
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 1

DeepLogic: Joint Learning of Neural Perception
and Logical Reasoning

Xuguang Duan,Xin Wang, Member, IEEE, Peilin Zhao,Guangyao Shen,Wenwu Zhu, Fellow, IEEE

Abstract—Neural-symbolic learning, aiming to combine the perceiving power of neural perception and the reasoning power of symbolic
logic together, has drawn increasing research attention. However, existing works simply cascade the two components together and
optimize them isolatedly, failing to utilize the mutual enhancing information between them. To address this problem, we propose
DeepLogic, a framework with joint learning of neural perception and logical reasoning, such that these two components are jointly
optimized through mutual supervision signals. In particular, the proposed DeepLogic framework contains a deep-logic module that is
capable of representing complex first-order-logic formulas in a tree structure with basic logic operators. We then theoretically quantify the
mutual supervision signals and propose the deep&logic optimization algorithm for joint optimization. We further prove the convergence of
DeepLogic and conduct extensive experiments on model performance, convergence, and generalization, as well as its extension to the
continuous domain. The experimental results show that through jointly learning both perceptual ability and logic formulas in a weakly
supervised manner, our proposed DeepLogic framework can significantly outperform DNN-based baselines by a great margin and beat
other strong baselines without out-of-box tools.

Index Terms—Connectionism and neural nets; Perceptual reasoning

F

1 INTRODUCTION

N EURAL—symbolic learning, which targets combining
the perception ability of deep neural networks (DNNs)

and the reasoning ability of symbolic reasoning systems,
has attracted increasing attention in the research community.
On the one hand, although current DNNs have achieved
promising results in various domains such as computer
vision [1] and natural language processing [2], they can
hardly handle logical reasoning tasks directly [3], [4]. On the
other hand, though traditional symbolic logical reasoning
approaches have concrete theories and rich applications in
dealing with discrete logic [5], [6], they are not designed to
deal with semantic data such as raw images and text.

Therefore, some preliminary works have been trying to
combine neural perception with symbolic logical reason-
ing [7], [8] . Existing works cascade symbolic systems to deep
neural models [9], constructing DNN structures with logic
constrains [10] or developing differentiable logic learning
methods [11], [12], [13]. However, they optimize the two
parts isolatedly, failing to utilize the correlation between the
two cascaded parts, thus would be hard to reach the global
optimal.

In this work, we explore the joint learning of neural
perception and logical reasoning, where the neural per-
ception component provides guidance to learn logic rules
while the logic formulas obtained from the logical reasoning
component, in turn, supervise the neural perception learning,
i.e., these two components can mutually enhance each other.
Nevertheless, achieving this purpose is challenging given the

• Xuguang Duan, Xin Wang, Guangyao Shen and Wenwu Zhu are with the
Department of Computer Science and Technology, Tsinghua University,
Beijing, China. Peilin Zhao is with Teccent AI Lab.

• Xin Wang and Wenwu Zhu are corresponding authors.
E-mail: duan xg@outlook.com, {xin wang, wwzhu}@tsinghua.edu.cn,
thusgy2012@gmail.com, masonzhao@tencent.com

essential differences between continuous feature space used
by neural perception models and discrete symbolic space
adopted by logical reasoning algorithms.

To tackle the challenge, we propose a joint learning
framework DeepLogic for neural-symbolic reasoning, which
contains a deep-logic module (DLM) and a deep&logic opti-
mization (DLO) algorithm. In particular, DLM is a learnable
formula tree derived from first-order logic (FOL) and can
automatically represent logic rules with FOL formulas. DLO
is a joint-optimization algorithm that can mutually enhance
neural perception and logical reasoning through iteratively
quantifying the mutual supervision signals between the two
parts. With our proposed DeepLogic framework, we can
jointly learn both perception ability and the logic formula
with a 1-bit supervision signal indicating whether the se-
mantic inputs satisfy the given formula or not, as shown
in Fig. 1. We conduct extensive experiments to demonstrate
several advantages of our proposed DeepLogic Framework.
To evaluate our methods, we conduct extensive experiments
include:

1) Evaluating model convergence and performance with a
number addition task based on the MNIST dataset;

2) Testing the generalization ability of DeepLogic with
multiple rules and multiple attributes;

3) Relaxing DLM with differentiable logic operators [14]
on the well-known RAVEN dataset [15].

