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ABSTRACT
Semantic person retrieval aims to locate a specific person in an
image with the query of semantic descriptions, which has shown
great significance in surveillance and security applications. Prior
arts commonly adopt a two-stage method that first extracts the
persons with a pretrained detector and then finds the target match-
ing the descriptions optimally.However, existing works suffer from
high computational complexity and low recall rate caused by error
accumulation in the two-stage inference. To solve the problems,
we propose FastPR, a one-stage semantic person retrieval method
via self-supervised learning, to optimize the person localization
and semantic retrieval simultaneously. Specifically, we propose a
dynamic visual-semantic alignment mechanism which utilizes grid-
based attention to fuse the cross-modal features, and employs a
label prediction proxy task to constrain the attention process. To
tackle the challenges that real-world surveillance images may suffer
from low-resolution and occlusion, and the target persons may be
within a crowd,we further propose a dual-granularity person local-
ization module through designing an upsampling reconstruction
proxy task to enhance the local feature of the target person in the
fused features, followed by a tailored offset prediction proxy task
to make the localization network capable of accurately identifying
and distinguishing the target person in a crowd. Experimental re-
sults demonstrate that FastPR achieves the best retrieval accuracy
compared to the state-of-the-art baseline methods, with over 15
times inference time reduction.
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• Information systems→ Image search; •Computingmethod-
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1 INTRODUCTION
Nowadays, surveillance cameras have been deployed in every cor-
ner of cities for the purpose of public security. They are constantly
producing extensive monitoring data, which not only provides suf-
ficient data sources but also poses great challenges on processing
efficiency for modern surveillance applications. Semantic person
retrieval is a typical application, which aims to retrieve a person in
an image using some semantic descriptions. The descriptions can
be semantic labels, such as clothing color/types, accessories, age
and skin color, etc., or free-form natural language descriptions of a
person. It offers a convenient way for person retrieval and shows
great potentials in advancing public security applications, e.g., crim-
inal suspect searching. To achieve semantic person retrieval in a
surveillance image with more complex background information
than semantic descriptions, most of prior studies adopt a two-stage
approach like [23, 27, 31]. Specifically, they divide the retrieval
task into two sub-tasks: detecting all potential bounding box of
the persons in the image and then selecting the most likely one by
a ranking algorithm according to the semantic descriptions. Such
two-stage models are easy to train due to the separate optimization
processes, but incur high computational complexity in inference.
Moreover, since the retrieval accuracy of the second stage highly
depends on the detection accuracy of the first stage, two-stage mod-
els are more likely to bring error accumulation, resulting in a low
recall rate during inference. This is an inevitable problem, because
the images taken in real surveillance scenes usually suffer from low
resolution or occlusion among the entities, causing great difficulty
in identifying people accurately and comprehensively. Fig 1 shows
the difference between one-stage and two-stage semantic person
retrieval methods. There are also many works [1, 17, 21, 34] using
the cropped images with a single person as the inputs of their re-
trieval models, which are lack of background information and the
relation with other entities. Since the cropped images can’t acquire
from the surveillance images directly, these methods face the same
problem of the two-stage models in handling surveillance images.
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Figure 1: Comparison of one-stage and two-stage methods of
semantic person retrieval.

Thus, it calls for a sophisticated one-stage approach to achieve more
efficient and accurate semantic person retrieval.

Despite the significance, designing a one-stage semantic per-
son retrieval approach is highly non-trivial under the following
challenges. Since surveillance images are commonly with full back-
ground and abundant noise, there are more features contained by
the images than the semantic descriptions. To solve the cross-modal
feature fusion problem, previous works like[2, 7, 16] choose to make
a common embedding layer and force the visual and semantic fea-
tures to be closer by euclidean distance or cosine similarity in a
certain dimension, while the forced similarity is ill-considered in the
case of the unbalance information between real-world images and
semantic descriptions. Other studies[13, 26, 28, 29, 33] use attention
mechanisms to align the image and semantic features. However,
the attention mechanisms usually lack full supervision and are hard
to be optimized under the unequal amount of information between
the visual and semantic features. Moreover, since there is a natural
gap between visual and semantic features, how to perform bound-
ing box regression in images according to semantic descriptions
is another challenge for the one-stage method design. In addition,
images in real surveillance scenarios usually suffer from low res-
olution and high noise, etc., which makes cross-modal bounding
box regression more difficult.

