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Abstract. In a data center, predicting the rack temperature then gen-
erating alarms when an exception is detected can prevent server failure
caused by high rack temperature. Each measuring point records the tem-
perature of the rack over time, and each pair of measuring points may
be associated with services or locations. Therefore, the rack temperature
prediction problem can be modeled as a graph-based prediction prob-
lem. In this case, the prediction of the rack temperature depends not
only on its own historical temperature but also on the temperature of
racks having the same service or located near each other. Furthermore,
the temperature of the rack is actually determined by various factors
such as IT workloads and cold aisle temperature. Existing graph-based
prediction methods do not consider the influence of these domains dur-
ing the prediction, but only consider the temperature domain itself. To
overcome this challenge, we propose an Inter-and-Intra domain Atten-
tion Relational Inference (I2A-RI) model: an unsupervised model that
learns the relations between time series variables from different domains
and utilizes the inferred interaction structure to achieve accurate dynam-
ical predictions. Two attention modules, the guidance domain attention
(GDA) module and the intra-domain attention (IDA) module, are pro-
posed in I2A-RI, which encodes the inter-and-intra domain information
to guide the learning procedure. Experiments on the real-world rack tem-
perature dataset show that I2A-RI outperforms other state-of-the-art
models since it takes the advantage of the ability to infer the potential
interactions across domains. The benefits of the two proposed attention
modules are also verified in the experiments.
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1 Introduction

In the data center intelligent operation and maintenance (O&M) system, moni-
toring the temperature of racks is of significant to prevent server downtime due
to high temperature. By predicting the rack temperature, the O&M center can
sense anomalies and generate alarms in advance, enabling onsite personnel to
intervene to prevent accidents promptly. There are many racks in a large data
center and the temperatures of different racks may be related to each other due
to service or location proximity. The temperature of each rack is recorded over
time, so the prediction of rack temperature can be modeled as a graph-based
multivariate time series prediction problem. Many efforts have been made over
the decades to model the multivariate time series, including statistical learn-
ing methods [2], deep neural networks (DNNs) [11] and graph neural networks
(GNNs) [13,15]. Though statistical learning and DNNs have shown values in the
area, our work focuses on GNNs since they take the graphs as inputs, allowing
the complex relations and interactions between variables [14] to be naturally
expressed in the model.

In recent years, prediction algorithms based on GNNs have been widely stud-
ied. Yu et al. [14] proposed the spatio-temporal graph convolutional network to
capture both temporal and spatial dependencies for mid-and-long term traffic
prediction. Wu et al. [13] proposed the multivariate time Series forecasting with
GNN (MTGNN) model which constructs the graph from time series by learning
the uni-directed relations then the temporal and spatial dependencies are cap-
tured by the dilated inception layer and the mix-hop propagation layer. However,
these existing graph-based prediction methods only focus on the historical corre-
lation information of the prediction domain itself. In this way, in the scenario of
rack temperature prediction, only the historical temperature of its own rack and
that of associated racks are considered. Nevertheless, the temperature of a rack
in a data center is not only related to its historical temperature but also affected
by factors of other domains, such as IT workloads and cold aisle temperature. In
terms of IT workloads, the temperature of different racks and the workloads are
a two-domain dynamic system, in which the potential interactions include some
servers are running services in a sequence and tend to reach their peak work-
loads in a fixed order, or a few racks are close to each other and influence the
temperature of one another more noticeable. The existing graph-based methods
do not take these other domains’ important factors into account, thus affecting
the accuracy of prediction. It is encouraging to consider both intra-domain and
inter-domain relationships in the complex system interact and achieve dynamical
predictions.

Thus, we propose a novel GNN model, inter-and-intra domain attention rela-
tional inference (I2A-RI), which addresses the problem of learning the latent
relations among time series variables across domains. The model is in the form
of a variational autoencoder (VAE) [6,8]: the encoder learns the implicit relations
between variables and constructs multiple graphs in an unsupervised manner;
while the decoder takes the constructed structure and the time series data for
prediction. The graphs learned by the encoders are in the guidance domains or
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the predictive domain. Accordingly, we propose two attention [12] modules to
make these graphs interact within and between domains: the guidance domain
attention (GDA) module and the in-domain attention (IDA) module. The GDA
module extracts information from other domains to guide the relational inference
in the prediction domain. The IDA module is used to capture the asynchronous
interactions in the prediction stage. For example, when the servers’ workload
jumps up, it takes a while for the heat to be fully spread into the server room
and influence the temperature. In summary, our contributions are as follows:

– We propose a novel GNN framework (I2A-RI) to infer the variables’ relations
in multivariate time series modeling. The model automatically learns relations
then combines them with the time series data to perform predictions. To the
best of our knowledge, no prior work studies multivariate time series mod-
eling problems from a relational inference perspective with multiple graphs
representing relations of variables from different domains.

