the Markov property:

Pr [P|OI ,OO] =

N∏
i=1

P (ti|t<i;OI ,OO), (3)

where P is a conditional Markov transition probability.
To tackle the problem, traditional rule-based search meth-
ods (Manna & Waldinger, 1980) adopt syntax-pruned search
strategies, while recent neural program synthesis meth-
ods (Bunel et al., 2018) learn the probability function
with language models (Figure 2 (a) and (b)). Though this
Markov chain modeling works well with zero-parameter
functions by treating each function as a token, such ap-
proaches encounter great difficulties in modeling para-
metric functions. Considering an example function of
“dot(x,y,col)”. If each function variant is treated as a
token, e.g., “dot(x=1,y=2,col=red)” is a token, the
set of tokens becomes too large considering different pa-
rameter combination. On the other hand, if each function

fragment is treated as a token, e.g., “dot”, “(”, “x=1”,
“y=2”, “col=red”, “)” as 6 tokens, the generated pro-
gram may be very long (N ≫ T ) and suffer syntax-error.

To train P in Eq. (3), synthetic data is generated and uti-
lized (Shin et al., 2019). Specifically, a random programP is
first generated. Then, by inputting a random visual observa-
tionOI , the correspondingOO is obtained asOO = P(OI).
OI ,OO,P are used as ground-truths to train the model by
maximizing the posterior probability. However, training
from such synthetic data is biased due to the distribution mis-
match between the random program and true programs (Shin
et al., 2019). Besides, due to the program aliasing prob-
lem (Bunel et al., 2018), naively using the generated data
will lead to inefficient training.

4. Function Modularization
In this section, we tackle the problem of learning parametric
functions by function modularization. Specifically, we trans-
form the parametric program induction problem as learning
inter-function transition and intra-function parameter pre-
diction. The former focuses on selecting which function
should be used, and the latter models each function along
with its parameters as a self-contained module to obtain the
most suitable parameters for that function.

4.1. Function Transition and Parameter Prediction

The goal of function modularization is to separate the learn-
ing of the program into two parts: inter-function transition
and intra-function parameter prediction as:

Pr [P|OI ,OO] =

T∏
i=1

P (fi|Ôi−1) ·Qfi(Θi|Ôi−1), (4)

where Ôi = (Oi,OO) is the pair of the observation at the
i-th step and the target output,Oi = fΘi

i (Oi−1), and P and
Q are two learnable probabilities. By this transformation,
we could decouple the learning objective into:

(Function Transition) P : (Ot,OO)→ f,

(Parameter Prediction) Qf : (Ot,OO)→ Θ,
(5)

i.e., P proposes the next function fi, and the corresponding
Qfi is used to determine the parameters for the function fi.
This process iterates until we reach some terminal states or
a preset maximum step.

Function Transition. P controls the function transition
dynamics. In the literature, to simplify the learning process,
most works use a predefined order (e.g., canonical orders
as from left to right, top to down (Ellis et al., 2018)) to con-
strain the execution of functions. However, this strategy is
inefficient and problematic because a context-free program
should have the flexibility to execute freely as needed. Thus,
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Figure 2. An illustration of (a) the search method; (b) the learning model; and (c) the proposed Function Modularization and H2MCTS.
Basically, our proposed method learns the function transition model to propose possible new functions, and the parameter prediction to
generate parameters for the function. Moreover, we use our proposed H2MCTS algorithm to effectively generate supervisions. Failed
search processes (end with red OOF, “out of function” ) as well as successful search processes (end with green EOP, “end of program”)
can help to train the model. (Best view in color.)

our function transition model aims to capture the probability
that f is a suitable function for the i-th step as follows:

P (f |Ôi)
.
= Pr

[
∃Θ : d(fΘ(Oi),OO) < d(Oi,OO)

]
,
(6)

where d(·, ·) is a distance metric (e.g., program distance (El-
lis et al., 2018) or image IoU (Tian et al., 2019)). Intuitively,
we aim to find f such that applying f could make our ob-
servation more similar to the target with some parameters
Θ. Besides modeling primitive functions in F, we have two
extra functions to determine the terminal states of programs:
“End of Program”(EOP) and “Out of Function”(OOF) where
EOP means that the program has successfully reached the
targetOO, while OOFmeans that it is impossible to generate
the target observation OO with the current program.

Parameter prediction. After obtaining the function f from
Equation 6, we model each function with its parameters Θ
as a self-contained module Qf . The goal of Qf is to predict
the best Θ given the context Ôi:

Qf (Θ|Ôi)
.
= argmin

Θ
d(fΘ(Oi),OO). (7)

Next, we introduce the instantiation of P and Qf .