To solve the above challenges, in this paper we propose FastPR,
a one-stage semantic person retrieval method to locate the target
person in real-world surveillance images. Specifically, we divide
the image into 𝑆 ∗ 𝑆 grids, where one grid cell is responsible for the
target person if the center of the person falls into this gird. We em-
ploy a dynamic visual-semantic alignment mechanism through the
grid-based attention to match the semantic description with visual
features, followed by designing a label prediction proxy task to im-
prove the performance the cross-modal feature fusion. To address
the low-resolution problem in surveillance images, we propose an
upsampling reconstruction proxy task to enhance the local feature
of the target person. Moreover, an offset prediction proxy task is
designed for person localization, which can enable the localization
network to identify and distinguish the target person in the crowd.
During the localization process, we also predict the confidence of
whether a grid covers the target person as a coarse-grained retrieval,
which can guide the fine-grained retrieval (bounding box, exactly).
These three components together constitute the dual-granularity
person localization module in FastPR to guarantee the accuracy of
person retrieval.

The main contributions are as follows:

• To the best of our knowledge, FastPR is the first one-stage
semantic person retrieval approach to directly retrieve target
persons from surveillance images.

• We propose a dynamic visual-semantic alignment mecha-
nism by utilizing grid-based attention to fuse the cross-modal
features and designing a label prediction proxy task to im-
prove the attention process.

• We design a dual-granularity person localization module
to precisely locate the target person, where an unsampling
reconstruction proxy task is designed to handle the low res-
olution and occlusion challenge for real-world images, and
a target-centric offset prediction task is designed to help
accurately identifying the target person in the crowd.

• Extensive experimental results show that FastPR outper-
forms the state-of-the-art approaches in terms of both effi-
ciency and accuracy, with over 15× inference time reduction
and average 2% accuracy improvement.

Our codewill be released in https://github.com/Sunmeng1997/FastPR.

2 RELATEDWORK
This section briefly summarizes the related works in semantic per-
son retrieval. Besides, we also introduce the existing studies in
visual grounding that is similar with but has different focuses on
semantic person retrieval, and recent advances in self-supervised
learning that plays an important role in FastPR.

2.1 Semantic Person Retrieval
Existing solutions for semantic person retrieval mainly focus on
using semantic descriptions to accurately find the specific person,
either from cropped images with a single person [1, 17, 21, 31] or
adopting a pretrained objected detector to output cropped images
first [3, 23, 33]. Most of them aim to achieve higher accuracy of
person retrieval by addressing the problem of cross-modal feature
alignment. Sarafianos et al. [21] propose to use the adversarial
loss to optimize the match between the image and textual features.
Zheng et al. [32] design a new system to discriminatively embed
the image and text to a shared visual-textual space. Niu et al. [17]
declare the difficulty in directly measuring the similarity between
images and descriptions due to the modality heterogeneity, and
hence propose a Multi-granularity Image-text Alignments (MIA)
model to alleviate the cross-modal fine-grained problem for better
similarity evaluation. Recently, Zhou et al. [34] design a novel
Deep Surroundings-person Separation Learning (DSSL) model by
separating the information into surroundings and person to achieve
a higher retrieval accuracy. While all the above works are based on
cropped images with a single person, making them unable to be
fully automatic in real applications, there are a few of works choose
the full images as input. Zhou et al. [33] adopt a region proposal
network in Faster R-CNN to generate the cropped images of person
and extract the visual features, then integrate the visual and text
features to score region proposals for generating the final output.
Shah et al. [23] use Mask R-CNN to detect persons in an images
and use a list of filters to locate the final target. All of the works
adopt a pretrained objected detector to output cropped images
first, which can be seen as two-stage frameworks. However, as we
mentioned in Introduction, two-stage models suffer from heavy
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time complexity and error accumulation in inference. Different
from prior studies, FastPR is an end-to-end framework, which uses
the orignial surveillance images as input and outputs the final
localization of the target person by semantic descriptions directly.

2.2 Proxy Task in Self-supervised Learning
Self-supervised learning (SSL) has been wildly used in different con-
texts and fields, such as representation learning, natural language
processing[4, 6], computer vision[5, 8, 18, 30] and reinforcement
learning. Applying self-supervised learning can help themodel have
better generalization ability of the input. Generative self-supervised
learning is one of the mainstream SSL methods [14]. The basic idea
is to automatically generate some kinds of supervisory signals from
the input and solve a specifically designed task (also called as proxy
task). There are three kinds of proxy tasks:

(a) Content-based proxy task is mainly based on the context
information of the data itself, to learn the characteristics of the
data. This kind of proxy tasks is usually set to recover the input
under some corruption, e.g., context encoder in computer vision
[18], mask-based method like BERT [4]. Others tend to design
some indirect tasks like predicting the "rotation" [8], patch order
prediction [5], patch position prediction [12], colorization [30].

