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ABSTRACT
Video Question Answering (VideoQA) aims to understand given
videos and questions comprehensively by generating correct an-
swers. However, existing methods usually rely on end-to-end black-
box deep neural networks to infer the answers, which significantly
differs from human logic reasoning, thus lacking the ability to
explain. Besides, the performances of existing methods tend to
drop when answering compositional questions involving realis-
tic scenarios. To tackle these challenges, we propose a Dynamic
Spatio-Temporal Modular Network (DSTN) model, which utilizes
a spatio-temporal modular network to simulate the compositional
reasoning procedure of human beings. Concretely, we divide the
task of answering a given question into a set of sub-tasks focusing
on certain key concepts in questions and videos such as objects,
actions, temporal orders, etc. Each sub-task can be solved with a
separately designed module, e.g., spatial attention module, tempo-
ral attention module, logic module, and answer module. Then we
dynamically assemble different modules assigned with different
sub-tasks to generate a tree-structured spatio-temporal modular
neural network for human-like reasoning before producing the
final answer for the question. We carry out extensive experiments
on the AGQA dataset to demonstrate our proposed DSTN model
can significantly outperform several baseline methods in various
settings. Moreover, we evaluate intermediate results and visualize
each reasoning step to verify the rationality of different modules
and the explainability of the proposed DSTN model.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Informa-
tion systems→ Question answering.
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1 INTRODUCTION
Video Question Answering (VideoQA) aims to correctly answer
questions given the related videos. As a challenging extension of
the static image question answering (VQA) [4], VideoQA faces the
following core challenges: (i) videos usually contain much more in-
formation compared with static images, posing more difficulties to
feature procession and comprehension, and (ii) VideoQA involves
more reasoning operations over both spatial and temporal dimen-
sions. The rich temporal multi-modal information makes VideoQA
a challenging research topic in both academia and industry.

Existing VideoQA works can generally be categorized into four
categories: (1) Encoder-decoder structure based methods [17, 28, 48,
53, 54], (2) Memory network based methods [10, 24, 33, 42, 46], (3)
Spatio-temporal graph neural network (GNN) based methods [36,
37, 39, 43, 45], and (4) Pre-trained Models [1, 30, 51, 52]. However,
existing VideoQA models suffer from the following three challeng-
ing problems: (i) They are designed with a black-box deep structure
without exploring whether each model part is correctly operating
based on the designing logic. (ii) They are evaluated on simple
questions or scenarios, and their spatio-temporal reasoning per-
formances tend to drop for compositional questions in realistic
scenarios. (iii) They are still far away from the process of human
logic reasoning [31].

To tackle these challenges and move one step closer to explain-
able VideoQA, we propose a Dynamic Spatio-Temporal Modular
Network (DSTN) model in this paper, which utilizes a hierarchical
logic structure with modular design to simulate the compositional
procedure of human logic reasoning explicitly and produce more
explainable results. Concretely, the proposed DSTN model first
decomposes the given question into several sub-tasks with a hier-
archical logic structure in a step-by-step manner, where sub-tasks
cover a set of key concepts (e.g., object, subject, relation, location,
action, temporal order, and duration). In order to handle different
sub-tasks, we propose various modules with different functions
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involving temporal and spatial localization, logic reasoning, rela-
tion discovery, etc. Different modules are dynamically assembled
into a modular network with rich logical reasoning ability based
on the hierarchical logic structure. Then, the assembled modular
neural network operates upon textual features and visual features
simultaneously in a bottom-up manner to generate the final answer
to the given question.

We carry out experiments on the AGQA dataset [11], which is a
typical VideoQA dataset for compositional spatio-temporal reason-
ing under real-world scenarios. Besides the VideoQA accuracy met-
ric widely used in previous works, we also compare the proposed
DSTNmodel with several state-of-the-art approaches in terms of ad-
ditional settings to demonstrate superior spatio-temporal reasoning
ability of DSTN from different aspects, e.g., generalization ability
for novel compositional questions. Moreover, we evaluate and visu-
alize intermediate results (results of modules) to verify our modules’
reasoning ability and rationality, which further demonstrates the
explainability of our model.

To summarize, this paper makes the following contributions:
• We propose the dynamic spatio-temporal modular network
(DSTN) model, which is the first modular neural network
based approach in VideoQA for explainable video reasoning
in real-world scenarios.
• We unify spatial reasoning, temporal reasoning, and logic
modules with a dynamically assembled modular framework
to simulate the process of human inference.
• We conduct extensive experiments to demonstrate the ad-
vantages of DSTN with various settings, and explore the
performances of different modules to demonstrate the ra-
tionality of modules and the explainability of the overall
model.

2 RELATEDWORKS
Video Question Answering. Existing methods for video question
answering could be generally categorized into four categories: (1)
Encoder-decoder structure based methods [17, 28, 48, 53, 54] adopt
encoder-decoder frameworks to generate both spatial and tempo-
ral contextual features as well as multi-modal representations. (2)
Memory network based methods [7, 10, 24, 25, 33, 35, 42, 46, 49]
utilize memory network structure to process video and question
information, since well-designed write operator and read opera-
tor could efficiently generate meaningful multi-modal represen-
tations. (3) Spatial-temporal graph neural network (GNN) based
methods [12, 15, 19, 20, 36, 37, 39, 43, 45, 50] modify videos into a
graph structured format, and then use GNN based network (e.g.,
Graph Convolutional Network (GCN) and Graph Attention Net-
work (GAT)) to process dynamic information in the video to obtain
contextual representations. (4) Pre-trained Models [1, 9, 30, 51, 52]
use extensive data (e.g., vision, audio, and text) to generate relatively
unbiased multi-modal representations. Besides methods belonging
to these categories, there exist some other works using relation
networks [8, 26, 47] and neuro-symbolic framework [44, 50].

Although existing approaches have achieved remarkable perfor-
mance gains, their performances tend to drop when they answer
complicated logical questions under realistic scenarios and are still
far from real human logic reasoning.

Table 1: Examples of concepts.

Concepts Examples

Object bottle, table, dog, milk, window, bed, car
Subject person, man, woman, kid, children
Relation put on, pick up, throw, drink
Location in front of, above, left, right, up, down
Action put on a coat, drink milk

Temporal Order first, last, before, after, at the same time
Duration long, short, continuous, intermittent

Modular Neural Network. Since the procedure of visual (includ-
ing images and videos) question reasoning is essentially compo-
sitional, the modular neural network has been used for several
methods in image question answering [2, 3, 3, 6, 13, 14, 22, 31, 34]
to increase explainability as well as simulating procedure of human
reasoning. These methods explicitly decompose questions into se-
mantic sub-tasks and assemble specialized modules to handle these
sub-tasks. However, these methods are limited to image question
answering without considering spatio-temporal reasoning.

To conclude, in this work, we address all these difficulties by a
dynamic spatio-temporal modular neural network decomposing
questions into sub-tasks, where sub-tasks could be solved with a
library of general modules designed about key concepts (e.g., object,
action, temporal order etc.) in the real-world video scenario.

3 DYNAMIC SPATIO-TEMPORAL MODULAR
NETWORK

In this section, we describe the proposedDynamic Spatio-Temporal
Modular Network (DSTN) which targets at explainable spatio-
temporal reasoning in real-world videos by decomposing the ques-
tion into modularized sub-tasks. Figure 1 shows the framework of
our proposed DSTN model with an example to illustrate the whole
model. In general, DSTN consists of three key components: (1) Sub-
tasks modularization, (2) Modular layout policy, and (3) Modular
neural network assembly and executions.

3.1 Sub-tasks Modularization
Most of our natural language questions could be decomposed into
sub-questions. For example, when asked “what did the person do
after taking a picture?”, we could first find the person that “has
taken pictures”, then we find his current action and answer the
question. Similarly, our DSTN contains a series of general modules
implementing different sub-tasks. We primitively focus on several
key concepts in video question answering as: object, subject, rela-
tion, location, action, temporal order, and duration. We list several
examples for each concept in Table 1. Unlike static images, most of
these concepts have a lifecycle. Given a certain video, for example,
a person (subject) may only take a picture (action) in a certain time
period. Thus, our modularized sub-tasks are atomic tasks that op-
erate spatial and temporal reasoning for a given concept. Most of
our modules take a series of spatio-temporal attention maps and
a series of concept embeddings as inputs and output a series of
corresponding spatio-temporal attention to represent the lifecycle
of a certain concept.