4.2. Instantiation

In our considered setting, the raw observations come from
the visual domain. Therefore, we first encode the visual
observations with a convolutional-based encoder E , which
transforms the visual observations into a hidden state. Then,
the function transition and parameter prediction are per-
formed in the hidden state.

To instantiate the transition model, we set P as the following
function:

P (f |Ôi) = σ
(
E(Oi,OO)

⊤ · ef
)
, (8)

where ef is a vector representation of the function f , σ is
the normalization function.

To instantiate the parameter prediction model , we set Qf

as a multi-head self-contained deep neural network where
each head corresponds to one parameter:

Qf,j(Θj |Ôi) = MLPf,j(E(Oi,OO)), j = 1, 2 · · · , nf .

(9)

MLPf,j corresponds to the parameter Θf,j for function f ’s
j-th parameter, with an appropriate activation function, e.g.,
sigmoid for numerical parameters and softmax for categor-
ical parameters. Finally, for each f ∈ F, the parameter
prediction function is as follows:

Qf (Θ|Ôi) =

nf∏
j=1

Qf,j(Θj |Ôi). (10)

5. Learning and Inference with H2MCTS
In this section, we propose the Hierarchical-Heterogeneous
Monto-Carlo tree search (H2MCTS) algorithm in conjunc-
tion with the modularized function. Compared to using the
naive synthetic data introduced in Section 3.2, our proposed
H2MCTS can provide high-quality uncorrelated training
data during training, and serves as an efficient search tech-
nique during inference.
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5.1. H2MCTS

Following the standard Monto-Carlo tree search, we start
from the initial observationOI and aim to find the target ob-
servationOO by hierarchically running the search algorithm
on two types of tree node: function node for function
transition and parameter node for parameter prediction.
The probability of visiting node v depends on the following
score function:

score(v) =
1√

1 + β · α(v)
p(v), (11)

where α(v) is the visit count of of node v, β is a scaling
hyper-parameter, and p(·) is P (·) for function node and
Qf (·) for parameter node. In essence, the learnable
distribution encourages searching most potential candidates,
while penalizing frequently visiting the same nodes within
a tree and thus helps exploration. Concretely, in the l-th
round of search, starting from Ô0 = (OI ,OO), H2MCTS
includes the following steps:

• Select function. Given the current observation Ôli , we
choose the next function fli based on the score of each
function node.

• Select parameter. After selecting the function fli , we
choose Θli from the corresponding parameter nodes.

• Expand Node. We obtain Oli+1
= f

Θli

li
(Oli), and add

Ôli+1 = (Oli+1 ,OO) into the search tree.

• BackUp. Repeat the above steps until we reach the
terminal state EOP, OOF or the maximum step. If we
reach EOP then return the observation and the program
from the current iteration as the output. If we reach OOF
or the maximum step, which indicates that this search
process fails, we update the visit count of each node and
start the next search process.

More details of H2MCTS are provided in Appendix 1.

5.2. Learning with H2MCTS

In this subsection, we introduce how to transform the syn-
thetic data as introduced in Section 3.2 using H2MCTS
and adopt the transformed data to more effectively train the
model. We mainly need to train the transition model P and
the parameter prediction function {Qf}f∈F.

Specifically, consider a randomly generated training data
(OI ,OO,P) so that P(OI) = OO. We show how P could
be used to guide H2MCTS. In the i-th search step, we define
the program-guided probability P ∗ and Q∗

f with P0 = P:

P ∗(f |Ôi) = 1 (f ∈ Pi) ,

Q∗
f (Θ|Ôi) = 1(Θ = Top(Pi, f)),

where 1(·) is the indicator function and Top(·) finds the
first parameter Θ of the function f in Pi. After select-
ing a function f and parameter Θ in the i-th step, we
update the program as Pi+1 = Pi\{fΘ}. We emit the
EOP token when Pi is empty. Using P ∗ and Q∗

f in the
H2MCTS algorithm, we actually obtain an alias of pro-
gram P which could transform OI into OO as P does. We
then form the training data by collecting the pair along the
(Oli ,OO, fli ,Θli),∀1 ≤ i ≤ T . The same procedure can
be performed for other search traces and the overall training
set is T =

⋃
l,P {(Oli ,OO, fli ,Θli)}

T
i=1.