(b) Temporal-based proxy task is widely used in video-related
applications. Sermanet et al. [22] claim that the adjacent frame
features in the video are similar, while the video frames that are
far apart are dissimilar, thus self-supervised constraints can be
constructed by this. Misra et al. [15] design a self-supervised proxy
task that determines whether a sequence of frames from a video is
in the correct temporal order. Wu et al. [25] apply self-supervised
learning in dialogue system by designing a proxy task to detect the
dialogue flow.

(c) Contrastive-based proxy task is achieved by constructing
positive and negative samples, and then measuring the distance
between positive and negative samples. The core idea of this kind
of proxy task is that the similarity between positive samples is far
greater than the similarity between the negative samples. Tian et al.
[24] learn a representation aiming to maximize mutual information
between different views of the same scene but is otherwise compact,
which employs a contrastive-based method for cross-modal tasks.

Different from the general proxy tasks mentioned above, we
specifically design proxy tasks according to the challenges in real-
world cross-modal person retrieval task. Since surveillance images
with full background have much more information than the se-
mantic descriptions, we set a semantic label prediction proxy task
to guarantee the effect of fused features. To overcome the low
resolution problem in real surveillance scenes, an upsampling re-
construction proxy task is designed to enhance the local feature of
the target person. In addition, a novel offset prediction proxy task
assists the localization network to have the ability of identify the
target person in crowd.

3 METHOD
Given an image 𝐼 and a list of semantic descriptions 𝑇 , our goal is
to localize the target people in 𝐼 with 𝑇 directly. Fig 2 shows the
overview of FastPR. It consists of three key modules: multimodal
feature encoder, dynamic visual-semantic alignment, and

dual-granularity person localization. The input image and se-
mantic descriptions are first fed into the feature encoders to extract
the initial image and semantic features. Then, the dynamic visual-
semantic alignment module fuses the cross-modal feature pairs,
through the broadcast multiplication between the semantic and
visual feature and softmax to get the initial fused features, a classifi-
cation proxy task to constrain the effectiveness of fusion. The fused
features are finally used by the dual-granularity person localization
module to derive the target person’s position. During the retrieval
stage, we apply several specially designed self-supervised learning
proxy tasks to assist the retrieval process. The design details of
each module are presented as follows.

3.1 Multimodal Feature Encoders
An image encoder and a semantic encoder are designed to extract
different modal features from the input 𝐼 respectively. Different
from the existing two-stage methods that can only extract person
features from a cropped image, FastPR is designed to quickly extract
all the person features from the original one. To achieve this, we
divide the input image into 𝑆 ∗ 𝑆 grids, where a grid cell is regarded
as containing the target person and responsible for person detection
if the center of the person falls into this gird. We use a ResNet50
[10] pretrained on ImageNet[20] as the visual backbone network
R to extract visual features 𝐼𝑒𝑛 ∈ R𝑀∗𝑆∗𝑆 from an input image,
where𝑀 = 256, 𝑆 = 7 in ResNet50. Formally, the encoder process is
defined as:

𝐼𝑒𝑛 = R(𝐼 ).
For a list of semantic description phrases 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑇 },

we label each semantic description with a 𝑑−dimensional one-hot
vector and turn them into semantic embedding 𝑣𝑖 by a trainable
embedding layer E, i.e.,

𝑣𝑖 = E(𝑒𝑖 ).
Through the encoder part, we can obtain the initial representa-

tion of both image and semantic descriptions. Note that, we set the
same dimension 𝑀 for both visual and semantic features for the
following grid-based alignment. The original input is turn into the
visual-semantic feature pairs 𝑃 , which is denoted as:

𝑃 = {𝐼𝑒𝑛 ∈ R𝑀∗𝑆∗𝑆 ,𝑉 = {𝑣𝑖 ∈ R𝑀 }𝑇𝑖=0}.