Given video feature 𝑥𝑣 = E𝑣 (𝑉 ) ∈ R𝑇×𝑑𝑖𝑚𝑣 , question feature
𝑥𝑞 = E𝑞 (𝑄) ∈ R𝑑𝑖𝑚𝑞 , and a set of concept parameters {𝐶𝑖 } ex-
tracted from the question, a moduleM is designed to transform the
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Q: Before sitting in a bed but after tidying up a blanket, which object were man holding?

man tidies up a blanket man leaves man goes back man sits on the bed

man holds a bookman holds a book
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Figure 1: Framework of our proposed Dynamic Spatio-Temporal Modular Network (DSTN) model. Given a pair of video and
question, our model constructs a series of perceptual modules with a sequence-to-sequence model (cf., Figure 1a), where each
module comes with customized concept parameters and visual features for semantics-to-visual perception. The perceptual
modules are assembled into a tree-structured modular layout and instantiated into a spatio-temporal modular neural network
(cf., Figure 1b), which executes in a bottom-up manner with visual features and concept parameters to generate the final answer.
We visualize the idealized intermediate attention maps for some modules as shown in light blue boxes pointed by the grey
dotted arrow. The upside part of light blue boxes is temporal attention map 𝑎𝑡 and the bottom part is spatial attention map 𝑎𝑠 .
For spatial attention map 𝑎𝑠 , we highlight the localized concepts and obscure other parts. For temporal attention map 𝑎𝑡 , we
plot the temporal attention curve to show the importance of each frame.

input attention maps (denoted as attentions for simplicity) {𝑎 (𝑖𝑛) }
into another set of attentions {𝑎 (𝑜𝑢𝑡 ) } or the answer 𝑎𝑛𝑠:

{𝑎 (𝑜𝑢𝑡 ) } OR 𝑎𝑛𝑠 ← M
(
{𝑎 (𝑖𝑛) }, {𝐶𝑖 };𝑥𝑣, 𝑥𝑞

)
. (1)

M is implemented with a small differentiable neural network with
unified interface and specific semantic meaning. All modules are
conditioned on the video feature 𝑥𝑣 and question feature 𝑥𝑞 , and
operated on the spatio-temporal attention with respect to a set of
given concept parameter {𝐶𝑖 }.

In this paper, we consider two types of attention 𝑎𝑡 ∈ R𝑇 rep-
resenting the temporal attention over 𝑇 frames of the video, and
𝑎𝑠 ∈ R𝑇×𝑑𝑖𝑚𝑣 representing the spatial attention over each of the 𝑇
frames. Based on the functionalities of different modules, they could
operate on 𝑎𝑡 or 𝑎𝑠 , or both. Accordingly, we categorize modules
into four categories:

(1) Spatial Attention Modules: The modules in this category
conduct spatial operations over inputs, which can be regarded as a
repetition of operations on every single frame. As shown in Table
2, FindObj module outputs a spatial attention map and is used to
localize object representing by the concept embedding e𝐶 . Rel2
module and Loc2module can be used to localize objects that have a
specific relation or on a certain position to a known object. Besides,
module DetectObj, DetectRel, and DetectAct are designed to

Table 2: Implementation details of spatial attention modules.
Here we denote 𝑎 (𝑖𝑛)/(𝑜𝑢𝑡 )𝑠 and 𝑎 (𝑖𝑛)/(𝑜𝑢𝑡 )𝑡 as input/output spa-
tial and temporal attention respectively, 𝑒𝐶 as the embed-
ding of concept 𝐶, typically, 𝑒 (𝑜)/(𝑟 ) as object/relation em-
bedding. The symbol {} represents a list, and symbol ⊙ rep-
resents element wise product. 𝑎𝑠/𝑡 represents intermediate
spatial/temporal attention results. MeanofSameRel is an aver-
age function over the attention of a certain relation.

Modules & Inputs Implementation details

FindObj

𝑎
(𝑜𝑢𝑡 )
𝑠 = Conv2

(
𝑊2

(
𝑎
(𝑖𝑛)
𝑠 ⊙ 𝑎 (𝑖𝑛)𝑡 ⊙ 𝑥𝑣

)
⊙ Conv1 (𝑥𝑣) ⊙𝑊1𝑒𝐶

)Rel2[Obj|Subj]
Loc2[Obj|Subj]

(𝑎 (𝑖𝑛)𝑠 , 𝑎
(𝑖𝑛)
𝑡 , 𝑒𝐶 )

DetectObj {𝑎 (𝑜𝑢𝑡 )𝑠 } = FindObj
(
𝑒𝐶 = {𝑒 (𝑜) }, 𝑎 (𝑖𝑛)𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
(𝑎 (𝑖𝑛)𝑠 , 𝑎

(𝑖𝑛)
𝑡 , {𝑒 (𝑜) })

DetectAct {𝑎𝑠 } = FindObj
(
𝑒𝐶 = {𝑒 (𝑜) }, 𝑎 (𝑖𝑛)𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
(𝑎 (𝑖𝑛)𝑠 , 𝑎

(𝑖𝑛)
𝑡 , {𝑒 (𝑜) }, {𝑒 (𝑟 ) }) {𝑎 (𝑜𝑢𝑡 )𝑠 } = Rel2Subj

(
𝑒𝐶 = {𝑒 (𝑟 ) }, 𝑎 (𝑖𝑛)𝑠 = {𝑎𝑠 }, 𝑎 (𝑖𝑛)𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
DetectRel

(𝑎 (𝑖𝑛)𝑠 , 𝑎
(𝑖𝑛)
𝑡 , {𝑒 (𝑜) }, {𝑒 (𝑟 ) })

{𝑎𝑠 } = DetectAct
(
𝑒𝐶 =

(
{𝑒 (𝑜) }, {𝑒 (𝑟 ) }

)
,

𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
{𝑎 (𝑜𝑢𝑡 )𝑠 } = MeanofSameRel ({𝑎𝑠 })

localize all the existing objects, relations, or actions which are given
by the concept embedding within specific time period, where the
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Table 3: Implementation details of temporal attention mod-
ules. We use the same notations as Table 2. Here first, last,
before, after, shorter and longer are corresponding concept
embeddings. {𝑎}𝑖 represents 𝑖𝑡ℎ attention in the list, 𝑖 = 1, 2.
𝑒 (𝑡 )/(𝑑) represents temporal order/duration concept embed-
ding.

Modules & Inputs Implementation details

Exist
𝑎
(𝑜𝑢𝑡 )
𝑡 = Sigmoid

(
𝑊1𝑎

(𝑖𝑛)
𝑠

)
(𝑎 (𝑖𝑛)𝑠 )

ComputeDuration

(𝑎 (𝑖𝑛)𝑠 )
𝑎𝑡 = Exist

(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = sum(𝑎𝑡 )

TemporalLocalize

(𝑎 (𝑖𝑛)𝑠 , 𝑒 (𝑡 ) )

𝑎𝑡 = ReLU
(
Exist

(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

))
𝑎
(𝑜𝑢𝑡 )
𝑡 =

{
SuffixSum(𝑎𝑡 ), if 𝑑 (𝑒 (𝑡 ) , 𝑏𝑒 𝑓 𝑜𝑟𝑒) < 𝑑 (𝑒 (𝑡 ) , 𝑎𝑓 𝑡𝑒𝑟 )
PrefixSum(𝑎𝑡 ), otherwise

TemporalFilter

(𝑎 (𝑖𝑛)𝑠 , 𝑒 (𝑡 ) )

𝑎𝑡 = Exist
(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

)
𝑎
(𝑜𝑢𝑡 )
𝑠 =

{
𝑎
(𝑖𝑛)
𝑠 ⊙ [Softmax(𝑎𝑡 − 𝛽)], if 𝑑 (𝑒 (𝑡 ) , 𝑓 𝑖𝑟𝑠𝑡) > 𝑑 (𝑒 (𝑡 ) , 𝑙𝑎𝑠𝑡)
𝑎
(𝑖𝑛)
𝑠 ⊙ [Softmax(𝑎𝑡 + 𝛽)], otherwise

TemporalBetween

({𝑎 (𝑖𝑛)𝑠 })

{𝑎1𝑡 } = TemporalLocalize
(
𝑒𝐶 = {𝑏𝑒 𝑓 𝑜𝑟𝑒, 𝑎𝑓 𝑡𝑒𝑟 }, 𝑎 (𝑖𝑛)𝑠 = {𝑎 (𝑖𝑛)𝑠 }1

)
{𝑎2𝑡 } = TemporalLocalize

(
𝑒𝐶 = {𝑏𝑒 𝑓 𝑜𝑟𝑒, 𝑎𝑓 𝑡𝑒𝑟 }, 𝑎 (𝑖𝑛)𝑠 = {𝑎 (𝑖𝑛)𝑠 }2

)
𝑎
(𝑜𝑢𝑡 )
𝑡 = max

(
min

(
{𝑎1𝑡 }1, {𝑎2𝑡 }2

)
,min

(
{𝑎1𝑡 }2, {𝑎2𝑡 }1

) )
CompareDuration

({𝑎 (𝑖𝑛)𝑠 }, 𝑒 (𝑑) )

{𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} = Softmax
(
ComputeDuration

(
𝑎
(𝑖𝑛)
𝑠 = {𝑎 (𝑖𝑛)𝑠 }

))

𝑎
(𝑜𝑢𝑡 )
𝑠 =



Sum
(
{𝑎 (𝑖𝑛)𝑠 } ⊙ {𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}

)
,

if 𝑑 (𝑒 (𝑑) , 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 ) > 𝑑 (𝑒 (𝑑) , 𝑙𝑜𝑛𝑔𝑒𝑟 )

Sum
(
{𝑎 (𝑖𝑛)𝑠 } ⊙ {1 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}

)
,

otherwise.

concept embedding is generated from the embedding layer inside
the sequence-to-sequence model.