– We define two types of domains: prediction domain and guidance domain. The
prediction domain contains the variables for forecasting, and the guidance
domain contains the variables that influence those in the prediction domain.
We also introduce two attention modules (GDA and IDA) in the model:
the GDA module extracts information from the guidance domain into the
prediction domain to guide the relational reasoning. The IDA module captures
the asynchronous interactions in the prediction stage.

– We show that I2A-RI outperforms the state-of-the-art approaches in fore-
casting the temperature measurements of a server room on the real operation
data.

2 Preliminaries

In this paper, our task is to model the multivariate time series. Given the mul-
tivariate time series with historical T time steps X = [xi

1,x
i
2, · · · ,xi

T ], i =
1, 2, · · · , N, where N is the number of variables. Our goal is to predict the
future value Y = [xi

M ], where M means M steps away or the future sequence
Y = [xi

T+1,x
i
T+2, · · · ,xi

T+M ], where M represents M time steps in the future.
We aim to find a function f that maps from X to Y . From the graph’s per-
spective, each variable in a multivariate time series can be regarded as a node
in the graph. Connections between nodes are represented by an edge category
matrix, which is expected to be learned and cannot be obtained in advance.
Some definitions used in this paper are given as follows:

Definition 1 Graph. A graph is denoted as G = (V,E), where V represents the
set of nodes and E represents the set of edges. The number of all nodes is denoted
as N .

Definition 2 Prediction Domain. The domain expected to obtain the predicted
value.
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Fig. 1. I2A-RI architecture. The framework is composed of a multi-graph relational
reasoning encoder and a spatial-temporal prediction decoder.

Definition 3 Guidance Domain. Factors affecting the prediction domain. For
example, if we want to predict the future values of temperatures in data center
operations, we need to consider the servers’ workloads (guidance domain) and
the cold aisle temperature (guidance domain) because the workloads are the
indicator of the heat generated by the servers and the cold aisle temperature is
the upstream measurement point of the rack temperature.

3 I2A-RI Model

The I2A-RI architecture is presented in Fig. 1. As illustrated in the figure, the
whole framework of I2A-RI is based on VAE and mainly consists of two com-
ponents: the multi-graph relational reasoning encoders and a spatial-temporal
prediction decoder. The multi-graph relational reasoning encoder inputs data
from multiple domains, and each domain forms a separate graph. The graphs of
different domains are aggregated by a cross-domain attention layer. Note that
although the encoder extracts features for multiple graphs, it only outputs one
graph that integrates information of all domains. In summary, given historical
time series X, the encoder returns a factorized distribution qψ(Z|X) of the dis-
crete relation type zij between nodes vi and vj . The decoder takes the learned
graph from the encoder and the historical data to perform the spatial-temporal
prediction:

pη(X|Z) =
T∏

t=1

pη(xt+1|xt, . . . ,x1,Z) (1)

The details of these two parts, including cross-domain and intra-domain atten-
tion mechanisms, will be covered next. Note that our proposal is implemented
based on neural relational inference (NRI), and we focus on the improved part
here. For more details please refer to [7].



I2A-RI for Rack Temperature Prediction in Data Center 485

3.1 Multi-graph Relational Reasoning Encoder

The purpose of the encoder is to learn the relationship type zij between each pair
of nodes from historical time series data. Since we don’t have a graph to start
with, we first perform GNN with a fully-connected graph without self-loops. In
the application of rack temperature prediction, the encoder has a total of three
inputs, one for the prediction domain, that is, the temperature to be predicted,
and the other two for the guidance domain, that is, IT workloads and cold aisle
temperature. Then three fully-connected graphs are used to extract the features
of the three domains respectively.