3.2 Dynamic Visual-semantic Alignment
3.2.1 Attention-based Cross-modal Alignment. For a specific fea-
ture pair 𝑝 ∈ 𝑃 , we aim to fuse the visual-semantic feature appro-
priately and locate the target person by the fused feature. Given the
unbalance of information between the visual and semantic features,
we perform grid-based attention over them. As we regard the visual
features as 𝑆 ∗ 𝑆 grids, for a specific semantic feature 𝑣𝑖 , a weight
map𝑤𝑖 will be generated as:

𝑤𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼𝑒𝑛 ⊗ 𝑣𝑖 ),
where ⊗ denotes the matrix multiplication along 𝑀 dimension,
the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function maps the weights into [0, 1]. Elements with
higher values in𝑤𝑖 indicates that the corresponding grid contains
more information about the semantic feature 𝑣𝑖 . For each 𝑣𝑖 ∈ 𝑉 in
a pair, we generate the fused visual-semantic features as:

𝐼𝑖 = 𝐼𝑒𝑛 ⊙𝑤𝑖 ,
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Figure 2: The overview of FastPR.

Figure 3: The overview of attention-based cross-modal align-
ment

where ⊙ denotes element-wise multiplication and 𝐼𝑖 denotes the
visual feature 𝐼 fusing with the semantic feature 𝑣𝑖 . After the sepa-
rate attention process, we perform a 1 × 1 convolutional layer C to
integrate the separate features 𝐼𝑖 ∈ R𝑆∗𝑆∗𝑀 as follows:

¯𝐼𝑒𝑛 = (𝐼1 | |𝐼2 | |...| | ¯𝐼𝑇 ),
𝐼 = C( ¯𝐼𝑒𝑛),

where | | denotes the concatenation of 𝐼𝑖 along the 𝑀 dimension.
The overview of cross-modal fusion module is shown in Fig. 3.

Figure 4: The overview of constrain-Oriented label prediction
proxy task.

3.2.2 Constrain-Oriented Label Prediction. We design a prediction
proxy task to ensure the effect of attention module and fill the gap
between semantic features and visual features better. Specifically,
for a fused feature 𝐼𝑖 , we feed it into a fully-connected layers F to

predict the semantic feature 𝑣𝑖 ’s corresponding one-hot vector in
the dataset:

𝑙𝑖 = F (𝐼𝑖 ),

𝑙𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑙𝑖 ),

where 𝑙𝑖 represents the prediction of the corresponding one-hot
vector of 𝑣𝑖 according to 𝐼𝑖 , which forces the fused feature to contain
the information of the semantic phrase. We apply the categorical
cross-entropy loss to optimize the label prediction process as below:

L𝑐𝑙𝑎 = − 1
𝑇

𝑇∑︁
𝑡=0

(𝑙𝑖𝑙𝑛𝑙𝑖 + (1 − 𝑙𝑖 )𝑙𝑛(1 − 𝑙𝑖 )), (1)

which 𝑙𝑖 represents the ground truth one-hot vector of semantic
phrase 𝑣𝑖 . The fused feature is supposed to contain the correspond-
ing semantic information by optimizing Equation (1). Fig 4 shows
the overview of the constrain-oriented label prediction proxy task.

3.3 Dual-granularity Person Localization
3.3.1 Unsampling Local Reconstruction. After the cross-modal at-
tention module, we can obtain the fused feature 𝐼 . However, since
surveillance images often suffer from low resolution and blurri-
ness, a reconstruction proxy task is designed to enhance the local
features in background and noise. Specifically, we first extract the
cropped image 𝐼𝑝 of target person according to the ground truth of
the bounding box𝐺𝑇 and apply the bilinear interpolation algorithm
B to unsample the local image of the target person, which can be
denoted as:

𝐼𝑝 = 𝐶𝑟𝑜𝑝 (𝐼 |𝐺𝑇 ),

𝐼𝑝 = B(𝐼𝑝 ).
As shown in Fig 2, a trainable decoder D takes the fused feature 𝐼
as input to generate a reconstruction of the enhanced local image
𝐼𝑝 , i.e.,

˜𝐼𝑝 = D(𝐼 ) .

3631



FastPR: One-stage Semantic Person Retrieval via Self-supervised Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

To optimize the reconstruction process, we set up a reconstruction
loss as:

L𝑟𝑒𝑐 =∥ 𝐼𝑝 − ˜𝐼𝑝 ∥ . (2)
The reconstruction proxy task enhances the fused feature to contain
more information of the target, and hence promotes the fusion of
cross-modal features indirectly.

3.3.2 Grid-level Dual-granularity Person localization. During the
localization procedure, both the confidence prediction network and
bounding box prediction network are supposed to filter the location
information of the target from the input 𝐼 , thus, the shallow feature
extraction should be similar. Based on that, we set a 2-layer fully
connected layer FC as the common layer to extract the initial
features.