Finally, we optimize the following objective functions

max
P

E
(Oi,OO,fi,Θi)∈T

[P (fi|Oi,OO)]

max
Qf

E
(Oi,OO,fi,Θi)∈T

[Qf (Θi|Oi,OO)] , f ∈ F
(12)

Notice that in the above learning process, instead of only
using functions with the generated order, we enumerate and
use all possible functions variants using H2MCTS as long
as we can approach the target observation, which greatly
enriches our training examples.

5.3. Inference with H2MCTS

With learned P (f |Ô) and {Qf (Θ|Ô)|f ∈ F} (Sec. 5.2),
the H2MCTS algorithm could be used as a search technique
directly by using the score function to calculate visiting
probabilities of nodes. Therefore, we also adopt H2MCTS
during inference. In experiments, we show that H2MCTS
empirically outperforms other search methods in both search
efficiency and accuracy.

6. Experiments
In this section, we demonstrate the superiority of our method
through three experiments: firstly, we compare our modular-
ized function with the token-based models on a small hand-
crafted dataset, which is designed as small as possible such
that token-based methods would still work; secondly, we
compare our method on the LATEX 2D drawing dataset (Ellis
et al., 2018), which only includes control-free commands;
lastly, we examine our model on the complex 3D shape-
synthesis dataset (Tian et al., 2019), which is more difficult
with control flows and more primitive functions.

6.1. 5× 5 Pixel Grid: Token vs. Modular

Dataset. In the first experiment, we aim to compare our
modularized function and the token-based model. We create
a small dataset on the 5× 5 pixel grid with ten colors (one
background and nine foregrounds) with relatively simple
parametric functions such that those token-based methods
still work. We consider five primitive function DOT, VLINE,
HLINE, BLOCK, and BORDER, corresponding to drawing a



Parametric Visual Program Induction with Function Modularization

Table 1. Primitive functions for the Pixel Grid dataset
Primitive Functions

DOT[X,Y,COL]
VLINE[TX,BX,Y,COL]
HLINE[LY,RY,X,COL]
BLOCK[TX, LY, BX, RY, COL]
BORDER[TX, LY, BX, RY, COL]

Descriptions

draw a dot at position (X, Y) with color COL
draw a vertical line from (TX, Y) to (BX, Y) with color COL
draw a horizontal line from (X, LY) to (X, RY) with color COL
draw a block from (TX, LY) to (BX, RY) with color COL
draw a rectangle border from (TX, LY) to (BX, RY) with color COL

Overall Action Space

𝐶 5,1 ×𝐶 5,1 ×9 = 5×5×9 = 225
𝐶 5,1 ×𝐶 5,2 ×9 = 5×10×9 = 450
𝐶 5,2 ×𝐶 5,1 ×9 = 10×5×9 = 450
𝐶 5,2 ×𝐶 5,2 ×9 = 10×10×9 = 900
𝐶 5,2 − 4 !×9 = 6×6×9 = 324

single pixel dot, a vertical line, a horizontal line, a rectangle
block, and a rectangle border, respectively. For example,
the definition of the primitive function DOT is:

DOT(X, Y, COL): draw a DOT at position
(X,Y) with color COL. On the 5 × 5 grid, this
function has 5× 5× 9 = 225 function variants.

We summarize all the primitive functions of this dataset
in Table 1. Considering all the function variants, there are
2349 actions in total, which is much larger than the common
program learning tasks used tasks (Pattis et al., 1981; Balog
et al., 2016).

An example is shown in the left of Figure 4. Since this
dataset does not contain control-flow, we only need to learn
a sequence of parametric primitive functions to transform
OI to OO.

Baselines. We compare our proposed function modulariza-
tion with two token-based baselines:

• Word-as-Token (Balog et al., 2016): The method treats
each word as a token, e.g., DOT(X, Y, COL) in trans-
formed into six tokens: [‘DOT’, ‘(’, ‘X’, ‘Y’, ‘COL’, ‘)’].
This is similar to the sentence tokenization preprocessing
in the NLP community.

• Function-as-Token: The method treats each function-
parameter variant as a token, e.g., ‘DOT(1, 2, RED)’
and ‘DOT(2, 2, RED)’ are considered as two tokens.
This is similar to Reinforcement Learning (RL) which
learns when to conduct which symbolic action.

We conceptually compare different methods in Table. 2.
Word-as-Token results in a relatively small number of to-
kens, but these tokens do not contain syntax information.
Function-as-Token contains syntax by itself, but results in a
large number of tokens. As for our proposed modularized
function, the total number of tokens equals the number of
primitive functions, while ensuring the syntax.