(2) Temporal Attention Modules: Rather than operating on
a static image, in this paper, our modular network is designed for
videos that have temporal dimensions, thus we have questions
requiring temporal operations, such as the question “Who grab a
bottle after Leonard talked?” raised in TVQA+ [29] and the question
“After eating some food, did they touch a table or a chair?” raised in
AGQA [11]. In the above questions, word after is a temporal order
requiring calculation of weight between frames along the temporal
dimension to localize actions and objects more precisely afterward.

Table 3 shows a set of temporal modules, the first two of which
are denoted as auxiliary modules, serving as reusable sub-functions
for other temporal modules. Module Exist uses spatial attention
maps to infer the existence of concept 𝐶 (e.g., object, relation, or
action) in each frame, outputting temporal attention serving as a
temporal probability mask to mask out the frames that concept 𝐶
does not occur. Module ComputeDuration takes spatial attention
of action as input and outputs a score representing the duration of
the action.

The bottom four modules in Table 3 are temporal attention mod-
ules operating along the temporal dimension based on auxiliary
modules. Module TemporalBetween is designed to localize the time
period between the existing periods of two different concepts. Mod-
ule TemporalFilter is designed to get the first or the last existing
frame of a certain concept 𝐶 in the input spatial attention. Module
CompareDuration takes a set of spatial attention maps represent-
ing a set of different concepts 𝐶 as input, outputting the longest
or shortest concept 𝐶 representation. Module TemporalLocalize

Timeline

Timeline

𝑎"#

Timeline

Suffix	sum

squats down

Figure 2: An example for TemporalLocalize[before], where
the module is to localize "before the woman squats down".

highlights temporal weights before or after a certain concept 𝐶
with before or after as a temporal order parameter.

Here we take TemporalLocalize as an example to illustrate de-
tailed implementation. Given an input spatial attention map 𝑎 (𝑖𝑛)𝑠

representing spatial information of a concept 𝐶 , and a temporal
order concept𝐶 (𝑡 ) (here set as before), TemporalLocalize [before]
would first call the auxiliary module Exist module to find those
frames where concept 𝐶 exists and output an intermediate tempo-
ral attention by 𝑎𝑡 = Exist(𝑎 (𝑖𝑛)𝑠 ). In order to highlight temporal
weights before the concept 𝐶 , we conduct suffix sum over the tem-
poral weights of the concept 𝐶 as:

𝑎
(𝑜𝑢𝑡 )
𝑡 ;𝑖 = SuffixSum(𝑎̃𝑡 ) =

𝑇∑︁
𝑗=𝑖

𝑎̃𝑡 ;𝑗 , 𝑖 = 1, 2, · · · ,𝑇 , (2)

where 𝑖 represents the 𝑖𝑡ℎ frame at temporal attention 𝑎 (𝑜𝑢𝑡 )𝑡 , and
𝑗 is the 𝑗𝑡ℎ frame at intermediate temporal attention 𝑎𝑡 . With this
suffix sum operation, 𝑎 (𝑜𝑢𝑡 )

𝑡 ;𝑖 represents the probability that the
𝑖𝑡ℎ frame is before concept 𝐶 . Figure 2 shows an example of the
TemporalLocalize[before] computation process.

(3) Logic Modules: These modules perform basic logical infer-
ence, such as and and or. They take two one-dimensional vector as
inputs and output another one-dimensional vector for possibilities,
conducting element-wise logic operations for tensor inputs.

(4) Answer Modules: Answer modules serve as top-level mod-
ules in the modular neural network and output a one-dimensional
score vector for all possible answers. The detailed implementation
of all the modules can be found in the appendix.

Most of our designed modules can receive different concepts
generated simultaneously with modular layout generation. For ex-
ample, LocalizeOrder[before] and LocalizeOrder[after] in-
stantiates the same module LocalizeOrder with different concept
parameter, where two would localize differently along the temporal
dimension. Moreover, some modules may receive more than one
concept, e.g., TemporalBetween receives two concept information
to localize the time period between them.

3.2 Modular Layout Policy
Given a question and a set of predefined modules, we need a mod-
ular layout policy to translate the question into a modular layout
such that we can organize these modules into a modular neural net-
work. In this section, we describe the policy we adopt to generate
the modular layout. For better understanding, we use an example
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to illustrate the function of our Modular Layout Policy as shown in
Figure 1. Given an input question, such as:

"Before sitting in a bed but after tidying up a blanket, which object
were man holding?"
We expected the Modular Layout Policy part would generate the
parameterized modular layout sequence as:

Query(Rel2Obj(FindObj(LocalizeBetween(DetectAct(sitti-
ng in, bed), DetectAct(tidying up, blanket)), man), hold-
ing))
where Name(param1, param2,· · · ) is the module Name with pa-
rameters param1, param2,· · · . For example, FindObj(person) is the
module FindObj and concept parameter person for the sub-task of
“find the person”.

Based on the semantic meaning and logic inside the given ques-
tion, we construct a tree-structured modular layout, where the leaf
modules are usually used for low-level visual perceptions, such as
spatial attention modules, while the root modules are usually used
to generate answers such as logic modules and answer modules.

We transform the tree-structure layout into a layout sequence
using Reverse Polish Notation [5], and learn the layout policy us-
ing an attentive sequence-to-sequence Recurrent Neural Network
(RNN). Formally, given an input question {𝑤𝑖 }

𝑇𝑞
𝑖=1, where𝑤𝑖 is the

𝑖𝑡ℎ word in the question and 𝑇𝑞 is the question length, our goal
is to transform {𝑤𝑖 }

𝑇𝑞
𝑖=1 into the module layout sequence {𝑚𝑖 }𝑇𝑙𝑖=1

and its corresponding concept parameter as {𝐶𝑖 }𝑇𝑙𝑖=1, where 𝑇𝑙 is
the layout length. To clarify,M in Equation (1) is module𝑚 with
specific concept parameters.

Firstly, the question is encoded with a RNN encoder as:

h𝑒𝑛𝑐𝑖 = RNN𝑒𝑛𝑐 (𝑒 (𝑤𝑖 ), h𝑖−1) , 𝑖 = 1, 2, · · ·𝑇𝑞 . h0 = 0. (3)

Here 𝑒 (𝑤𝑖 ) is the word embedding for𝑤𝑖 . Then we first compute
the dynamic attention weight as:

𝑢𝑡𝑖 = 𝑣𝑇 tanh
(
𝑊1ℎ

𝑒𝑛𝑐
𝑖 +𝑊2ℎ

𝑑𝑒𝑐
𝑡−1

)
, 𝛼𝑡𝑖 =

exp(𝑢𝑡𝑖 )∑𝑇
𝑗=1 exp(𝑢𝑡 𝑗 )

, (4)

where𝑊1 and𝑊2 are learnable parameters. Based on the attention
weight, the dynamic context, and hidden state are:

𝑐𝑡 =

𝑇𝑞∑︁
𝑖=1

𝛼𝑡ℎ
𝑒𝑛𝑐
𝑖 , h𝑑𝑒𝑐𝑡 = RNN𝑑𝑒𝑐 (h𝑑𝑒𝑐𝑡−1 , 𝑐𝑡 ), (5)

where h𝑑𝑒𝑐0 = 0 is the initial decoding state, RNN𝑑𝑒𝑐 is the Recurrent
Decoder.