We use the fused feature 𝐼 to localize the target person. Different
from the previous work on detection, we divide the localization in a
dual-grained way. Specifically, we regard the prediction confidence
of whether the target person falls into a grid as a coarse-grained
prediction, while the bounding box prediction can be treated as a
fine-grained localization. For the confidence prediction, a 2-layer
fully connected layer FI after the FC is designed to generate the
prediction of confidence 𝐶 that can be denoted as:

𝐶 = FI(F C(𝐼 )) .

Obviously, 𝐶 has a size of 𝑆 ∗ 𝑆 . For each grid, there is a ground
truth 𝐶𝑖 ∈ {0, 1} to denote whether this grid has the target or not.
Then, the loss of confidence prediction is defined as:

L𝑐𝑜𝑛 =

𝑆2∑︁
𝑖=0

(𝐶𝑖 −𝐶𝑖 )2 . (3)

For the prediction of bounding box, we feed the fused feature into
another fully connected layer FB after the common layer FC and
get the prediction of bounding box (𝑥,𝑦,𝑤,ℎ), where (𝑥,𝑦) are the
coordinates representing the center of the box relative to the bounds
of the grid cell, and the width𝑤 and height ℎ are predicted relative
to the whole image [19], respectively. The loss of the bounding box
regression is defined as:

L𝑙𝑜𝑐 =

𝑆2∑︁
𝑖=0

1
𝑜𝑏 𝑗
𝑖

((𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2+

𝑆2∑︁
𝑖=0

1
𝑜𝑏 𝑗
𝑖

((√𝑤𝑖 −
√
�̂�)2 + (

√︁
ℎ𝑖 −

√︁
ℎ̂)2)),

(4)

where the 𝑥,𝑦 are the ground truth of the coordinates representing
the center of the box relative to the bounds of the grid cell, and the
�̂�, ℎ̂ are the ground truth of the weight and height relative to the
whole image, respectively. Besides, 1𝑜𝑏 𝑗

𝑖
means that

1
𝑜𝑏 𝑗
𝑖

=

{
1, 𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑔𝑟𝑖𝑑𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

3.3.3 Target-Centric Offset Prediction. In order to make the local-
ization network capable of identifying and distinguishing the target
person in the crowd, we propose a specially designed offset proxy
task for the common layer FC to enhance the layer’s perception
of the target person location.

Specifically, we divide the 𝑆 ∗ 𝑆 grids into 9 regions. As shown
in Fig 5, for each grid 𝑔𝑖 , 𝑖 = {1, 2, ..., 𝑆 ∗ 𝑆} if it contains the target
person in the region 𝑟𝑞, 𝑞 = {0, 2, ..., 8}, we randomly swap the
𝑔𝑖 ’s feature with the grid in other regions, e.g., 𝑟𝑝 . The offset is
calculated as:

𝑜𝑞𝑝 = |𝑞 − 𝑝 |.
where |·| denotes the absolute value. There are eight different offset
values in this setting, which means this proxy task is a multi-class
classification problem.

For the fused feature 𝐼 with the dimension of R𝑆∗𝑆∗𝑀 , we swap
the grid features corresponding to the target person with the fea-
tures in other grids and get the swapped feature 𝐼𝑠 . A 1-layer MLP
network FM is designed to predict the absolute value of the offset
between exchanged and original features after the common layer
FC, which is denoted as:

𝑜 = FM(FC(𝐼𝑠 )) .
Since the location network is supposed to identify the target

person in spite of his location exchanging in the image, the offset
between the 𝐼 and 𝐼𝑠 should be predicted precisely. The loss function
of the offset prediction proxy task is defined as:

L𝑜 𝑓 𝑓 = −(𝑜𝑙𝑜𝑔𝑜 + (1 − 𝑜)𝑙𝑜𝑔(1 − 𝑜)), (5)

where 𝑜 is the ground truth of the offset.

Figure 5: The overview of target-centric offset prediction
proxy task. The fused feature is divided into 9 regions, the
grid feature where the target is located is arbitrarily ex-
changed with other grid features, and the offset is the dif-
ference between the region numbers to which the two sets
of features belong. E.g., the first swapped feature’s absolute
value of the offset is |5 − 4| = 1, and the second is |5 − 6| = 1.
There are 8 different offsets in this setting.