We compare different methods in both the unsupervised and
the supervised settings. For the unsupervised setting, we
train the Word-as-Token model as in Balog et al. (2016),
which is a state-of-the-art model on program induction. The

Table 2. A comparison of different methods on the token setting.

TOKENIZING METHOD # TOKENS SYNTAX

WORD-AS-TOKEN 29 NO
FUNCTION-AS-TOKEN 2,349 YES
MODULARIZED(OUR) 7 YES

Figure 3. The testing accuracy (%) on the 5× 5 Pixel Grid dataset.

Function-as-Token model is trained with Reinforcement
Learning (Sutton et al., 2000). For the supervised settings,
following (Ellis et al., 2018), we provide ground-truth pro-
grams to all the models.

Results. As shown in Figure 3, for the unsupervised set-
ting, our proposed method reports impressive results by
reporting accuracy of 0.9 for the top100 metric, while Word-
as-Token (Balog et al., 2016) and Function-as-Token both
fail due to the huge search space. The results show that our
proposed function modularization can effectively reduce
the number of tokens and relieve the burden of supervision
signals in the unsupervised setting.

For the supervised setting, Word-as-Token also fails to cap-
ture the complex parameters and syntax and performs poorly,
while our method and Function-as-Token show satisfactory
performance. In particular, both methods could find 95%
of the valid program within 100 searches. The results show
that Function-as-Token can work reasonably well if enough
supervised data is provided, which, however, is expensive
or infeasible in practice. In contrast, our proposed function
modularization can work with both supervised and unsuper-
vised settings.

Finally, we provide a showcase of different models in Fig. 4.
The failure of Word-as-Token is mainly due to the syntax
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Table 3. The results on the 2D LATEX Drawing dataset. All the models are trained on the synthesized dataset. The testing dataset includes
both synthesized data and another 100 real hand-drawn images.

MODEL MLP OUTPUT DIMENSION
SYNTHESIZED REAL HAND-DRAWN

TRAIN TEST TOP@1 TOP@10 TOP@100

SEQ2SEQ(F) + CE LOSS ∑
f

∏nf

j |Θj |> 30,000 66.94% 6.30% 0% 0% 0%
SEQ2SEQ(F) + RL LOSS 44.20% 2.10% 0% 0% 0%
SEQ2SEQ(F) + CE-RL LOSS 76.44% 15.41% 0% 0% 0%

STN + SMC(ELLIS ET AL., 2018) ∑
f nf + |F|+ 1 =16 — — 63% 70% 70%

STN + SMC(OUR IMPLEMENT) 90.74% 71.21% 64% 72% 74%

FM + CANONICAL ∑
f O(nf ) + |F|+ 2 =20 91.81% 74.45% 67% 72% 72%

FM + H2MCTS 93.91% 83.13% 76% 84% 86%

word as token: 

Target Program

Input Output

BLOCK[0,0,1,1,7];
BLOCK[0,3,1,4,3];
BLOCK[3,3,4,4,6];
BORDER[1,1,3,3,1]

block l( block r) block lx=3 … (syntax error)

function as token: 
block[0, 0, 1, 1, 7] block[0, 3, 1, 4, 3]

block[3, 3, 4, 4, 6] border[1, 1, 3, 3, 1]

function modularizaton:
block[𝜃]

block[𝜃]

block[𝜃]

border[𝜃]

→ lx=0,ty=3,rx=1,by=4,col=3

→ lx=0,ty=0,rx=1,by=1,col=7

→ lx=3,ty=3,rx=4,by=4,col=6

→ lx=1,ty=1,rx=3,by=3,col=1

Figure 4. An illustration of the 5× 5 Pixel Grid dataset. We show
the input-output observation and the target program in the left. In
the right, we show the generated programs of three methods under
the supervised setting.

problem. Function-as-Token could correctly predict the pro-
gram, with the cost of having to select from the 2, 349 can-
didates tokens (Table 2). In contrast, our proposed method
can easily generate the program by function modularization.

6.2. 2D LATEX Drawing: Control-free Program Learning

Dataset. In the second experiment, we adopt the LATEX 2D
drawing dataset (Ellis et al., 2018). The goal is to learn
LATEX executable programs with visual observations. Fol-
lowing (Ellis et al., 2018), the training set includes 95,000
synthesized data, and the testing set includes 5,000 synthe-
sized data as well as 100 real hand-drawn images.