To summarize, this paper makes the following contribu-
tions:

• We propose the DeepLogic framework with a theoret-
ical convergence guarantee, which conducts the joint
learning of neural perception and logical reasoning such
that they can mutually enhance each other to boost
the performance and explainability of neural-symbolic
reasoning.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 2

• We propose the deep-logic module (DLM) which de-
rives from first-order logic, capable of constructing and
learning logic formulas from basic logic operators.

• We propose the deep&logic optimization (DLO) algo-
rithm to guarantee the joint learning of neural perception
and logical reasoning through theoretically quantifying
the mutual supervision signals between them.

The remainder of this paper is organized as follows. We
review related works in Sec. 2 and present an overview of
our proposed DeepLogic framework in Sec. 3. We describe
the deep-logic module (DLM) and deep&logic optimization
(DLO) algorithm in detail in Sec. 4 and Sec. 5, respectively,
followed by our extensive experiment in Sec. 6 to validate
the superiority of our proposed approach in both model
performance and explainability. Finally, we conclude the
whole paper in Sec. 7.

2 RELATED WORKS

With the development of deep learning, the researchers find
that pure DNN methods perform quite poor when it comes
to those tasks requiring complex reasoning and generalizing
ability [4], [7], [16], [17], and thus the communities try to seek
help from traditional symbolic methods, which, however,
could not handle semantic data [18], [19], [20].

On the one hand, numerous efforts have been done to
integrate reasoning into deep neural networks. One line
of work is to design new structures to enable DNN with
reasoning ability [10], [16], [21], [22], [23]. Besides, in neural
modular networks [24], the fully blackbox neural networks
are reorganized in a rational way with logical supervision.
The modularization endows each module with a specific
function and the whole structure can thus be parsed into
human-readable symbolic structures (e.g., programs [25] or
parsing tree [24], [26]). Though these works can achieve a
certain level of reasoning and generalization, they are still
blackbox models in essence and suffer from the limitation of
requiring extra annotations.

On the other hand, treating deep neural networks as
a powerful component of the symbolic system also draws
attention from the community [11]. Along with this work,
designing a differentiable version of the current symbolic
system attracts lots of research interests. In particular, [11]
extends Prolog [27] by employing DNN as a new Prolog
predicate to deal with those non-symbolic inputs. [13]
proposes a differentiable Forth interpreter and [12] proposes
the ∂ILP system that learns first-order-logic clauses with a
differentiable SAT solving strategy.

Further, letting the neural network unleash its strength
to be a powerful perception model and employing the
complex reasoning part to handle the symbolic system
has gradually become a new consensus [7], [8], [28]. One
straightforward way is to cascade the two systems in a way
that the neural network detects objects from semantic inputs and
the symbolic executor reason over the symbolic representations of
objects to find the final answer [7], [8]. Other works [9], [29]
follow this line of research and solve the Visual Question
Answering (VQA) tasks on CLEVR dataset [30], where a
pre-trained MASK-RCNN [31] is used as the perception
model to detect objects, and a predefined program is used
to reason over the detected objects to seek the final answer.

Such types of methods either rely heavily on the accuracy of
the pre-trained neural network or require extra annotations
for the intermediate symbol representation. [7] and [28]
ease the extra annotation costs through their proposed
solutions. [7] uses an external Prolog [27] program to reason
over the “pseudo-labels” generated by the neural network,
and fixes those “inconsistency” labels with a zero-order
optimization [32] method. [28] further introduces a grammar
model to supervise the training of the perception model and
gives a formal view of what the “supervision signal” could
be. However, [7] and [28] rely on a predefined out-of-box
Prolog program or a grammar model, which makes them
difficult to generalize to other tasks.

In this paper, we take one step further, requiring that
the symbolic system should also be learned rather than
predefined. This strategy will be much more challenging
while more attractive when it comes to new scenarios. We
propose to jointly learn the neural network and the logic
system by iteratively utilizing their mutual correlation.

3 THE DEEPLOGIC FRAMEWORK

Neural-symbolic learning targets the problem of simul-
taneous perception and reasoning, where the inputs are
usually semantic data and the desired output is a complex
relationship of inputs previously unknown to the algorithm
(e.g., some logical relationship between a certain attribute).
We note that the symbolic attributes of the semantic inputs to
be learned should not be given. Otherwise, this task would
be fully disentangled into two separate parts, which would
degenerate into two simple sub-tasks. In this section, we will
mathematically describe the problem formulation and mod-
eling of our proposed DeepLogic framework, followed by a
brief introduction of our proposed Deep&Logic Optimization
(DLO) algorithm for joint learning the neural perception and
symbolic reasoning. In the following, a bold letter (e.g., z)
represents a vector, and a normal letter (e.g., z) represents a
scalar.