At each decoding time step 𝑡 , the dynamic context 𝑐𝑡 is also used
to decode the current module 𝑚̂𝑡 and construct current concept
parameter 𝐶𝑡 as:

𝑝 (𝑚̂𝑡 |𝑚̂<𝑡 ;𝑞) = softmax
(
𝑊3𝑐𝑡 +𝑊4ℎ

𝑑𝑒𝑐
𝑡

)
, 𝐶𝑡 =

𝑇𝑞∑︁
𝑖=1

𝛼𝑡𝑖𝑒 (𝑤𝑖 ), (6)

where𝑊3 and𝑊4 are learnable parameters and 𝑚̂<𝑡 are predicted
tokens before timestamp 𝑡 . In order to ensure the validity of the
generated token, where the validity means that the amount of mod-
ule inputs is no more than the total amount of its children modules
outputs, we add masks to the invalid tokens in the probability 𝑝 .

Finally, let 𝜃 be all the parameters in our model, given question
𝑞, the probability of a chosen layout 𝑙 = {𝑚̂1, 𝑚̂2, . . . } is given by

𝑝seq (𝑙 |𝑞;𝜃 ) =
𝑇
𝑙∏

𝑡=1
𝑝 (𝑚̂𝑡 |𝑚̂<𝑡 , 𝑞) , (7)

where 𝑇
𝑙
is length of layout 𝑙 . Given 𝑙 = {𝑚𝑖 }𝑇𝑙𝑖=1 as the ground

truth layout, the loss 𝐿seq on our sequence-to-sequence model can
be written as the negative log likelihood of the ground truth 𝑙 , i.e.,

𝐿seq (𝑞, 𝑙 ;𝜃 ) = − log𝑝seq (𝑙 |𝑞;𝜃 ) = −
𝑇𝑙∑︁
𝑡=1

log𝑝 (𝑚𝑡 |𝑚<𝑡 , 𝑞) . (8)

3.3 Modular Neural Network Instantiation and
Execution

We have so far designed a set of modules and elaborated on how
to generate a tree-structured modular layout for reasoning. In this
section, we turn to modular neural network instantiation and exe-
cution, where modules in the layout will be assembled and executed
in a bottom-up manner.

As we have mentioned in Section 3.2, the output layout from
the sequence-to-sequence model is in the Reverse Polish Notation
format, which will be used to generate the tree-structured modular
layout. Modules are instantiated with concept parameters during
the modular neural network instantiation and a tree-structured
modular neural network is dynamically assembled based on the
tree-structured modular layout. We apply random sampling over
answer set for the rare cases when invalid modular neural network
are generated. Each module assembled in the valid modular neural
network takes the outputs from its children modules as inputs and
sends outputs to its parent module as inputs until obtaining a final
answer from the top-most module (root module).

Given question𝑞, video 𝑣 , and learned layout 𝑙 from the sequence-
to-sequence part of our model, with model parameters 𝜃 , the final
answer 𝑦 is generated by:

𝑦̂ = argmax
𝑦
M

𝑙
(𝑦 |𝑣,𝑞;𝜃 ), (9)

whereM
𝑙
= I

(
{mi}, {𝐶𝑖 }, 𝑙

)
is the instanced modular neural net-

work with layout 𝑙 and a set of predefined modules {Mi}. Similar
to the existing method [13, 21], we draw the loss 𝐿ans between the
ground truth answer and the predicted answer as:

𝐿ans (𝑞, 𝑣, 𝑙 ;𝜃 ) = ℓce
(
M

𝑙
( · |𝑣, 𝑞;𝜃 ), 𝑦∗

)
, (10)

where ℓce is the cross entropy loss and𝑦∗ is the ground truth answer
for question 𝑞 on video 𝑣 .

3.4 Training Strategies
As we have described all the components of our model in detail,
we will introduce our training strategies for the entire model in
this section. Since our DSTN is an independent structure free from
training strategies, we adopt two strategies [13, 31] by varying the
way of choosing the layout 𝑙 in Equation (10).

Strategy 1: DSTN-E2E. Following Li et al. [31], strategy 1
chooses the best layout generated from the sequence-to-sequence
model. To be specific, given the question𝑞, video 𝑣 , and ground truth
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layout 𝑙 , we first generate the layout 𝑙∗ with the highest probability,
i.e.,

𝑙∗ = argmax
𝑙

𝑝seq (𝑙 |𝑞;𝜃 ) . (11)

Afterward, the total loss could be written as:
𝐿 (1) (𝑞, 𝑣, 𝑙 ;𝜃 ) = 𝐿seq (𝑞, 𝑙 ;𝜃 ) + 𝐿ans (𝑞, 𝑣, 𝑙∗;𝜃 ) . (12)

In practice, we first use loss 𝐿seq in Equation (8) to pre-train our
sequence-to-sequence model for modular layout policy merely from
questions. While we do not want to fix the parameters to the ground
truth layout, we then train the entire model in an end-to-end man-
ner with total loss obtained in Equation (12), from which we also
fine-tune the parameters in the policy searching space at the same
time when learning the parameters in neural modules.

Strategy 2: DSTN-RL. Following Hu et al. [13], given the ques-
tion 𝑞, video 𝑣 , the total loss of strategy 2 is the expected loss of
𝐿ans in Equation (10) by sampling 𝑙 from 𝑝seq (𝑙 |𝑞;𝜃 ) in Equation
(7), i.e.,

𝐿 (2) (𝑞, 𝑣;𝜃 ) = E
𝑙∼𝑝seq (𝑙 |𝑞;𝜃 )

[
𝐿ans (𝑞, 𝑣, 𝑙 ;𝜃 )

]
. (13)

Due to the non-differentiability of Equation (13), we follow [13]
to conduct a Monte-Carlo sampling and Reinforcement-Learning
strategy to optimize (13). In addition, optimizing Equation (13) from
scratch is challenging and we use the ground truth layout 𝑙 as an
expert policy for the first several epochs, and then switch to the
policy gradient learning [41].

4 EXPERIMENTS
We evaluate our model on the recent-proposed AGQA [11] dataset
for its real-world dynamic visual reasoning and rich semantic in-
formation. AGQA is a large-scale compositional video question
answering dataset containing 3.9𝑀 balanced and 192𝑀 unbalanced
question pairs associated with 9.6𝐾 videos. The videos in the AGQA
involve everyday human activities, while questions in the dataset
require a comprehensive understanding of the objects, relations,
actions, temporal order, etc., much more challenging than previous
datasets [17, 28, 29, 47, 53] and closer to the way human beings
think and reason. In this dataset, each video is annotated with a
spatio-temporal scene-graph generated from Action Genome [18],
providing a structural-semantic representation. Each question is
associated with a functional program that points out the necessary
reasoning steps to answer the question. Besides, the dataset con-
tains indirect references and novel composition questions, making
this dataset more challenging.

The experiments demonstrate the following advantages of our
proposed Dynamic Spatio-Temporal Neural Network (DSTN)model.
Firstly, our model outperforms the state-of-the-art methods on
different metrics and splitting, reflecting the excellent reasoning
ability on complex questions and scenarios (Section 4.2). Secondly,
our model could provide clear reasoning evidence with semantic
meaning at each reasoning step (Section 4.3).

4.1 Implementation and Baselines
Implementation. We use standard video features supplied by
AGQA dataset [11], including appearance features 𝑥𝑣𝑎 ∈ R8×2048 ex-
tracted from ResNet pool5 layer and motion features 𝑥𝑣𝑚 ∈ R8×2048
extracted from ResNeXt-101. We concatenate appearance features
𝑥𝑣𝑎 with motion features 𝑥𝑣𝑚 to obtain our video feature 𝑥𝑣 ∈

Table 4: Overall results on the test dataset. DSTN-E2E and
DSTN-RL are the results of two training strategies introduced
in Section 3.4. The best results of all methods are highlighted
with the bold font and the second with underscore.

Methods Binary Open-ended Overall

PSAC [32] 53.56 32.19 42.44
HME [8] 57.21 36.57 46.47

HCRN [27] 56.01 40.27 47.82
DualVGR [43] 55.48 40.75 47.80
HQGA [45] 56.15 39.49 47.48

DSTN-E2E 57.38 42.43 49.60
DSTN-RL 56.75 42.52 49.34

R8×4096. Our question features 𝑥𝑞 ∈ R1000 are extracted from the
last hidden state of a Bi-LSTM. Moreover, we use the functional pro-
grams provided to train initial parameters for sequence-to-sequence
model.