Any domain in the encoder contains three message passing operations. For
one single domain, given the time series of each node x1,x2, . . . ,xN , the message
passing operations in the encoder are performed as follows:

h1
j = fc(xj) (2)

n −→ e : h1
i,j = f1

n2e(h
1
i ||h1

j ) (3)

e −→ n : h2
j = f1

e2n(
∑

i�=j

h1
i,j) (4)

n −→ e : h2
i,j = f2

n2e(h
2
i ||h2

j ) (5)

where fc(·) denotes the fully connected networks and ·||· denotes the concate-
nation of two feature vectors.

After the last layer of node-to-edge operations, we need to consolidate the
information for all the domains. We propose the guidance domain attention
(GDA) layer to achieve this goal.

Guidance Domain Attention. For any domain k, assume that the dimension of
the edge feature output by the last layer of node-to-edge is F , the weight vector
Wk ∈ RF is applied to each edge feature hi,j then obtain the relation coefficient
Relki,j .

Relki,j = WT
k · h2

i,j (6)

Relki,j represents the importance score between nodes j and i. For better com-
parison, the relation coefficients are normalized across all edges by employing
the softmax function:

ak
i,j = softmax(Relki,j) =

exp(Relki,j)∑
s∈Neigh(i) exp(Relki,s)

(7)

To summary, the whole process can be described as,

ak
i,j =

exp(LeakyReLU(WT
k · h2

i,j)∑
s∈Neigh(i) exp(LeakyReLU(WT

k · h2
i,s)

(8)
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where LeakyReLU(·) [12] is used as the nonlinearity function and it can pro-
duce either positive or negative relationship coefficients. ak

i,j is the final output
attention coefficients for domain k. Finally, the guidance domain features are
aggregated to aid the prediction domain:

h̃2
i,j = σ(

1
K

K∑

k=1

ak
i,jW

k
aggh

2
i,j) (9)

where Wk
agg is the learned weight vector applied to h2

i,j . Then there is a residual
connection and an output layer after the GDA layer.

The encoder finally returns a distribution qψ(zij |x) = softmax(fenc(x)ij),
where fenc(x) denotes all operations performed on the fully-connected graph in
the encoder. Refer to [7] for details about VAE’s reparametrization trick and the
way to handle discrete variables.

3.2 Spatial-Temporal Prediction Decoder

The components of the decoder are the same with [7]. We only focus on the
improvements in this section. Due to the influence of other domains, the pre-
diction domain needs a certain amount of time to deal with these changes.
Moreover, time series are frequently coherent to themselves and most of them
can not change instantaneously. Therefore we design the IDA module to take
the advantage of the information carried in its history. To predict the value
of xt+1, not only the value of xt, but also the earlier observations such as
xt−n, . . .xt−2, xt−1 are considered. Thus, the input of the IDA module contains
two parts: xt and [xt−n, . . .xt−2, xt−1]. In this paper, n is set to 3. Suppose
that the shapes of the two input tensors are: U1 = [Batch,N, 1, channels] and
U2 = [Batch,N, 3, channels], where N is the number of nodes in a graph. The
two tensors are then input to two 1d convolution layers (α(·) and β(·)) in order
to transform them into the same space. The dot-product is adopted to calculate
the similarity between the two transformed tensors:

Similarity(U1, U2) = α(U1)T β(U2) (10)

U2 is also input into another function θ(·). The final vector output by the IDA
module is calculated as,

IDA = Similarity(U1, U2)θ(U2) (11)

For simplicity, we consider θ(·) in the form of a linear transformation: θ(U2) =
WθU2, where Wθ is a learnable weight matrix. The details are described in Fig. 2,
where the initial input channel is set to 256.

The decoder’s inputs include the learned graph and the historical data of
different domains. In general, GNN with the message passing operator is applied
to capture the spatial feature, and GRU is used to capture the temporal feature.
The cross-domain feature, the value at the current time step xt

j , the output of
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the IDA module, and the hidden state of the previous time step xt−1 are fed
into GRU:

ht+1
j = GRU([h̃2

i,j ,x
t
j ], [h

t−1
j , IDAj ]) (12)

Noted that we only learned the changes of xt
j :

μt+1
j = xt

j + fc(ht+1
j ) (13)

And
p(xt+1|xt,Z) = N(μt+1, σ2I) (14)

The loss function of the whole framework is defined as the ELBO [7]:

Loss = E[log pη(X|Z)] − KL[qψ(Z|X)||pη(Z)] (15)

Fig. 2. The architecture of the IDA mod-
ule.