3.1 Formulation

Formally, given a semantic input x (e.g., an image) and a
label y ∈ {0, 1} indicating whether the symbolic attributes z
of x meet a certain latent logical concept ∆? or not. The goal
of neural-symbolic learning is to simultaneously learn p(y|x)
as well as explicitly discover the correct symbolic concept ∆?

and the attribute mapping functions from x to z. In particular,
we decouple p(y|x) by introducing symbolic attributes z as
follows:

p
(
y|x
)

=
∑
z∈Z

pθ(z|x)︸ ︷︷ ︸
neural

· pφ(y|{zi})︸ ︷︷ ︸
symbolic

, (1)

where the attribute mapping pθ(z|x) is a neural network
while the logical module pφ(y|z) is modeled with a symbolic
system ∆φ. We rewrite z as {zi} here to emphasize the role
of each symbol zi.

For example, to solve VQA tasks, x could be the input
image and question, z is a hidden program, and y is the final
answer [9], [29].

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 3

neural perception

y ↤ Δ![𝑧]

logic reasoning

𝑧~𝑝"(⋅ |𝑥)

ℒ!(𝑥, 𝑦∗) = 	𝑑 𝑧, Δ#$% 𝑦; 𝑦∗ 𝒥# 𝑥, 𝑦∗ = 𝔼 Δ# 𝑧|𝑥 ⊨ 𝑦∗

𝑥 𝑧 𝑦

𝑦∗𝑥 𝑧 𝑦 𝑦∗𝑥 𝑧 𝑦
𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛	ℒ! 𝜙 = 𝑎𝑟𝑔𝑚𝑎𝑥	𝒥"

learn 𝜃 with Δ!#$	𝑎𝑠	𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛 learn 𝜙 with 𝑝"	𝑎𝑠	𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛

1
2
3

+ 𝜅𝜅+ + 𝜅

====

1 2 3

Fig. 1: The proposed DeepLogic framework. The forward pass (top) is processed sequentially from semantic input x through
intermediate symbolic attribute z to the final deductive label y. For example, to reason on the relationship between ,

and . First, the system recognize these images into symbols as:Ê, Ë and Ì with the neural perception model. Then, the
logic reasoning model reasons the relationship between Ê, Ë and Ì, and concludes that they meet the logic formula: “Ê

add Ë equals Ì”. In the backward pass (bottom left / bottom right), the parameters of perception model θ and symbolic
system φ are iteratively optimized with the other one as supervision, respectively.

3.2 Modeling the Neural Perception (pθ)
The best choice for pθ is a set of neural network nnθ(·) to
predicate hidden symbolic attributes z from x:

pθ(z|x) =
∏
i

σ (nnθ,i(x))zi

=
∏
i

exp (nnθ,i(x)zi)∑
z′∈Zi exp (nnθ,i(x)z′)

,
(2)

where σ(nnθ,i(x)) maps x into a distribution over the
symbol set Zi for the i-th attribute, where nnθ,i(x) is a DNN
that has |Zi| outputs while σ is the softmax function that
normalizes the DNN output. nnθ,i(x)zi and σ(nnθ,i(x))zi
are the output value of raw DNN output and the normalized
probability.

3.3 Modeling the Logical Reasoning (pφ)
pφ is designed to conduct logical reasoning with explicit logic
formulas. Denote ∆φ as such a symbolic system, pφ(y|z) is
given as:

pφ(y|z) =

{
1, ∆φ[{zi}] |= y
0, otherwise

. (3)

∆φ[{zi}] |= y means ∆φ[{zi}] is consistent with y. If y
is a boolean constant, then ∆φ[{zi}] |= y is equivalent to
∆φ[{zi}] = y.

Dai et al. [7] model ∆φ as a predefined Prolog [27]
program, while Li et al. [28] regard ∆φ as the python eval
function to conduct arithmetic computation. In this

work, our proposed DeepLogic framework differs from them
through learning a “symbolic system” from scratch instead
of utilizing a predefined symbolic system. We design a novel
learnable deep-logic module to achieve this purpose, which
is able to conduct logical reasoning with the learned explicit
logic formulas.

3.4 Joint Learning of Neural Perception and Logical
Reasoning

To complete the joint learning of neural perception and
logical reasoning, we further propose a joint-optimization
algorithm, i.e., Deep&Logic Optimization (DLO), to jointly
learn the perception model pθ and symbolic system pφ. As
shown in Fig. 1, the optimization of neural perception and
logical reasoning are conducted iteratively. When optimizing
the neural network pθ, the symbolic system ∆φ together
with the true label y∗ act as the supervision to provided
pseudo label z∗. When optimizing the symbolic system ∆φ,
the neural network works as a sampler to sample z from
prior x to judge the performance of ∆φ. More details of this
optimization procedure can be found in Sec. 5.