Our model is trained with the learning rate 2e-5, batch size
32, and the optimizer is Adam optimizer with a weight decay of
1e-5. The experiments are run on the GPU and the total running
time is about 120 GPU hours. More details about the space and
time complexity of our model and baselines can be found in the
appendix.
Baselines. In total, we compare our methods with five state-of-
the-art baselines. Besides the baseline methods used in AGQA, we
also select two state-of-the-art methods. PSAC [32] and HME [8]
propose memory network based methods for important visual and
textual features. DualVGR [43] and HQGA1 [45] adopt graph at-
tention mechanism and encoder-decoder structure for contextual
representation. HCRN [27] builds conditional relation network as
reusable blocks to construct a hierarchy network to generate contex-
tual multi-modal representation. In order to maintain consistency
across different methods, we use the same input visual features for
all baseline methods, and rerun the baselines selected by the dataset
(HCRN, HME, PSAC) on the latest released version (claimed having
the same distribution with the previous version), achieving similar
results with those shown in [11].

4.2 Model Performance
We use the official metrics from [11] to evaluate the model per-
formance: (1) Accuracy Metric: measures the general model per-
formance for different types of questions. (2) Indirect Reference
Metric: measures whether the model could figure out the indirect
reference of temporal order, actions and objects through precision
and recall. (3) Novel Composition Metric for Out-of-distribution
(OOD) Setting: measures the model’s ability to solve dataset shift
for novel compositions of word groups. Later in this section, we
describe these metrics in detail and analysis quantitative model
performance under these metrics.
Accuracy Metric. The quantitative model performances of base-
lines methods and ours (DSTN-E2E and DSTN-RL) are listed in
Table 4. We use standard accuracy metric to evaluate the general
performance. Compared with state-of-the-art baselines, DSTN-E2E

1We use the HQGA w/o𝐺𝑂 version since object-level features are not provided.
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Table 5: Results on indirect reference metrics on the test set,
where the metrics are following the definitions in AGQA
dataset. Precision values are the accuracy on these indirect
questions when the corresponding direct questions were an-
swered correctly, while recall values are the accuracy on all
questions with that kind of indirect reference.

Methods Object Action Temporal

Precision Recall Precision Recall Precision Recall

PSAC [32] 66.67 40.53 66.59 34.50 68.07 36.78
HME [8] 73.86 45.59 78.15 39.51 74.33 41.35

HCRN [27] 81.55 46.39 86.45 41.09 84.78 43.25
DualVGR [43] 82.13 46.49 85.81 40.44 85.21 43.56
HQGA [45] 79.51 45.69 81.45 41.38 82.49 42.19

DSTN-E2E 82.26 48.50 86.34 41.57 87.47 45.76
DSTN-RL 82.17 48.24 85.12 42.08 87.39 45.65

Table 6: Results on novel composition metrics on the novel
composition test split. "Seq.", "Sup.", "Dur.", "Obj.", and "Open."
denote Sequencing, Superlative, Duration, Obj-rel, and Open-
ended separately.

Methods Seq. Sup. Dur. Obj. Binary Open. Overall

PSAC [32] 36.18 30.51 36.83 20.21 40.63 15.66 31.30
HME [8] 43.22 39.22 45.82 24.17 49.34 20.91 38.72

HCRN [27] 43.94 37.61 50.27 24.87 46.29 25.56 38.55
DualVGR [43] 44.71 36.92 51.47 28.67 46.09 27.17 39.02
HQGA [45] 43.35 35.93 51.32 24.14 44.90 25.27 37.57

DSTN-E2E 45.63 39.62 52.50 25.04 49.42 24.77 40.21
DSTN-RL 45.36 40.62 53.94 26.14 50.40 24.44 40.70

and DSTN-RL gain 1.78% and 1.52% absolute improvement over the
best baseline model overall, respectively.

Baseline models could perform relatively well in certain ques-
tion types, while our model outperforms all the baselines in both
question types (i.e., binary and open-ended questions), showing
the reasoning ability on complex questions and scenarios of our
designed model.
Indirect Reference Metric. Indirect reference metric is aimed at
measuring the model’s ability to understand objects, actions, and
temporal semantic meanings in indirect reference formats. In short,
the model has to distinguish the detailed concepts before it can
reason on it. We denote questions containing indirect references
as indirect questions (e.g., Did they contact the object they were
watching?) and their corresponding direct questions replace the
indirect references with certain entities (e.g., Did they contact a
television?). In Table 5, we report the precision and recall for each
concept type as a measurement of indirect reference similar to [11].
Precision values are the accuracy on these indirect questions when
the corresponding direct questions were answered correctly, while
recall values are the accuracy on all questions with that kind of
indirect reference.

In Table 5, DSTN-E2E and DSTN-RL significantly outperform
baselines in object indirect reference questions and temporal in-
direct reference questions. Although HCRN achieves the highest
precision score in action indirect reference, it does not achieve
the corresponding highest recall value, meanwhile, DSTN achieves
a competitive precision score in action indirect reference, which

Table 7: Temporal module performances.

Module Metrics Baseline DSTN-E2E DSTN-RL

TemporalFilter Kendall’s 𝜏 0.001 0.221 0.330
TemporalLocalize IOU 0.363 0.578 0.597
TemporalBetween IOU 0.237 0.460 0.458
CompareDuration IOU 0.296 0.447 0.440

means DSTN has a good performance in general action indirect
reference questions.
Novel Composition Metric for OOD setting. Novel composition
metric for OOD setting measures the model’s ability to answer an
Out-Of-Distribution (OOD) question: the model is trained on the
questions with certain compositions but tested on the questions
with unseen novel compositions [40]. For example, the word “first”
and “behind” do not co-occur in any question during the training
process, while they do co-occur in a question during testing. As
shown in Table 6, DSTN-E2E and DSTN-RL outperform all the base-
lines in the overall accuracy and achieve the highest two accuracies
in most cases, demonstrating DSTN has a strong generalization
ability.
Discussions about DSTN-RL and DSTN-E2E.We could find that:
(1) The E2E strategy performs better in the i.i.d. setting (independent
and identically distributed) where the training and testing data
follow the same distribution (Tables 4, 5, and 7) because the E2E
strategy tends to imitate the training data. (2) The RL strategyworks
better in the o.o.d. setting (out-of-distribution) where the training
and testing data may follow different distributions (Table 6) because
the RL strategy would freely explore these unseen layouts and thus
works better.

4.3 Module Evaluation
As a modular neural network based model, our DSTN model has
good explainability aside from good performance. In this section, we
evaluate intermediate results of temporal modules with the ground
truth to verify the rationality of our designed modules. Moreover,
we visualize the spatial attention map and temporal attention map
of several showcases to further demonstrate the explainability of
our DSTN model.
Temporal Module Evaluation. We firstly evaluate the consis-
tency between our temporal modules and the ground truth. For
each temporal module, we first extract the ground truth temporal
region from the AGQA annotation, and then we compute the con-
sistency between our module prediction and the ground truth. We
use Kendall’s 𝜏 coefficient metric [23] to measure the consistency
between the output of the TemporalFiltermodule and the ground
truth. Besides, we use Intersection-over-union (IOU) metric [16] to
measure the consistency between predicted region and the ground
truth region for TemporalLocalize, TemporalBetween, and Com-
pareDuration modules. As there are not other available baselines,
we implement a baseline that randomly generates predictions to
simulate the function of the module. Take the baseline for Tempo-
ralBetween as an example. We randomly select two frames as the
start and end frames of the localized time period. More details about
the implementation of the baselines can be found in the appendix.
The results are shown in Table 7.
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Q: Was a chair the thing they were
contacting after dressing themsevles?

Q: Betweenmaking some food and taking a dish from
somewhere, which object did the person throw?

Q: Of all the items the man contacts,
was the last one a blanket or a book?

(make food)
(hold clothes) (throw clothes, open refrigerator)

(take a dish)

DetectAct (make some food)DetectAct (take a dish)

TemporalBetween ()

FindObj (person)

Rel2Obj (throw)

Query

clothes
(tidy up blanket) (hold a book)

FindObj (man)

Rel2Obj (contact)

TemporalFilter (last)

Choose

book

(dress themselves) (leanon a chair)

DetectAct (dress themselves)

TemporalLocalize (after)

DetectObj (chair)

In

yes

(a) (b) (c)
Figure 3: Real examples visualizing the reasoning process of our DSTN model. The temporal attention map 𝑎𝑡 and spatial
attention map 𝑎𝑠 of intermediate modules are depicted. The upside part of the module is the temporal attention map 𝑎𝑡 plotted
as a curve line with weights, and the bottom part is the spatial attention map with highlighted localized concepts. The top
modules (depicted as yellow rectangles) are answer modules. For clarification, we annotate actions contained in each frame.