Specifically, OI is an empty canvas, and OO is an image
with size 256× 256. This dataset contains 3 primitive func-
tions: Circle, Line, and Rectangle, each of which
draws on a discrete 16× 16 grid coordinates. The synthe-
sized data contains randomly generated programs, while
the real hand-drawn images aim to show certain structures.
Figure 5 shows some examples of the dataset.

Baselines. We compare the following methods. (1) A
LSTM-based Seq2Seq language model, which has achieved
successes in language translation and image captioning
tasks (Vinyals et al., 2015). Based on the results from 5× 5

circle(x=8,y=8,radius=1),
circle(x=9,y=14, radius=1),
line(x1=9,y1=8,x2=9,y2=1,

arrow=true,solid=true),
line(x1=8,y1=9,x2=10,y2=10,

arrow=false,solid=true),
rectangle(x1=10,y1=9,x2=15,y2=15)

(a) synthesized observation and its ground truth program.

(b) hand drawn images for testing.

Figure 5. Top: an example of the synthesized image and the pro-
gram that generated it. Bottom: examples of the true hand-drawn
images which correspond to model diagram, flowing chart, and
tree structures. The learned programs should create legible figures
by rendering in LATEX.

Figure 6. A comparison between different search methods. Left:
the relative time consumption, from which we could find that our
H2MCTS algorithm consumes much less time than other methods;
Right: the testing accuracy, which demonstrate that our H2MCTS
obtain the best performance.

Pixel Grid in Section 6.1, we only consider the Function-
as-Token tokenizing method and denote it as Seq2seq(F).
We compare three versions where the first two use Cross-
Entropy (CE) loss, Reinforcement Learning (RL) loss dur-
ing training respectively, and the third one is pretrained
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return program 
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line[𝜃]
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circle[𝜃]
ℰ ℰ

rectangle[𝜃]

line[𝜃]
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circle[𝜃]
ℰ

rectangle[𝜃]

line[𝜃]

EOP

OOF

circle[𝜃]

rectangle[𝜃]

line[𝜃]

EOP

OOF

circle[𝜃]
ℰ

rectangle[𝜃]

line[𝜃]

EOP

OOF

circle[𝜃]
ℰ

circle(x=9,y=10,radius=1), rectangle(lx=1,ty=5,rx=11,by=15), line(lx=4,ty=7,rx=6,by=9,arrow=true,solid=true), line(lx=4,ty=13,rx=6,by=11,arrow=true, 
solid=true), rectangle(lx=12,ty=9,rx=13,by=11), line(lx=9,ty=13,rx=4,by=13,arrow=true,solid=false), rectangle(lx=2,ty=12,rx=4,by=11),line(lx=7,ty=10, 
rx=8,by=10,arrow=true,solid=false), rectangle(lx=2,ty=6,rx=4,by=8),……   (14 complex parametric primitive functions with more than 0 parameters) 

Figure 7. An example of the 2D LATEXDrawing dataset. In the illustration, the function transition model proposes green function modules
as executable ones, and the H2MCTS algorithm selects and executes one function. This process is repeated until we reach the OOF
terminal state, marking the failure of this search process, or the EOP terminal state, which marks the success of this search. Then,
the programs along with their parameters are returned as the final program. The color of the rendered images is inverted for better
visualization.

Figure 8. More showcases for the LATEX 2D drawing datasets. Top: the hand drawings; Bottom: the LATEXrendered output with our
generated program.

with the CE loss and further fine-tuned with the RL loss.
(2) Spatial Transformer Network model with Sequential
Monto-Carlo search (STN+SMC)(Ellis et al., 2018), which
achieves the state-of-the-art result. We present two versions:
the original results reported in the paper and our own imple-
mentation. (3) Our proposed function modularization and
H2MCTS model (FM+H2MCTS). We also include an abla-
tion study, which uses the standard canonical function order
to replace the H2MCTS training, denoted as FM+Canonical.
For all methods except the original result from (Ellis et al.,
2018), we use ResNet-18 as the encoder E to ensure a fair
comparison.

Results. The results are shown in Table 3. We make the fol-
lowing observations. Overall, our proposed FM+H2MCTS
model reports the best results, consistently and greatly out-
performing the most competitive baseline by more than
10% in both the synthesized test set and real hand-drawn
images. The results demonstrate the effectiveness of our pro-

posed method in handling the 2D LATEXdataset. We attribute
the reasons into two folds. First, our proposed multi-head
self-contained neural module is more flexible to handle dif-
ferent parameters adaptively. For example, we could model
coordinates with a regression head and model arrow
state with a binary classification head. On the other hand,
compared to using the canonical approach, our H2MCTS
algorithm also contributes to the performance by getting
rid of the predefined function execution order during both
training and inference which is extremely inflexible.