4 THE DEEP-LOGIC MODULE (DLM)

In this section, we discuss our proposed deep-logic module
(DLM) which is capable of modeling neural perception and
logical reasoning. In particular, the proposed DLM benefits
in the following advantages:

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 4

• DLM depends on no external knowledge and is easy to
implement;

• DLM can adaptively fit for various scenarios through
stacking the logic layers from shallow to deep;

• DLM is able to utilize supervised information to op-
timize both pθ and pφ, ensuring the joint learning of
neural perception and logical reasoning.

This section is organized as follows: in Sec 4.1, we provide
preliminary first order logic (FOL) concepts used in this work,
followed by our introduction in Sec 4.2 on the proposed deep-
logic module capable of implementing all the components
described in Sec 4.1 and preserving differentiability.

4.1 Preliminaries on FOL

4.1.1 Terms and Formulas
First order logic (FOL), also known as predicate logic 1,
is a formal language that enables us to quantify and
reason on relationships between entities. For example,
“father’s father is grandfather” could be formulated
using relationships Father(X,Y), GrandFather(X,Y)
as:“GrandFather(X,Y) ← ∃ Z Father(X,Z) ∧
Father(Z,Y)”. Moreover, if we replace the variable
X,Y with John and Nash, then the formula could be used to
determine whether the two “entities” John and Nash meet
the relation GrandFather(·,·) or not.

Formally, those entities are called Terms, which could be
predefined or derived from other terms. Those relationships
are represented with Formulas, which could be a relation-
ship between entities or the logical combination of several
relationships. A FOL model is defined as (T ,F) where T and
F are the set of all possible terms and formulas, respectively.
To make this paper self-contained, we formally define several
concepts mathematically as follows:

Definition 1 (Terms T). Terms are defined recursively:
1) Constants and Variables are (atomic) terms, where a

constant z is a symbol representing a concrete object and
Z is a variable representing an indeterminate object.

2) Given r terms t1, t2, ...tr and an r-artriy operation f :
T r 7→ T , then f(t1, t2, ...tr) is also a term.

Definition 2 (Formulas F). Formulas are also defined
recursively:

1) Given an r-artiy predicate p : T r 7→ {True, False},
and r terms t1, t2, ...tr, then p(t1, t2, t3, ...tr) is an
(atomic) formula.

2) Given formula P , Q, and connective Ξ ({∧,∨,¬}), PΞQ
is also a formula.

Definition 3 (Logic Grounding). The value of a formula
could be True, False or indeterminate. By replacing
the variable within a formula with a constant, we are able to
eliminate the state of indeterminate and obtain a deter-
mined value to indicate whether this constant fits the formula
or not. We denote this process as ∆[{z1/Z1, z2/Z2, ..}], which
indicates “grounding variable Zi to a constant zi”, where
Z and z are the set of variables and constants, respectively.
Sometimes Z can be omitted, and therefore the grounding
process is denoted as ∆[{z1, z2, · · · }].

1. See [33, pp.3/pp.15] for more details.

Definition 4 (Degree of Term and Formula). The degree, i.e.,
ℵ, is used to model the complexity of a term or formula,
where an atomic term has degree 0, and the degree of other
terms and formulas are defined as the maximum degree of
their children plus one:

ℵ (f(s1, s2, ...sr)) = max
i∈[1,r]

ℵ(si) + 1. (4)

4.1.2 Recursive Definition of A FOL Model
Given the definition of terms, formulas, and other related
concepts shown above, we could formally define a FOL
model recursively.

Specifically, the atomic terms are (Def. 1):

T0 = {zi} ∪ {Zi}, (5)

where zi, Zi are constant and variable respectively, then we
have T =

⋃
k<∞ Tk, and

Tk = {f(t1, t2, ...trf)|f ∈ F, ti ∈ T<k}. (6)

Here F is the set of operations, rf is the arity of operation f ,
and T<k ≤

⋃
j<k Tj .

Similarly, formulas are:

F0 = {p(t1, t2, ...trf)|p ∈ P, ti ∈ T }, (7)
Fk = {Ξ(fi, fj)|Ξ ∈ {∧,∨,¬}, fi, fj ∈ Fk−1}, (8)

where P is the set of predicates, {∧,∨,¬} is the set of
connectives, and F0 is the set of atomic formulas.