(1) TemporalFilter aims to localize the first or last concepts (ac-
tions, objects etc.). Given ground truth temporal attention 𝑎∗𝑡 and
output temporal 𝑎𝑡 , we compute the Kendall’s 𝜏 coefficient [23]
between our localized results and ground truth. Compared with
the baseline, our TemporalFilter module has a remarkably high
Kendall’s 𝜏 coefficient, which shows the rationality of this model.
(2) TemporalLocalize, TemporalBetween, and CompareDuration
aim to find a corresponding temporal region for the given concept.
We measure the performance of these modules with IOU between
the predicted temporal region and ground truth region. Compared
with the baseline, our method has a much higher IOU with ground
truth, meaning that thesemodules indeed learn the desiredmapping
during the implicit training process, demonstrating the reliability
and explainability of our method.
VisualizationWe visualize the intermediate results of our designed
modules as shown in Figure 3. For temporal modules that output
temporal attention maps, we use the calculated temporal attention
maps to determine the importance of each frame. For other mod-
ules that output spatial attention maps, we adopt the Grad-Cam
method [38] to produce a coarse localization map highlighting the
important regions. Specifically, we first calculate the inner product
between the visual features and the spatial attention maps out-
putted by each module. Then we evaluate its gradient on the final
convolutional layer of the visual feature extraction CNN. Finally, a
bi-linear interpolation step is adopted to obtain a rough pixel-level
saliency map.

From Figure 3, both our temporal modules and spatial modules
can localize given concepts precisely, e.g., DetectAct[take a dish]
and DetectAct[make some food] (cf., Figure 3a) highlight the re-
lated actions in the related frame, TemporalFilter[last] module
(cf., Figure 3b) picks last object out from several objects, Tempo-
ralLocalize[before] module (cf., Figure 3c) highlights the frames
after the action. As a result, we verify that each part (module) of
our model is correctly operating based on the human logic rather
than a black-box deep structure.

5 CONCLUSION
In summary, we propose the dynamic spatio-temporal modular
network (DSTN) model, which is the first modular neural network
based approach in VideoQA for explainable video reasoning in
real-world scenarios. Moreover, we conduct extensive experiments
to demonstrate the advantages of DSTN with various metrics and
settings, and explore the performances of different modules to
demonstrate the rationality of modules and the explainability of
the overall model.

ACKNOWLEDGMENT
This work is supported by the National Key Research and Develop-
ment Program of China No. 2020AAA0106300 and National Natural
Science Foundation of China No. 62250008, No. 62102222.

4473



Dynamic Spatio-Temporal Modular Network for VideoQuestion Answering MM ’22, October 10–14, 2022, Lisboa, Portugal

REFERENCES
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,

Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds,
et al. Flamingo: a visual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to
compose neural networks for question answering. arXiv preprint arXiv:1601.01705,
2016.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 39–48, 2016.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision, pages 2425–
2433, 2015.

[5] Arthur W Burks, Don WWarren, and Jesse B Wright. An analysis of a logical
machine using parenthesis-free notation. Mathematical tables and other aids to
computation, 8(46):53–57, 1954.

[6] Wenhu Chen, Zhe Gan, Linjie Li, Yu Cheng, William Wang, and Jingjing Liu.
Meta module network for compositional visual reasoning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 655–664,
2021.

[7] Xuguang Duan, Wenbing Huang, Chuang Gan, JingdongWang, Wenwu Zhu, and
Junzhou Huang. Weakly supervised dense event captioning in videos. Advances
in Neural Information Processing Systems, 31, 2018.

[8] Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wensheng Wang, Chi Zhang, and
Heng Huang. Heterogeneous memory enhanced multimodal attention model for
video question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1999–2007, 2019.

[9] Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang,
and Zicheng Liu. Violet: End-to-end video-language transformers with masked
visual-token modeling. arXiv preprint arXiv:2111.12681, 2021.

[10] Jiyang Gao, Runzhou Ge, Kan Chen, and Ram Nevatia. Motion-appearance
co-memory networks for video question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6576–6585, 2018.

[11] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa:
A benchmark for compositional spatio-temporal reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11287–
11297, 2021.

[12] Mao Gu, Zhou Zhao, Weike Jin, Richang Hong, and Fei Wu. Graph-based multi-
interaction network for video question answering. IEEE Transactions on Image
Processing, 30:2758–2770, 2021.

[13] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
Learning to reason: End-to-end module networks for visual question answering.
In Proceedings of the IEEE international conference on computer vision, pages
804–813, 2017.

[14] Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable
neural computation via stack neural module networks. In Proceedings of the
European conference on computer vision (ECCV), pages 53–69, 2018.

[15] Deng Huang, Peihao Chen, Runhao Zeng, Qing Du, Mingkui Tan, and Chuang
Gan. Location-aware graph convolutional networks for video question answering.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
11021–11028, 2020.

[16] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist,
11(2):37–50, 1912.

[17] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Tgif-qa:
Toward spatio-temporal reasoning in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017.

[18] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome:
Actions as compositions of spatio-temporal scene graphs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10236–
10247, 2020.

[19] Pin Jiang and Yahong Han. Reasoning with heterogeneous graph alignment for
video question answering. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 11109–11116, 2020.

[20] Weike Jin, Zhou Zhao, Xiaochun Cao, Jieming Zhu, Xiuqiang He, and Yueting
Zhuang. Adaptive spatio-temporal graph enhanced vision-language representa-
tion for video qa. IEEE Transactions on Image Processing, 30:5477–5489, 2021.

[21] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compo-
sitional language and elementary visual reasoning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2901–2910, 2017.

[22] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Inferring and executing
programs for visual reasoning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2989–2998, 2017.

[23] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):
81–93, 1938.

[24] Junyeong Kim, Minuk Ma, Kyungsu Kim, Sungjin Kim, and Chang D Yoo. Pro-
gressive attention memory network for movie story question answering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 8337–8346, 2019.

[25] Kyung-Min Kim, Min-Oh Heo, Seong-Ho Choi, and Byoung-Tak Zhang. Deep-
story: Video story qa by deep embedded memory networks. arXiv preprint
arXiv:1707.00836, 2017.

[26] Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen Tran. Learning to reason
with relational video representation for question answering. arXiv preprint
arXiv:1907.04553, 2, 2019.

[27] Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen Tran. Hierarchical
conditional relation networks for video question answering. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9972–9981,
2020.

[28] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. Tvqa: Localized, composi-
tional video question answering. arXiv preprint arXiv:1809.01696, 2018.

[29] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvqa+: Spatio-temporal
grounding for video question answering. arXiv preprint arXiv:1904.11574, 2019.

[30] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and
Jingjing Liu. Less is more: Clipbert for video-and-language learning via sparse
sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7331–7341, 2021.

[31] Guohao Li, Xin Wang, and Wenwu Zhu. Perceptual visual reasoning with knowl-
edge propagation. In Proceedings of the 27th acm international conference on
multimedia, pages 530–538, 2019.

[32] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu, Wenbing Huang, Xiang-
nanHe, and ChuangGan. Beyond rnns: Positional self-attentionwith co-attention
for video question answering. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 8658–8665, 2019.

[33] Fei Liu, Jing Liu, Weining Wang, and Hanqing Lu. Hair: Hierarchical visual-
semantic relational reasoning for video question answering. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1698–1707, 2021.

[34] DavidMascharka, Philip Tran, Ryan Soklaski, andArjunMajumdar. Transparency
by design: Closing the gap between performance and interpretability in visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4942–4950, 2018.

[35] Seil Na, Sangho Lee, Jisung Kim, and Gunhee Kim. A read-write memory network
for movie story understanding. In Proceedings of the IEEE International Conference
on Computer Vision, pages 677–685, 2017.

[36] Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Bridge to answer: Structure-
aware graph interaction network for video question answering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15526–15535, 2021.

[37] Liang Peng, Shuangji Yang, Yi Bin, and Guoqing Wang. Progressive graph
attention network for video question answering. In Proceedings of the 29th ACM
International Conference on Multimedia, pages 2871–2879, 2021.

[38] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

[39] Ahjeong Seo, Gi-Cheon Kang, Joonhan Park, and Byoung-Tak Zhang. Attend
what you need: Motion-appearance synergistic networks for video question
answering. arXiv preprint arXiv:2106.10446, 2021.

[40] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and
Peng Cui. Towards out-of-distribution generalization: A survey. arXiv preprint
arXiv:2108.13624, 2021.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[42] Hui Wang, Dan Guo, Xian-Sheng Hua, and Meng Wang. Pairwise vlad inter-
action network for video question answering. In Proceedings of the 29th ACM
International Conference on Multimedia, pages 5119–5127, 2021.