3.4 Optimization and Inference
3.4.1 Optimization for training. The total loss for training FastPR
can be described as:

𝐿 = 𝜆𝑠𝑠𝑙𝐿𝑠𝑠𝑙 + 𝜆𝑐𝑜𝑛𝐿𝑐𝑜𝑛 + 𝜆𝑙𝑜𝑐𝐿𝑙𝑜𝑐 , (6)

where we use 𝐿𝑠𝑠𝑙 to denote the total loss of all the self-supervised
proxy tasks, which contains three self-supervised loss terms and
can be calculated as follows:

𝐿𝑠𝑠𝑙 = 𝜆𝑐𝑙𝑎𝐿𝑐𝑙𝑎 + 𝜆𝑟𝑒𝑐𝑜𝑛𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑜 𝑓 𝑓 𝐿𝑜 𝑓 𝑓 , (7)

where 𝜆𝑠𝑠𝑙 , 𝜆𝑐𝑜𝑛, 𝜆𝑙𝑜𝑐 , 𝜆𝑐𝑙𝑎, 𝜆𝑟𝑒𝑐𝑜𝑛 and 𝜆𝑜 𝑓 𝑓 denote the hyperparam-
eters to balance different loss terms during training.

As the proxy tasks are designed to achieve more accurate seman-
tic person retrieval performance, they may constrain the model
in different aspects. Thus, we choose to optimize the loss of the
localization and proxy tasks alternately. Specifically, we start the
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Table 1: Performance comparison of FastPR to the related methods training and testing on SoftBioSearch Dataset. Experiment
details can be seen in Section 4.3

Model R@1 (%) R@5 (%) Time(ms)
IoU >0.4 IoU >0.5 IoU >0.6 IoU >0.4 IoU >0.5 IoU >0.6

Cos-Sim 33.50 29.08 25.56 34.89 32.46 26.69 280
Attn-Based [33] 49.98 43.80 40.85 58.85 54.76 50.04 355
Trans-SPR [27] 53.90 51.10 44.68 57.46 54.57 50.94 295
Per-Vis [23] 67.80 57.30 55.79 70.25 62.18 57.80 320

FastPR 66.02 60.14 56.82 71.73 64.07 58.30 17

optimization with proxy tasks for several epochs and freeze the
parameters of the confidence prediction network and bounding box
prediction network, then exchange the frozen order for another
several eopchs.

3.4.2 Inference. During the inference, both of the confidence pre-
diction network and bounding box prediction network will generate
the prediction of confidence and bounding box in each grid accord-
ing to the semantic descriptions. The max of predicted confidence
decides which grid is responsible for the target, and the corrospond-
ing predicted bounding box of this grid is seen as the finally output.

4 IMPLEMENTATION AND EVALUATION
4.1 Training and Evaluation Metrics
TrainingDetails. In our experiments, we pretrain the RestNet50 [10]
on ImageNet as backbone to get image representations. To this end,
each image is resized into the size of 224∗224. For semantic descrip-
tions, text embeddings are regarded as trainable parameters. We
use the Adam [11] optimizer and our set the learning rate into 1e-3.
We train our model using the batch size of 256 on an A40 Nvidia
Graphic card for 300 epochs. In our loss function, the temperature
parameter 𝜏 is set as 0.5, and the 𝜆𝑠𝑠𝑙 , 𝜆𝑐𝑜𝑛, 𝜆𝑙𝑜𝑐 are set as 1, 100, 5
respectively. During the inference process, an image and a list of
semantic description are fed into the network and the confidence
prediction network will generate the confidence of each grid. We
choose the grid which has the greatest confidence, and pick this
grid’s bounding box as the final output if the greatest confidence
are larger than 0.6, otherwise we think the image doesn’t contain
the target person.

Evaluation Metrics. We adopt the recall 𝑅@𝑛, 𝐼𝑜𝑈 > 𝑚 as
the evaluation metric, which is widely used in retrieval tasks. Re-
call R@n is calculated by the the percentage of samples for which
the correct result resides in the top-n retrievals to the query. The
result is seen as correct when the IoU between the prediction
bounding box and the ground truth is greater than𝑚. The higher
value of 𝑚 donates the stricter criteria of retrieval. We set the
𝑛 = 1, 5,𝑚 = 0.4, 0.5, 0.6 to see the different results in experiment.
For the evaluation of efficiency, we record the computation time
of a batch (set with 8) while performing inference on an A40 GPU.
We run different model with 10 times and get the average of the
ten running times as the final result.

4.2 Dataset and Baselines
Dataset. We use the SoftBioSearch [9] dataset as our training and
testing set. The dataset are collected from 6 stationary cameras.