The Seq2Seq model shows poor results even in the training
dataset, not to mention handling real hand-drawn images. A
plausible reason is that this baseline is difficult to converge
due to the huge number of parameters in MLP (more than
30,000 dimension outputs). The results are consistent with
Ellis et al. (2018) that pure DNN-based approaches could
not tackle the complicated visual program induction tasks.

We also compare H2MCTS and SMC with other search
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Table 4. The results on the 3D Shape dataset. Following (Tian et al., 2019), we compute the intersection over union (IoU) between the
target observation and the rendered output of the generated program as the evaluation metric.

MODEL
TRAINING SET (IOU ↑) TESTING SET (IOU ↑)

TABLE CHAIR BED SOFA CABINET BENCH

TIAN ET AL. (2019) 0.492 0.469 0.283 0.365 0.345 0.248

FM + H2MCTS (OURS) 0.641 0.642 0.501 0.670 0.661 0.602

strategies including greedy search, beam search, and depth-
first search (DFS) regarding their search accuracy and ef-
ficiency during inference time based on our trained model.
The results are shown in Figure 6. We observe that
H2MCTS outperforms other search methods with respect
to both search time and testing accuracy. Among baselines,
DFS is most competitive based on our well-trained function
transition model and parameter prediction model.In compar-
ison, beam search and SMC perform slightly worse. The
differences mainly come from the searching strategy: Beam
Search and SMC are optimized Breadth-First-Search that
keep a number of partials (bandwidth) at every iteration
which consumes much more computation; while H2MCTS
is an optimized Depth-First-Search method that stores the
search statics at each iteration for next round. With a well-
trained model, a small bandwidth could be sufficient to
tackle most of the problem and thus leads to the high effi-
ciency of H2MCTS and DFS.

The results demonstrate that H2MCTS serves as an efficient
inference technique, as discussed in Section 5.3.

Finally, to provide a more intuitive understanding, we
present a showcase of our method in Figure 7 and Fig-
ure 8, including the raw observation, the learned programs,
and the LATEX rendered images. The figure clearly shows
the workflow and the effectiveness of our proposed method
in learning parametric programs from real visual scenes.
We include more examples in Figure 8, where the first five
drawings could be solved perfectly.

6.3. 3D Shape: Control-based Program Learning

Datasets. In the last experiment, we adopt the 3D-Shape
dataset (Tian et al., 2019) containing 18 primitive functions
and for loops, i.e., control-based programs. A showcase
of the dataset is provided in Figure 9.

Settings and Baselines. To enable our proposed method
to handle the controls, we add one extra type of Node to
determine the control flow, and extend the bi-level modeling
in Eq. (5)) into a tri-level modeling as follows:

(Control Transition) C : (Oi,OO)→ Ci.

(Function Transition) P : (Oi,OO)→ fi,

(Parameter Prediction) Qf : (Oi,OO, Ci)→ Θ.

(13)

draw('Top', 'Rec', P=(-1,-1,0), G=(2,7,8))

draw('Sup', 'Cylinder', P=(-11,0,0), G=(11,1))

for(i<4, 'Rot', theta=90°, axis=(-12,0,0)
draw('Base', 'Line', P1=(-12,0,0), P2=(-12,-7,-7), 

theta*i, axis)

draw('Back', 'Cub', P=(1,5,-7), G=(11,2,14), theta=10°)

for(i<2, 'Trans', u=(0,0,13))
draw('Chair_Beam', 'Cub', P=(1,-3,-7)+i*u, G=(3,1,1))

for(i<2, 'Trans', u=(0,0,14))
draw('Hori_Bar', 'Cub', P=(4,-3,-7)+i*u, G=(2,8,1))

rendered 3D object learned program

observations

Figure 9. An illustration of the 3D Shape dataset.

With this tri-level modeling, functions within different con-
trol blocks are still context-free and therefore our proposed
H2MCST algorithm still applies. See Appendix B for more
details. We mainly compare our proposed method with Tian
et al. (2019), a state-of-the-art baseline for this dataset. No-
tice that guided adaptation used in (Tian et al., 2019) is not
available in our considered setting.

Results As shown in Table 4, the program generated by
our method achieves better performance for all categories
of objects, demonstrating the general applicability of our
method on control-based programs. In Figure 9, we provide
a showcase of our method, which successfully generates a
program to describe the visual observation.