(a) normal (b) abnormal

Fig. 3. The distributions of the two dif-
ferent data conditions.

4 Experiments

We create the RATEDC (Rack TEmperature data of the Data Center) dataset
for the rack temperature prediction task.

4.1 RATEDC

The RATEDC dataset contains temperature, IT workloads, and cold aisle tem-
perature data of 63 racks for one year. The data are collected every 2.5 min. A
rack’s temperature is a critical metric in data center daily operations: high tem-
perature increases the equipment failure rate dramatically [4]. The workloads
of a rack are the sum of the workloads of the servers in the rack. The work-
loads indicate how much heat will be generated. The cold aisle temperature is
upstream of the rack temperature, thus they are closely related. The future rack
temperatures are affected by various factors, such as the historical rack tem-
peratures, other racks in the same server room, IT workloads of the rack itself,
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and the cold aisle temperature. Therefore, we set the temperature data as the
prediction domain while the IT workload data and the cold aisle temperature
data as the guidance domains. Since it takes time to exchange the heat in the
air, the prediction targets are all racks’ temperatures 10 min ahead.

4.2 Experiment Setup

The data preprocessing steps are as follows:

– Filter out abnormal data. The abnormal data are determined based on indus-
try knowledge and data distribution. For example, the data is abnormal when
the cold aisle temperature rises but the rack temperature does not, or the cold
aisle temperature rises to 30 ◦C. According to the data distribution, the data
points far from the distribution center are filtered out. Figure 3 shows the
distribution of the normal and abnormal temperature. The horizontal coor-
dinate represents the rack name. For example, A01 indicates the first rack in
column A.

– Screening for fluctuating temperatures as training, validation, and test sets for
the reason that we are only interested in predicting fluctuating temperatures
than near-constant temperatures.

– Exponential smoothing is used to smooth the time series to further filter out
the noise. The smoothing constant is set to 0.9.

– Min-max normalization.

In the experiments, the dimension of the weight vector in the attention layer
is set to 256. Other network parameters are the same as those of the NRI. Adam
[5] with the learning rate of 0.001, decayed by the factor of 0.5 every 100 epochs,
is used as the optimizer. The maximum number of epochs is 500. The batch
size is set to 16 and each batch has 48 time points for the RATEDC dataset.
The reported results are averaged after 5 runs. Both of the datasets are split
into training (80%), validation (10%), and testing sets (10%). The Mean Square
Error (MSE) is used to evaluate the performance of the models.

4.3 Performance Comparison

To further study the effectiveness of the model, we compare I2A-RI with other
advanced prediction algorithms as follows:

� VAR: vector autoregression [9]
� ARIMA: The auto-regressive integrated moving average [1]
� GRU: Gated Recurrent Unit [3]
� TPA-LSTM: A temporal pattern attention LSTM for multivariate time

series forecasting [11]
� DARNN: Dual-stage attention-based recurrent neural network [10]
� STGCN: The spatio-temporal graph convolutional network [14]
� MTGNN: The multivariate time Series forecasting with GNN [13]
� NRI: Neural relational inference [7].
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In Table 1, we present the performance of I2A-RI compared with VAR,
ARIMA, GRU, TPA-LSTM, DARNN, STGCN, MTGNN, and NRI for the RAT-
EDC datasets. The VAR model is a statistical method that represents a group
of time-dependent variables as linear functions of their own past values and the
past values of all other variables. The ARIMA model needs to transform the
non-stationary time series into stationary time series first, then the predicted
values depending on the past values, and the present and past values of the
random error term. GRU, TPA-LSTM, and DARNN are deep learning models
that can utilize the latent inter-dependencies among variables for prediction.
STGCN, MTGNN, and NRI are graph-based prediction methods by modeling
the relationships between variables as the graph to help make better predictions.

In the experiments, we divided the data into two categories: one is abnormal
temperature caused by failure, and the other is normal data. In the data with
the abnormal occurrence, we also evaluate the predicted data by two criteria:
All conditions and delta > 1 ◦C. The former calculates MSE on all of the actual
and predicted target values in the testing set, while the latter calculates MSE
only when there was 1 ◦C or more temperature increase in 2.5 min. The “delta >
1 ◦C” criterion is added because we want to catch a more significant temperature
change in data center operations.