Each sequence contains detailed semantic information for a single
search subject who appears in the clip (gender, age, height, build,
hair and skin colour, clothing type, texture and colour), and are
annotated with the target subject location (over 11, 000 frames are
annotated in total). The training set and test set were randomly
divided according to the ratio of 7 to 1.

Baselines. We compare the performance of FastPR with state-
of-the-art semantic person retrieval methods using the surveillance
images of the aforementioned dataset. The four methods used in
perfromance comparison are introduced as follows.

• Cos-Sim, which is a simple two-stage method. It adopts a
Faster R-CNN object detector for person detection and di-
rectly compute cosine similarities between salient proposals
and semantic label representations. The bounding box with
highest similarity is retrieved as the final result.

• Attn-Based, indicating the attention-based model proposed
by Zhou et al. [33]. Compared with Cos-Sim, they also use
Faster R-CNN object detector for person detection. However,
the cross-modal attention mechanism is applied for region
selection. Since their dataset and implementations are not
released to public, we reproduce and train a model under
same settings based on our dataset for fair comparison.

• Trans-SPR [27] , which introduces transfer learning to find
more features for region selection. During the person de-
tection process under Mask R-CNN, they leverage a pre-
trained DenseNet-161 network to predict multiple aspects
of attributes (e.g., gender, pose, luggage, clothings) under
transfer learning techniques. These features are further used
for computing the matching score between proposals and
semantic labels for person retrieval. Since the code is not
open-sourced, we re-implement them based on the model
descriptions of the original papers.

• PeR-Vis [23], which uses a cascade filtering of person descrip-
tors to narrow down the search space. More specifically, it
performs person detection under Mask R-CNN. During the
retrieval process, cascade filters based on Height, Torso Mod-
ule, Leg Module and Gender are adopted for more detailed
and distinguishable selecting. This model reached previous
SOTA results and are regarded as our strong baseline model.

4.3 Quantitative Performance
Table 1 shows the performance comparison results between FastPR
and the baselines.
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Table 2: Ablation study trained and tested on SoftBioSearch Dataset.

L𝑐𝑙𝑎 L𝑟𝑒𝑐𝑜𝑛 L𝑜 𝑓 𝑓 L𝑐𝑜𝑛
R@1 (%) R@5 (%)

IoU >0.4 IoU >0.5 IoU >0.6 IoU >0.4 IoU >0.5 IoU >0.6
51.70 47.26 40.79 55.98 50.46 43.26

✓ 52.90 48.07 41.85 57.52 52.68 46.29
✓ 51.98 47.72 41.00 56.98 51.84 45.71

✓ 52.49 47.95 41.59 57.25 52.39 45.91
✓ 49.36 45.27 40.87 52.53 49.55 41.88

✓ ✓ ✓ 63.56 57.95 46.28 68.42 61.96 56.01
✓ ✓ ✓ 64.58 58.69 54.79 69.28 62.13 56.25
✓ ✓ ✓ 64.67 58.74 54.34 69.45 62.72 56.28
✓ ✓ ✓ 60.58 53.16 49.77 63.79 55.59 51.89
✓ ✓ ✓ ✓ 66.02 60.14 56.82 71.73 64.07 58.30

4.3.1 Efficiency performance. Other methods run in around 300ms
in average, while FastRP can achieve 17ms. The two-stage method
spends much time on detecting persons while most of them aren’t
the target, costing most of the inference time. FastPR accomplish
the retrieve task in integrating one-stage way, making it much more
efficient than the previous methods.

4.3.2 Accuracy Performance. First, we compare our model with all
baseline models, especially the strong baseline Per-Vis. For 𝑅@5,
our model shows significant improvement under each metric. For
𝑅@1, FastPR gets comparable results compared with Per-Vis under
𝐼𝑜𝑈 > 0.4. It significantly outperforms Per-Vis on 𝐼𝑜𝑈 > 0.5, 𝐼𝑜𝑈 >

0.6 which are more difficult tasks. This illustrates that our model
gets more precise bounding boxes compared with prior works.

Among baseline models, there is a gap between Cos-Simwith oth-
ers, since the retrieval process is simply based on cosine distances.
This does not take the natural gap between visual and semantic
features into account. Using attention mechanism for dynamic soft
selection, Attn-Based model get much better performances. Com-
pare with the two baselines, Trans-SPR introduces more features
for retrieval, while Per-Vis focuses on using cascade filtering to
narrow down the search space, i.e., performing deeper cross-modal
interaction. Both of the two models get competable results, and
Per-Vis shows more improvements than Trans-SPR. It turns out
that compared with finding more features, exploring better retriev-
ing method, i.e., performing deeper cross-modal interaction, has
more significant improvement. To this end, we leverage the idea of
self-supervised learning and introduce additional proxy tasks for
deeper cross-modal interaction. Compared with Trans-SPR using
transfered features and Per-Vis leveraging carefully-designed cas-
cade filtering (e.g., cloth color, hair color, etc.), our self-supervised
method does not use any human-annotated data and requires less
hand-crafted filter engineering.