We further unify the definition of terms and formulas,
given that they have the same format of recursion. For each
step of the recursion, we denote the input (term/formula)
set as S(i), and the operation/relationship/connectives set
as Ψs, then the output set can be formulated as:

S(o) = {ψ(t1, t2, ...trf)|ψ ∈ Ψs, ti ∈ S(i)}, (9)

Example. We give a full example of “arithmetic” FOL model
to illustrate the aforementioned recursive definition. Let T0 =
{0, 1, X, Y } where 0 and 1 are constants representing 0 (zero)
and 1 (one), X and Y are variables; F = {+,×} where “+” and
“×” are the 2-arity operators add and multiple, respectively;
P = {=} where “=” is the 2-arity predicate equal and define
“= (1,+(0, 1)) 7→ True”. Based on Eq. (5)-(8):

T0 ={0, 1, X, Y },
T1 ={+(0, 0),+(0, 1),+(1, 1),+(X,Y),+(X, 1),

× (0, 0),×(0, 1),×(1, 1),×(X,Y),×(X, 1) · · · }
T2 ={+ (0,+(0, 1)) ,+ (+(0, 1),+(X, 1)) · · · },
· · ·

F0 ={= (0, 1),= (1,+(0, X)), · · · }
F1 ={(= (0, 1)) ∧ (= (1,+(0, X))) , · · · }
· · ·

With the above recursive definition, we could find that T =⋃
k<∞ Tk would represent the whole set of integers (N), where

“+(1, 1)” represents 2 (two), “+(1,+(1, 1))” represents 3
(three), respectively. Besides, the using of variables would enable
the representation of an indeterminate entity, e.g., ‘+(X, 1)”
represents “X plus one” for some integer X .
With the definition of “=”, we could find that the formula
“= (0, 1)” is False, while “= (+(1,+(0, 1)),+(1, 1))” is

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 5

𝑆!"#

𝑆!

𝑆!$#

a	𝜅 ⋅ 	operator

active	logic	operator
inactive	logic	operator

Ω!"#

Ω!

Ω!$#

BiLSTM

Training via sampling FOL Formulas; Testing with Selected Logic Formulas

𝑆!
(&)

𝑆!$#
(&)

𝑆(()

𝑆(&)

Ω 𝑠 = 1

A Logic layer (Eq.10). Different colors indicate
different operators. 𝑆(&) is the set of node s that Ω 𝑠 = 1.

(a) (b)

𝑎𝑟𝑔𝑚𝑎𝑥

logic path sampling

+

=

𝜅

Fig. 2: (a) A single Logic layer as defined in Eq. 10; (b) The illustration of deep-logic module (DLM) as is presented
in Sec. 4.2. After the learning process, those edges with the biggest weights are preserved, and we obtain the formula
“Eq(Add(Z1, Z2), Z3)”.

True if we apply the grounded formula “= (1,+(0, 1))” to
replace “+(0, 1)” with “1”. And the correctness of formula
“= (1,+(0, X)) ” depends on the value of X .
This recursive definition could finally define arithmetic over the
entire natural number N. Moreover, if we introduce abbreviated
notations such as “2 , +(1, 1), 3 , +(1,+(1, 1)), · · · ”.

Remark 4.1.1 (redundancy of the recursive definition).
The definition in Eq. (6), (8) would result in some redundant
definitions with respect to terms for the reason that different
layers would define the same term (Fig 3(c)). In this paper,
we remove the redundancy by constrain that the every
symbol in S(o)

k should have degree k. Formally: Sk ={
ψ(s1, s2, ...srf)|ψ ∈ Ψ, si ∈ S<k,ℵ(f(s1, s2, ...srf)) = k

}
.

The condition ℵ(f(s1, s2, ...srf)) = k indicates that at least one
input term should have degree k − 1, i.e., come from Sk−1. This
constraint could efficiently remove the duplication.

Remark 4.1.2 (complexity of the FOL model). The definitions
of terms and formulas depend on infinitely recursions, which is
intractable in real-world applications. Therefore, in this paper, we
configure the max-recursion steps of terms and formulas in the
same manner as other works [10], [12]. Based on the complexity
of tasks, the max-recursion can be adaptively changed to fit for
different complexities.

4.2 The Definition of the Deep-logic Module
With the definition in Eq. (5)-(9), it’s possible to define a FOL
model with a set of operations and predicates. However, it
would be very resource-consuming if we directly apply this
definition to enumerate all the possible items in the FOL
model (As in [12]). In this paper, we solve this problem with
the basic hypothesis that not all symbols are useful in the FOL
model, especially when our goal is to discover a specific formula
hidden in the data.