As depicted in Table 1, I2A-RI achieves the best performance over other
methods. I2A-RI reduces the MSE of the second-best model (STGCN) by 2.88%
with the criterion “All” and 4.30% with the criterion “delta > 1 ◦C”.

Table 1. Performance comparison (MSE) among different approaches.

Abnormal Normal

All delta > 1 ◦C All

VAR 0.0334 ± 0.001 0.4290 ± 0.02 2.58e−03 ± 1.17e−04

ARIMA 0.0354 ± 0.003 0.4016 ±0.02 8.90e−04 ± 1.16e−05

GRU 0.0291 ± 0.002 0.3591 ± 0.04 8.50e−04 ± 1.91e−05

TPA-LSTM 0.0270 ± 0.006 0.3271 ± 0.05 1.30e−03 ± 1.29e−05

DARNN 0.0254 ± 0.005 0.3267 ± 0.04 7.92e−04 ± 1.03e−06

STGCN 0.0243 ± 0.001 0.2019 ± 0.00 4.89e−04 ± 1.39e−06

MTGNN 0.0246 ± 0.001 0.2579 ± 0.02 4.59e−04 ± 1.14e−06

NRI 0.0263 ± 0.006 0.3132 ± 0.04 5.09e−04 ± 2.11e−06

I2A-RI 0.0236 ± 0.002 0.1932 ± 0.02 4.54e−04 ± 1.01e−06
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4.4 Ablation Study

In this section, we aim to verify the effect of the two import modules: the
GDA module and the IDA module. The methods without these two modules
are denoted as follows:

� + GDA: I2A-RI without IDA.
� + IDA: I2A-RI without GDA.
� -GDA-IDA: I2A-RI without either GDA or IDA

The performance of the three variants are shown in Table 2. The results show
that both the GDA and IDA can improve the model’s performance, which verifies
the correctness of our conjecture about inter-and-intra domain attention.

Table 2. Effects of GDA and IDA modules (MSE).

Abnormal Normal

All delta >1 ◦C All

-GDA-IDA 0.0263 ± 0.006 0.3132 ± 0.04 5.09e−04 ± 2.11e−06

+GDA 0.0240 ± 0.001 0.2511 ± 0.01 4.88e−04 ± 1.95e−06

+IDA 0.0226 ± 0.001 0.2700 ± 0.02 4.90e−04 ± 2.98e−06

(a) in-distribution prediction (b) out-of-distribution prediction

Fig. 4. Examples of the ground-truth and predicted time series.

4.5 Visualization

Additionally, we provide ground-truth and predicted time series trends of several
selected variables from the dataset, as shown in Fig. 4. As can be seen from the
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(a) Temperature trend (b) Adjacency matrix (c) Learned graph

Fig. 5. The adjacency matrix of the learned graph (same trend).

figures, when the predicted points are within the distribution of the training set,
the model can predict them accurately; when the predicted points are beyond
the distribution range, the model cannot capture this trend. We present the
adjacency matrix and the learned graph of two columns of racks sharing the
same cold aisle in Fig. 5 and 6.

(a) Temperature trend (b) Adjacency matrix (c) Learned graph

Fig. 6. The adjacency matrix of the learned graph (different trend).

As can be seen from Fig. 5, when the temperature curves of different racks
change in a similar way and the trend is consistent, the adjacency matrix presents
similar relationship weights. As can be seen from Fig. 6, when the temperature
curves of different racks fluctuate in different ways, the relationship between
different racks is obviously different in the adjacency matrix. In the learned
graph, each rack shows only the other two racks with which they are most
closely associated. They may be responsible for the same business, thus these
learned relationships may help troubleshoot when faults occur.

5 Conclusions

In the motivation of modeling interactions between time series from different
domains, we propose the I2A-RI model to utilize the information of the guidance
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domain to learn a more accurate graph for prediction in this paper. Our results
strongly prove that I2A-RI can learn underlying relations from data of different
domains. With the learned structure, I2A-RI outperforms other state-of-the-art
models for the RATEDC dataset. In the future, to better predict the values out
of the data distribution, we will introduce more prior knowledge, including the
pre-known dynamic and static information and the latest events.
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