[43] Jianyu Wang, Bingkun Bao, and Changsheng Xu. Dualvgr: A dual-visual graph
reasoning unit for video question answering. IEEE Transactions on Multimedia,
2021.

[44] Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan.
Star: A benchmark for situated reasoning in real-world videos. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[45] Junbin Xiao, Angela Yao, Zhiyuan Liu, Yicong Li, Wei Ji, and Tat-Seng Chua.
Video as conditional graph hierarchy for multi-granular question answering.
arXiv preprint arXiv:2112.06197, 2021.

[46] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and
Yueting Zhuang. Video question answering via gradually refined attention over
appearance and motion. In Proceedings of the 25th ACM international conference
on Multimedia, pages 1645–1653, 2017.

[47] Li Xu, He Huang, and Jun Liu. Sutd-trafficqa: A question answering benchmark
and an efficient network for video reasoning over traffic events. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

4474



MM ’22, October 10–14, 2022, Lisboa, Portugal Zi Qian et al.

9878–9888, 2021.
[48] Hongyang Xue, Zhou Zhao, and Deng Cai. Unifying the video and question

attentions for open-ended video question answering. IEEE Transactions on Image
Processing, 26(12):5656–5666, 2017.

[49] Hongyang Xue, Wenqing Chu, Zhou Zhao, and Deng Cai. A better way to attend:
Attention with trees for video question answering. IEEE Transactions on Image
Processing, 27(11):5563–5574, 2018.

[50] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba,
and Joshua B Tenenbaum. Clevrer: Collision events for video representation and
reasoning. arXiv preprint arXiv:1910.01442, 2019.

[51] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali
Farhadi, and Yejin Choi. Merlot: Multimodal neural script knowledge models.

Advances in Neural Information Processing Systems, 34:23634–23651, 2021.
[52] Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Moham-

madreza Salehi, Aditya Kusupati, Jack Hessel, Ali Farhadi, and Yejin Choi. Merlot
reserve: Neural script knowledge through vision and language and sound. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 16375–16387, 2022.

[53] Zhou Zhao, Qifan Yang, Deng Cai, Xiaofei He, Yueting Zhuang, Zhou Zhao, Qifan
Yang, Deng Cai, Xiaofei He, and Yueting Zhuang. Video question answering via
hierarchical spatio-temporal attention networks. In IJCAI, volume 2, 2017.

[54] Zhou Zhao, Zhu Zhang, Shuwen Xiao, Zhou Yu, Jun Yu, Deng Cai, Fei Wu, and
Yueting Zhuang. Open-ended long-form video question answering via adaptive
hierarchical reinforced networks. In IJCAI, volume 2, page 8, 2018.

4475



Dynamic Spatio-Temporal Modular Network for VideoQuestion Answering MM ’22, October 10–14, 2022, Lisboa, Portugal

A MORE EXPERIMENTAL RESULTS
A.1 Baselines in Temporal Module Evaluation
We implement baselines that randomly generate predictions to
simulate the function of themodule for temporal module evaluation:
(1) TemporalFilter Module uses Kendall’s 𝜏 coefficient as the
metric. Therefore we randomly generate an index set as our base-
line.
(2) TemporalLocalizeModule uses Intersection-over-union (IOU)
as the metric. As shown in Figure 4(a), we randomly select an index
𝑎 as the boundary and a direction 𝑑 , then we highlight the frames
guided by the boundary and the direction.
(3) Temporalbetween Module uses Intersection-over-union (IOU)
as the metric. As shown in Figure 4(b), we randomly select two
indexes 𝑎 and 𝑏 as the boundary, then we highlight the frames
between the two indexes.
(4) CompareDuration Module uses Intersection-over-union (IOU)
as the metric. We randomly highlight or mask each frame for our
baseline.

TimelineIndex a

Direction d
𝒂𝒕

(a) 

TimelineIndex a

𝒂𝒕

(b) 
Index b

Figure 4: The generation of baselines. 𝑎𝑡 represents the
temporal attention map. Figure 1a is the baseline of
TemporalLocalize module, and Figure 1b is the baseline of
TemporalBetween module.

A.2 Space and Time Complexity
We have listed our model’s training cost and other training de-
tails in Section 4.1 of the main paper. To further demonstrate our
model’s time and space complexity, we calculate the number of
parameters and inference time of our model and other baselines. In
order to maintain consistency across different methods, we run the
experiments on the same machine (Intel(R) Xeon(R) Gold 6240 CPU,
Nvidia GTX 3090 GPU) with batch size 32. We use the balanced
test split in AGQA for inference, and the number of QA pairs is
1,041,600. As listed in Table 8, we can find as follows:

(i) The numbers of parameters of all the models are of the same
order of magnitude.

(ii) The inference time results can be categorized into three
classes: (1) HQGA, which needs less than 1 hour. (2) DSTN (ours),
DualVGR, HCRN, and PSAC all need a couple of hours. (3) HME,
which needs significantly more time than other baselines.

To conclude, splitting the reasoning process of a problem into
multiple sub-tasks does not lead to a significant increase in time or
space complexity compared with other state-of-the-art baselines.

B IMPLEMENTATION DETAILS OF MODULES
We design four types of modules: spatial attention modules, tempo-
ral attention modules, logic modules, and answer models. Table 9
lists all the notations we use, and then Table 10 lists implementation
details of all modules.

Table 8: Space and time complexity of models.

Method Number of parameters (M) Inference time (hours) Accuracy

PSAC 39.34 1.3 42.44

HME 42.89 32.5 46.47

HCRN 41.46 1.7 47.82

DualVGR 14.24 1.2 47.80

HQGA 11.79 0.7 47.48

DSTN (ours) 36.87 4.0 49.60

Table 9: Notations and corresponding meanings.

Notation Meaning

𝑎
(𝑖𝑛)
𝑡 input temporal attention map

𝑎
(𝑖𝑛)
𝑠 input spatial attention map

𝑎
(𝑜𝑢𝑡 )
𝑡 output temporal attention map

𝑎
(𝑜𝑢𝑡 )
𝑠 output spatial attention map

𝑒𝐶 embedding of concept 𝐶

𝑒 (𝑜) embedding of object concept

𝑒 (𝑟 ) embedding of relation concept

𝑒 (𝑡 ) embedding of temporal order concept

𝑒 (𝑑) embedding of duration concept

𝑎𝑛𝑠 an one-dimensional score vector for all possible answers

𝑎𝑛𝑠 (𝑖𝑛) input 𝑎𝑛𝑠

𝑎𝑛𝑠 (𝑜𝑢𝑡 ) output 𝑎𝑛𝑠

{ } a list, {𝑎} represents a list of 𝑎
𝑎 intermediate attention map results

𝑥𝑣 visual features

Conv convolution operator

𝑊 weight matrix

⊙ element-wise product operator

MeanofSameRel for each relation, calculate the average of related attention maps

Sigmoid Sigmoid activation function

ReLU ReLU activation function

PrefixSum
PrefixSum(𝑥) = 𝑦 = {𝑦𝑖 =

∑𝑖
𝑗=1 𝑥 𝑗 }, where 𝑦𝑖 and 𝑥 𝑗 are the 𝑖𝑡ℎ

and 𝑗𝑡ℎ number in 𝑦 and 𝑥 , respectively

SuffixSum
SuffixSum(𝑥) = 𝑦 = {𝑦𝑖 =

∑𝑇
𝑗=𝑖 𝑥 𝑗 }, where 𝑦𝑖 and 𝑥 𝑗 are the 𝑖𝑡ℎ

and 𝑗𝑡ℎ number in 𝑦 and 𝑥 respectively.
𝑇 is the length of 𝑥

Softmax Softmax function

𝑑 (𝑥,𝑦) distance between 𝑥 and 𝑦 using inner product
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Table 10: The list of modules in our model. The modules are categorized into five categories (including Auxiliary modules) and
implemented by different functions. Meanings of each notation are listed in Table 9.