4.4 Case Study
4.4.1 Accurate Retrieval. The qualitative performance of FastPR is
shown in Fig. 6. The first row shows that FastPR could locate the
target accurately in a real-world environment. Besides, according
to the second example in the third row, FastPR is capable of localiz-
ing the person accurately when the target is partially occluded or
missing. In addition, in the second row which the images contain

Figure 6: Case study of FastPR.

a large number of people, FastPR can filter out the incompatible
objects according to the semantic descriptions, and finally obtain
accurate coordinates. It demonstrates that FastPR can also localize
the target task accurately in the presence of complex backgrounds
and crowds.

4.4.2 Fuzzy Retrieval. We also evaluate the performance of FastPR
on fuzzy retrieval in Fig. 7. When the semantic descriptions are
incomplete to retrieve a certain person, FastPR can detect all the
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Figure 7: The qualitative performance of FastPR with fuzzy retrieval.

Figure 8: The qualitative performance of confidence. Set
"Blue Shirt" as textual description.

eligible candidates. We use different semantic descriptions includ-
ing clothing, gender and hair color, etc., FastPR can exhibit stable
retrieval accuracy.

4.4.3 Confidence Performance. We also show the output of the
confidence prediction layer in Fig. 8. Specifically, we only set "Blue
Shirt" as the semantic description input, and the confidence predic-
tion layer FC output the probability𝐶𝑖 of each grid that contains a
person matching the description of "Blue Shirt". We can clearly see
from the Fig. 8 that in the heat map of confidence, the grids with a
person in “Blue Shirt” have significantly higher scores. It demon-
strates that the confidence predicting layer FC could understand
and perceive the emphasis of semantic information on pictures.

4.5 Ablation Studies
To achieve more accurate semantic person retrieval, we design
three self-supervised learning proxy tasks for different aspects of
the problem. Besides the self-supervised learning part, we also di-
vide the regression of localization into dual-granularity detection,
including confidence prediction and bounding box prediction. In the
ablation study, We delete the three proxy tasks and train the FastPR
separately to see the effectiveness of the different proxy tasks. Be-
sides, we merge the confidence and bounding box prediction into
one localization network to replace the original dual-granularity
person localization. The results of the ablation study are in Table 2.

4.5.1 The effectiveness of self-supervised proxy tasks. There are
three different proxy tasks in our model. The classification task
is to supervise the cross-modal attention fusion module, and the

reconstruction task force the fused feature to contain more infor-
mation of the target person, the offset prediction task enhance the
ability of detection in the localization network. We can see the dif-
ferent results of whether use these proxy tasks or not. FastPR can
only reach around 47% by using one proxy task, and have around
+6% improvement by using three proxy tasks, indicating the effec-
tiveness of the specific-designed self-supervised proxy tasks.

4.5.2 The effectiveness of confidence prediction network. In the
localization task, due to the complexity of semantic retrieval task,
the confidence and exact bounding box are not predicted by the
same fully connected network as YOLO [19]. Table 2 shows that
𝑅@1 and𝑅@5 both experience a significant decline if we predict the
confidence and bounding box in the same network, which proves
the effectiveness of the separate design.

5 CONCLUSION
In this work, we propose a one-stage semantic person retrieval
method, FastPR, to achieve fast and accurate person retrieval from
real-world surveillance images.We design a dynamic visual-semantic
alignment mechanism that to fuse the cross-modal features, and
a label prediction proxy task to constrain the attention process.
Real-world surveillance images usually suffer from low resolution
problem, an unsampling local reconstruction task is designed to
enhance the local target feature in the fused feature. We propose
dual-granularity person localization module to precisely detect the
target person by semantic descriptions. To make the localization
network capable of identifying and distinguishing the target person
in the crowd, we propose a specially designed offset proxy task. Ex-
perimental results on a surveillance image dataset SoftBioSearch[9]
demonstrate that FastPR outperforms the state-of-the-art semantic
person retrieval methods in terms of both efficiency and retrieval
accuracy.
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