In the following, we introduce the deep-logic module
which realizes all the features discussed in Sec. 4.1, while
keeping the model complexity trackable simultaneously.

4.2.1 A logic Layer
From the definitions of terms and formulas (Eq. (5)-(8)), we
are able to find that both of them can be organized as a

triplet (S(i),Ω,S(o)) (Eq. (9)). Moreover, in Remark 4.1.1, we
show that these constraints on the degree of symbol can
remove redundancy. In this section, we introduce two extra
techniques to address Remark 4.1.2 gracefully:
• Firstly, we introduce a new operator keep κ(s1, s2, ..) ,
s1, and let P̄ = P ∪ {κ(·)}, F̄ = F ∪ {κ(·)}, where
κ(·) is the auxiliary operator (predicate or connective)
that copies the symbols from the previous layer. κ(·)
disentangles the direct dependency between disjoint
layers. With this auxiliary operator, S(i)

k could be S(o)
k−1

rather than
⋃
j<k S

(o)
j , i.e., the output set of the previous

layer is exactly the input set of the current layer, which
is quite useful to construct the deep-logic module layer
by layer.

• Secondly, with the hypothesis that not all the symbols are
useful, we do not need to compute the full output set.
In this work, we set a hyperparameter Lk and select Lk
symbols to conduct the computations, generating the
new output as a subset of the full output symbols: S̄(o)

k ⊂
S(o)
k where |S̄(o)

k | = Lk. During training, we sample
a subset of symbols as the output and optimize the
sampling distribution. During testing, the best sampling
path is picked out, which then acts as a determinate
formula.

Through these two techniques, the k-th logic layer can
be modified as

(
S(i)
k , Φ̄k,Ωk

)
where Ωk is the sampler

determining which output symbols should be computed.
S̄(o)
k can be represented as:

S̄(o)
k = {s ∈ S(o) : Ωk(s) = 1}, (10)

where Ωk(·) ∈ {0, 1} and
∑
ω∈Ωk

ω = Lk.
An illustration of the logic layer could be found in Fig. 2(a)

where different colors represent different operators and the
black lines indicate the symbols selected to construct S(o),
and the gray lines refer to those unselected symbols.

4.2.2 The Implementation of the Deep-logic Module
Sec. 4.2.1 illustrates the structure of a single logic layer, which
is designed to construct the deep-logic module through

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 6

being stacked multiple times. As remark 4.1.2 states, we
conduct finite recursion for terms and formulas based on
the task complexity wiht M term layers, and N + 1 formula
layers given that F0 based on T is always included.

When learning the structure parameter Λ = {Ωk}M+N+1
k=1 ,

it is impossible to learn the parameters of different layers
separately because they are coupled together. Therefore,
we model these coupled structure parameters through a
Recurrent Neural Network, which is a common practice for
the Neural Architecture Search [34]. Formally, we define a
sampler pφ, to sample Λ as follows:

hk = BiLSTMφ ({hj}j<k, {hj}j>k) , d

Ωk ∼Multinomial(· ;hk),
(11)

where BiLSTMφ is a bidirectional LSTM cell that models
dependencies between different layers. The model after
sampling is denoted as ∆φ to when concerning the sampling
parameter φ, and denoted as ∆Λ when concerning the
sampled structure Λ.
Training. Suppose we have a training dataset D, and our
goal is to optimize φ that ∆φ could best model the logic
underlying D. To achieve this, we sample structure variable
Λ from pφ as in Eq. (11), and optimize the expectation
performance of ∆Λ as follows:

φ? = arg max
φ

E
Λ∼pφ

 ∑
(z,y)∈D

1 (∆Λ[z] |= y)

 , (12)

where ∆Λ[z] |= y means that ∆Λ[z] is consistent with label
y (logic entailment).
Testing. Given φ∗, the best Λ can be selected as Λ∗ =
arg max
Λ ∼qφ∗

∑
(z,y)∈D 1 (∆Λ[z] |= y), and ∆Λ∗ is then used as

a fixed FOL formula.
As shown in Fig. 2 (b), in the training phase, those active

nodes are selected based on Ωk to form a logic tree. During
testing, the optimal path is selected to form a new logic tree
that best describes the underlying logic.