Module Type Module Name Inputs Outputs Implementation Details

Spatial
Attention

FindObj

𝑒𝐶 , 𝑎 (𝑖𝑛)𝑠 , 𝑎 (𝑖𝑛)𝑡 𝑎
(𝑜𝑢𝑡 )
𝑠 𝑎

(𝑜𝑢𝑡 )
𝑠 = Conv2

(
𝑊2 (𝑎 (𝑖𝑛)𝑠 ⊙ 𝑎 (𝑖𝑛)𝑡 ⊙ 𝑥𝑣) ⊙ Conv1 (𝑥𝑣) ⊙𝑊1𝑒𝐶

)
Rel2[Obj|Subj]
Loc2[Obj|Subj]

DetectObj {𝑒 (𝑜) }, 𝑎 (𝑖𝑛)𝑠 , 𝑎
(𝑖𝑛)
𝑡 {𝑎 (𝑜𝑢𝑡 )𝑠 } {𝑎 (𝑜𝑢𝑡 )𝑠 } = FindObj

(
𝑒𝐶 = {𝑒 (𝑜) }, 𝑎 (𝑖𝑛)𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
DetectAct {𝑒 (𝑜) }, {𝑒 (𝑟 ) }, 𝑎 (𝑖𝑛)𝑠 , 𝑎 (𝑖𝑛)𝑡 {𝑎 (𝑜𝑢𝑡 )𝑠 }

{𝑎𝑠 } = FindObj
(
𝑒𝐶 = {𝑒 (𝑜) }, 𝑎 (𝑖𝑛)𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
{𝑎 (𝑜𝑢𝑡 )𝑠 } = Rel2Subj

(
𝑒𝐶 = {𝑒 (𝑟 ) }, 𝑎 (𝑖𝑛)𝑠 = {𝑎𝑠 }, 𝑎 (𝑖𝑛)𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
DetectRel {𝑒 (𝑜) }, {𝑒 (𝑟 ) }, 𝑎 (𝑖𝑛)𝑠 , 𝑎 (𝑖𝑛)𝑡 {𝑎 (𝑜𝑢𝑡 )𝑠 }

{𝑎𝑠 } = DetectAct
(
𝑒𝐶 =

(
{𝑒 (𝑜) }, {𝑒 (𝑟 ) }

)
, 𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 = 𝑎

(𝑖𝑛)
𝑡

)
{𝑎 (𝑜𝑢𝑡 )𝑠 } = MeanofSameRel ({𝑎𝑠 })

Auxiliary

Exist 𝑎
(𝑖𝑛)
𝑠 𝑎

(𝑜𝑢𝑡 )
𝑡 𝑎

(𝑜𝑢𝑡 )
𝑡 = Sigmoid

(
𝑊1𝑎

(𝑖𝑛)
𝑠

)
ComputeDuration 𝑎

(𝑖𝑛)
𝑠 duration 𝑎𝑡 = Exist

(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

)
duration = sum(𝑎𝑡 )

Temporal
Attention

TemporalLocalize 𝑒 (𝑡 ) , 𝑎 (𝑖𝑛)𝑠 𝑎
(𝑜𝑢𝑡 )
𝑡

𝑎𝑡 = ReLU
(
Exist

(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

))
𝑎
(𝑜𝑢𝑡 )
𝑡 =

{
SuffixSum(𝑎𝑡 ), if 𝑑 (𝑒 (𝑡 ) , 𝑏𝑒 𝑓 𝑜𝑟𝑒) < 𝑑 (𝑒 (𝑡 ) , 𝑎𝑓 𝑡𝑒𝑟 )
PrefixSum(𝑎𝑡 ), otherwise

TemporalFilter 𝑒 (𝑡 ) , 𝑎 (𝑖𝑛)𝑠 𝑎
(𝑜𝑢𝑡 )
𝑠

𝑎𝑡 = Exist
(
𝑎
(𝑖𝑛)
𝑠 = 𝑎

(𝑖𝑛)
𝑠

)
𝑎
(𝑜𝑢𝑡 )
𝑠 =

{
𝑎
(𝑖𝑛)
𝑠 ⊙ [Softmax(𝑎𝑡 − 𝛽)], if 𝑑 (𝑒 (𝑡 ) , 𝑓 𝑖𝑟𝑠𝑡) > 𝑑 (𝑒 (𝑡 ) , 𝑙𝑎𝑠𝑡)
𝑎
(𝑖𝑛)
𝑠 ⊙ [Softmax(𝑎𝑡 + 𝛽)], otherwise

TemporalBetween {𝑎 (𝑖𝑛)𝑠 } 𝑎
(𝑜𝑢𝑡 )
𝑡

{𝑎1𝑡 } = TemporalLocalize
(
𝑒 (𝑡 ) = {𝑏𝑒 𝑓 𝑜𝑟𝑒, 𝑎𝑓 𝑡𝑒𝑟 }, 𝑎 (𝑖𝑛)𝑠 = {𝑎 (𝑖𝑛)𝑠 }1

)
{𝑎2𝑡 } = TemporalLocalize

(
𝑒 (𝑡 ) = {𝑏𝑒 𝑓 𝑜𝑟𝑒, 𝑎𝑓 𝑡𝑒𝑟 }, 𝑎 (𝑖𝑛)𝑠 = {𝑎 (𝑖𝑛)𝑠 }2

)
𝑎
(𝑜𝑢𝑡 )
𝑡 = max

(
min

(
{𝑎1𝑡 }1, {𝑎2𝑡 }2

)
,min

(
{𝑎1𝑡 }2, {𝑎2𝑡 }1

) )
CompareDuration 𝑒 (𝑑) , {𝑎 (𝑖𝑛)𝑠 } 𝑎

(𝑜𝑢𝑡 )
𝑠

{𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} = Softmax
(
ComputeDuration

(
𝑎
(𝑖𝑛)
𝑠 = {𝑎 (𝑖𝑛)𝑠 }

))
𝑎
(𝑜𝑢𝑡 )
𝑠 =


Sum

(
{𝑎 (𝑖𝑛)𝑠 } ⊙ {𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}

)
, if 𝑑 (𝑒 (𝑑) , 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 ) > 𝑑 (𝑒 (𝑑) , 𝑙𝑜𝑛𝑔𝑒𝑟 )

Sum
(
{𝑎 (𝑖𝑛)𝑠 } ⊙ {1 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}

)
, otherwise.

Logic
And 𝑎𝑛𝑠

(𝑖𝑛)
1 , 𝑎𝑛𝑠

(𝑖𝑛)
2 𝑎𝑛𝑠 (𝑜𝑢𝑡 )

𝑠𝑖𝑚 = Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)1 ) ⊙ Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)2 )
𝑎𝑛𝑠 (𝑜𝑢𝑡 ) = padding(𝑠𝑖𝑚, 1 − 𝑠𝑖𝑚)

Xor 𝑎𝑛𝑠
(𝑖𝑛)
1 , 𝑎𝑛𝑠

(𝑖𝑛)
2 𝑎𝑛𝑠 (𝑜𝑢𝑡 )

𝑠𝑖𝑚 = Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)1 ) ⊙ (1 − Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)2 )) + (1 − Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)1 )) ⊙ Sigmoid(𝑎𝑛𝑠 (𝑖𝑛)2 )
𝑎𝑛𝑠 (𝑜𝑢𝑡 ) = padding(𝑠𝑖𝑚, 1 − 𝑠𝑖𝑚)

Answer

Query 𝑎
(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) = max(𝑊𝑇

𝑦 (𝑊 (𝑎
(𝑖𝑛)
𝑠 ⊙ 𝑎 (𝑖𝑛)𝑡 ⊙ 𝑥𝑣)))

QueryCompare 𝑎𝑛𝑠
(𝑖𝑛)
1 , 𝑎𝑛𝑠

(𝑖𝑛)
2 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) = padding(𝑎𝑛𝑠 (𝑖𝑛)1 , 𝑎𝑛𝑠

(𝑖𝑛)
2 )

Choose 𝑒𝐶1 , 𝑒
𝐶
2 , 𝑎
(𝑖𝑛)
𝑠 , 𝑎

(𝑖𝑛)
𝑡 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) =𝑊𝑇

𝑦

(
𝑑

(
𝑊1𝑒𝐶1 ,𝑊3 (𝑎 (𝑖𝑛)𝑠 ⊙ 𝑎 (𝑖𝑛)𝑡 ⊙ 𝑥𝑣)

)
⊙𝑊1𝑒𝐶1 + 𝑑

(
𝑊2𝑒𝐶2 ,𝑊3 (𝑎 (𝑖𝑛)𝑠 ⊙ 𝑎 (𝑖𝑛)𝑡 ⊙ 𝑥𝑣)

)
⊙𝑊2𝑒𝐶2

)
In 𝑒𝐶 , 𝑎

(𝑖𝑛)
𝑠 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) 𝑎𝑛𝑠 (𝑜𝑢𝑡 ) = padding

(
𝑑 (𝑊1𝑒𝐶 ,𝑊2 (𝑎 (𝑖𝑛)𝑠 ⊙ 𝑥𝑣)),−𝑑 (𝑊1𝑒𝐶 ,𝑊2 (𝑎 (𝑖𝑛)𝑠 ⊙ 𝑥𝑣))

)
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