7. Conclusion
In this paper, we investigate the parametric visual program
induction task by decoupling the learning of parametric
function as learning function transition and function pa-
rameter prediction. We propose the concept of function
modularization and the H2MCTS algorithm. Our method
outperforms state-of-the-art baselines with higher accuracy
and efficiency. Future works include exploring more visual
program induction scenarios using our proposed method.
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A. Implementation and Training
In this section, we briefly introduce more details about the modularized functions, as well as our training framework.

A.1. Function Modular

Parametric primitive functions are easy to implement, but how to determine their parameters is hard. This is one of the
motivation of this paper. To achieve this, we organize each primitive function and its parameter into a module with a
multi-head MLP (each head is a two-layer MLP as ParamNet), leaving each head corresponding to one parameter. An
examples of the DOT primitive function and its modularized form Dot are shown as follows:

1 import numpy as np
2 import torch
3

4 def DOT(In, X, Y, COL):
5 Out = copy.deepcopy(In)
6 Out[X, Y] = COL
7 return Out
8

9 class Dot(torch.nn.Module):
10 def __init__(self, H):
11 super().__init__()
12 self.fn = DOT
13 # ParamNet is another mlp to predict parameters.
14 self.params[’X’] = ParamNet("X", "REG", range=MAXSIZE[0])
15 self.params[’Y’] = ParamNet("Y", "REG", range=MAXSIZE[0])
16 self.params[’C’] = ParamNet("C", "CLS", range=NUM_OF_COLOR)
17

18 def inference(In, Target):
19 s = encoder(Target) - encoder(In)
20 param_x = self.params[’X’](s)
21 param_y = self.params[’Y’](s)
22 param_c = self.params[’C’](s)
23 return self.fn(In, param_x, param_y, param_c)

Listing 1. An example of Function Modular.

A.2. Overall Network Architecture

With the idea of function modularization, the whole deep model is clear to go as a shared convolutional encoder, followed
with function transition head to predict the transition dynamics for next function, while several function modular to predict
the parameter for each function. As for the encoder, we adopt a 4-layer convolutional networks for 5× 5 Pixel Grid, use
ResNet18 for 2D LATEX Drawing, use a shapenet as Tian et al. (2019) for 3D Shape.

Moreover, to accelerate the training speed, we follow the setting of MuZero (Silver et al., 2016) to implement a distributed
system based on Ray1. The system consists of 60 explorers to continuously explore the function space via the H2MCTS
algorithm (Alg.1), and explored traces are used to train the model via an online trainer. The whole framework is launched
on a GPU server with two Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz CPU processors and two Nvidia
GeForce RTX 3090 GPU processors.

A.3. The H2MCTS algorithm

Our H2MCTS algorithm follows and generalizes the basic MCTS algorithm and (Silver et al., 2016). A basic MCTS
algorithm includes four parts as: Selection, Expansion, Simulation, BackUp. Both Silver et al. (2016) and our work use
the neural network to conduct the Simulation step. Moreover, we consider two different types of nodes in the simulation
process, and thus our algorithm is called H2MCTS. The detailed algorithm is shown in Algorithm 1.

1https://www.ray.io/
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Algorithm 1 H2MCTS
Input: The Function Transition model P (·|·); A set of Parameter Prediction models {Qf (·|·)}; {Eq. (5)}
Input: A raw observation input-output pair OI ,OO.
init: j ← 0.
init: ROOT← (OI , OI , 0) {ROOT node with OI , OO, and visit count 0}
repeat
PNode← ROOT {We starts from root at every round}
repeat
f = argmaxf 1/(1 + β ∗ α(PNode)) ∗ P (f |PNode.context) {Select Function node according to Eq. (11)}
if f is OOF then
node← PNode {BackUp node visit count}
repeat
α(node)← α(node) + 1
node← node.parent

until node is None
break inner loop

end if
if f is EOP then

break outer loop
end if
if f /∈ PNode.children then
FNode← (f, 0) {create new function node with f , and visit count 0}
PNode.children.add( FNode(f, 0)) {Add f to PNode’s children}

end if
Θ = argmaxΘ 1/(1 + β ∗ α(PNode)) ∗Q(Θ|PNode.context) {Select Parameter Node for f according to
Eq. (11)}
Onew ← fΘ(PNode.I) {Obtain new observations}
if Θ /∈ FNode.children then
Onew ← fΘ(PNode.Input) {render the new observation and Expand the search tree}
PNode← (Onew, PNode.Output, 0) {A new PNode}
FNode.children.add(PNode)

end if
until K exceed maximum search depth

until j exceed maximum number of simulation
P ← []
repeat
P.add(PNode.parent.f, PNode.Θ)
PNode← PNode.parent.parent

until PNode is None
Return P

B. Extension to Context-based Scenarios
To extend our formulation to context-based scenarios, we firstly rewrite a program as P = (C1, C2, .., CNP