Compared with existing works, this parameterized model
in our proposed deep-logic module benefits in serving
as a learnable logic system that can learn formulas from
data rather than heavily depend on hand-crafted formulas.
Moreover, our learning process is less time-consuming than
fully enumerating methods [12] and independent of extra
tools such as Prolog [11], Inductive Logic Programming [12],
and Forth language [13], etc.

5 THE DEEP&LOGIC OPTIMIZATION (DLO)

We have introduced our proposed deep-logic module (DLM),
which is a general FOL-based formula learner capable of
learning symbolic relationships between symbols. In this
section, we will introduce how DLM together with deep neu-
ral networks (DNNs) is able to handle the neural-symbolic
tasks through absorbing semantic inputs and reasoning
over their symbolic relationships. We also present details
on the proposed deep&logic optimization (DLO) algorithm
to optimize DLM and DNNs jointly.

5.1 Optimization
Our goal is to maximize the log-likelihood of the true label
y∗ given x with Eq. (1):

J (x, y∗) = log p(y∗|x)

= log
∑
z∈Z

(
pθ(z|x) · pφ

(
y|{zi}

))
. (13)

The optimal θ and φ are obtained through the following
equation:

θ∗, φ∗ = arg max
θ,φ

∑
(x,y∗)∈D

J (x, y∗), (14)

where D is the task dataset. However, directly optimizing
θ and φ are intractable due to the non-differentiability in
essence.

5.1.1 Optimize pθ with pφ fixed
Applying the likelihood ratio trick to Eq. 13, the gradient of
θ becomes:

∇θJ (x, y∗) = ∇θ log p(y∗|x)

=
1

p(y∗|x)
∇θ

 ∑
z∈ZN

pθ(z|x) · pφ(y∗|z)


=
∑
z

pθ(z|x)pφ(y∗|z)∑
z′ pθ(z

′|x)pφ(y∗|z′)
∇θ log pθ(z|x)

= Ez∼p(·|x,y∗) [∇θ log pθ(z|x)] .
(15)

Moreover, if we assume that {zi} could be disentangled
easily (which is usually the case as different attributes are
irrelevant), then Eq. (15) could be further written as:

∇θJ (x, y∗) = Ez∼p(·|x,y∗) [∇θ log pθ,i(z|x)]

= Ez∼p(·|x,y∗)

[
∇θ log

∏
i

pθ,i(zi|x)

]

= Ez∼p(·|x,y∗)

[∑
i

∇θ,i log pθ,i(zi|x)

]
.

(16)

This means the gradient can be attribute-wisely decom-
posed, given that label y∗, the samples {zi}, as well as their
gradients can be separately computed. Now, the task turns
into efficiently sampling z from the posterior p(z|x, y∗). By
considering Eq. (1) and Eq. (3), p(z|x, y∗) can be rewritten
as:

p(z|x, y∗) =
pθ(z|x)pφ(y|z)∑
z′ pθ(z

′|x)pφ(y|z′)

=

{
pθ(z|x)∑

z′ pθ(z′|x)·1(∆φ[z′]|=y∗) , ∆φ[z] |= y

0, otherwise
(17)

where 1(·) is the indicator function. Eq. (16) and (17) show
how logical reasoning supervises neural perception: i.e.,
the logic module filters out z unsatisfying the “logic
entailment” requirement.

Qing et al. [28] propose an efficiently Monte Carlo
sampling method to estimate the gradient by sampling

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 7

Eq ⋅,⋅

Add ⋅,⋅

𝜅 ⋅

𝑧

And ⋅,⋅

(I) (II)

(III) (IV)

𝑝! 𝑝! 𝑝!

1 1 3

2

×

3

𝑝! 𝑝! 𝑝!

1 2 3

3 3

fo
rw

ar
d

fro
m

 𝑝
!

to
	Δ
"

Backw
ard w

ith BPTL

√
pred label

√ 𝐸𝑞*+ 𝑎, 𝑏, √ = 𝑏

Add*+	 𝑎, 𝑏, 𝑐∗ = 𝑐∗ − 𝑏

(a) (b) (c)

Fig. 3: (a) The forward pass of DeepLogic from pθ to ∆φ. (b) The backward pass of DeepLogic with the BPTL algorithm
(Alg. 1). (c) Illustration of several cases of deeplogic formulas: (I) the formula for “And(Eq(Z1, Z2), Eq(Z2, Z3))”; (II)
A case that two layers define the same term “Add(Z1, Z2)” (black line and gray line); (III) and (IV) ill /self-conflict case of
formulas. In (III) the equation is always “True”, and in (IV) the BPTL algorithm will encounter self-confliction in the middle
node.