), where
Ci = (CΘC , f

Θi,1

i,1 , f
Θi,2

i,2 , · · · ) is the i-th logic collection block and CΘC is the control unit (e.g., loop, if-else), and

f
Θi,j

i,j is primitive function f with parameters Θi,j = (Θi,j,0,Θi,j,, ·,Θi,j,nf
), nf is the number of parameters for f (e.g.,

line(lx,ty,rx,by)). Then we define a tri-level modeling as:

Pr [P|OI ,OO] =
∏Np

i=1
C(ci|Ôi−1) · P (fi|Ôi−1) ·Qfi(Θi|Ôi−1, ci). (14)

This means we firstly determine the control unit, then determine the function, and finally the parameter. Moreover, we add
an extra control unit as NUL which directly executes its enclosed commands, and the H2MCTS algorithm is correspondingly
extended with the extra Control node.
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C. More Experiments Results
C.1. Pixel Grid

C.1.1. DATASET

To generate the dataset, we randomly sample a sequence of functions and parameters from the primitive functions P =[
f
(Θ1)
1 , f

(Θ2)
2 , · · · f (ΘT )

T

]
with T < Tmax, and generate a random input OI , and apply the program to OI to obtain

OO. Then (OI ,OO) is used as an input-output pair. Moreover, as some functions could overwrite previous functions
(e.g., fj=DOT(X,Y,C2) will overwrite fi =DOT(X,Y,C1) if j > i), we carefully compare the intermediate results
[O0,O1, · · · ,OT ] to remove functions which have been overwritten.

C.1.2. COMPARISON WITH RULE-BASED METHODS.

In our experiments, the training set contains of 10,000 input-output pairs, which consists of 20% programs with length 1,
20% programs with length 2, and 60% programs with length 3. The testing set contains 1,000 input-output pairs with the
same length distribution.

C.2. LATEX 2D drawings

We show the training curve of our model in Figure 10. From the figure, we can see that most of the functions and their
parameters could reach an accuracy of more than 95% after 50k iterations.

C.3. 3D shape-synthesis

We provide more showcases for this dataset in Figure 11.
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Figure 10. Training Curves for the LATEX 2D drawing datasets. We can observe that most of the modules could converge within 50k
iterations.



Parametric Visual Program Induction with Function Modularization

draw('Top', 'Rec', P=(-1,0,0), G=(3,9,9))
for(i<2, 'Trans', u1=(0,0,17))

for(i<2, 'Trans', u2=(0,13,0))
draw('Leg', 'Cub', P=(-12,-7,-9)+i*u1+j*u2, G=(14,2,1))

for(i<2, 'Trans', u=(0,0,17))
draw('Hori_Bar', 'Cub', P=(-12,-7,-9)+i*u, G=(2,15,1))

draw('Back', 'Cub', P=(2,5,-9), G=(10,3,18), theta=5°)
for(i<2, 'Trans', u=(0,0,18))

draw('Chair_Beam', 'Cub', P=(2,-7,-10)+i*u, G=(3,1,1))
for(i<2, 'Trans', u=(0,0,18))

draw('Hori_Bar', 'Cub', P=(5,-7,-10)+i*u, G=(3,14,1))

draw('Top', 'Square', P=(10,0,0), G=(3,12))

for(i<2, 'Trans', u1=(0,0,16))
for(i<2, 'Trans', u2=(0,17,0))

draw('Leg', 'Cub', P=(-12,-10,-9)+i*u1+j*u2, 
G=(24,3,2))

draw('Layer', 'Rec', P=(-2,0,0), G=(2,9,9))

draw('Top', 'Square', P=(-5,0,0), G=(5,10))

draw('Vert_Board', 'Cub', P=(-10,-8,-10), G=(11,1,19))

for(i<5, 'Rot', theta=72°, axis=(-11,1,0)
draw('Base', 'Line', P1=(-11,1,0), P2=(-12,-8,-6), theta*i, axis)

draw('Back', 'Cub', P=(0,10,-10), G=(11,2,19), theta=0°)

Figure 11. More showcases for the 3D shape dataset. Left: the raw observations. Middle: the generated program. Right: the rendered
results.