z from the posterior distribution, where the logic mod-
ule p(y|z) is a pre-defined tree-structure Grammar mod-
ule (for arithmetic computation). Our proposed Deep-
Logic framework differs from the previous work in en-
abling pφ(y|z) to be learned from data instead of pre-
defined. However, the learned formula may not always
satisfy the true rules because it is possible to include
ill or even self-conflict formulas. For example, case(III)
in Fig. 3(c) means that Eq(Add(Z1, Z2), Add(Z1, Z2)) is
always True, thus resulting in this formula being ill and
making no sense. As for case(IV)in Fig. 3(c), the formula
Eq(Add(Z1, Z2), Add(Z2, Z3)) with Z = [Ê, Ë, Ì], and
y =True would obtain different correction from Ê and Ì

that try to correct Ë, which would always result in conflict
supervision for symbol Ë during the backward propagation.
We thus propose the Back Propagate Through Logic (BPTL)
algorithm taking these self-confliction into account to tackle
the challenge, as shown in Alg. 1.

The basic idea of Alg. 1 is to: 1) back-propagate label
y∗ through the deep-logic module by recursively rectifying
ψ−1({s(i)

i }; s(o)) for the input {s(i)
i } of operator ψ 2 such that

the output is s(o); 2) at the same time, track symbol changes to
eliminate those conflicting recursions. We continue this two
steps until we could correct z to z∗ such that ∆φ[z?] |= y?.

Moreover, we require the obtained z∗ to follow the
distribution defined in Eq. 17. By denoting the above process
of finding valid z∗ from z as Q(z∗|z) (See also the BPTL
function in Alg. 1), we add an acceptance probability as:

α(z, z∗) =
π(z∗)Q(z|z∗)

π(z∗)Q(z|z∗) + π(z)Q(z∗|z)
. (18)

It is easy to see that the transmission probability from any

2. Note that some operator ψ would have indeterminate inverse
operation, e.g., for the inverse operation a∗ ← Or−1(a,True;True),
the value of a∗ could be either True or False. When such situation
happens, we randomly select one.

two states z and z∗ are the same:

π(z)K(z, z∗) = π(z)Q(z∗|z)
π(z∗)Q(z|z∗)

π(z∗)Q(z|z∗) + π(z)Q(z∗|z)

= π(z∗)Q(z|z∗) π(z)Q(z∗|z)

π(z∗)Q(z|z∗) + π(z)Q(z∗|z)

= π(z∗)K(z∗, z),

where K(z, z∗) = Q(z∗|z)α(z, z∗) is the transmission
probability from z to z∗. By the detailed balanced condi-
tion [35], the whole process would efficiently sample z∗ from
π(z∗) = p(z∗|x, y∗).

In real implementation, as that Q(z|z∗) could be 0 if
∆φ[z] 2 y∗, we compute the value of α(z, z∗) by adding a
small δ to Q(z′|z), then we could obtain the following three
conditions:

1) π(z) = 0 & π(z∗) > 0⇒ α(z, z∗) = 1 (always accept).
2) π(z) = 0 & π(z∗) = 0⇒ α(z, z∗) = 0 (always reject).
3) π(z) > 0 & π(z∗) > 0⇒ α(z, z∗) ∈ (0, 1) (conditional).

This sampling process, from another view, generates
pseudo labels for nnθ(x). Every time pθ(·|x) gives a pre-
diction z, Alg. 1 finds one of its neighbors that fit the logic
constrains by inversely traveling through the logic tree ∆φ

to find z∗ = ∆−1
φ [y; y∗] as a pseudo label for optimization.

5.1.2 Optimize pφ with pθ fixed

Because pφ(·|{zi}) = ∆φ[{zi}] is non-differentiable with
respect to φ , φ cannot be simply optimized with gradient
ascend as θ does. Instead, we try to find φ∗ such that J (x, y∗)
is maximized:

φ∗ = arg max
φ

J (x, y∗) = arg max
φ

p(y∗|x)

= arg max
φ

∑
z∈ZN

pθ(z|x) · pφ(y∗|z)

= arg max
φ

E
z∼pθ(·|x)

[
pφ(y∗|z)

]
.

= arg max
φ

E
z∼pθ(·|x)

[
E

Λ∼pφ(·)

[
1(∆Λ[z] |= y∗

]]
,

(19)

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 8

Algorithm 1: Backpropagate Through Logic (BPTL)

Input: pθ(·|x); ∆φ; y? // prior; formula; target

Output: z? // z? ∼ p(|x, y?), see Eq.17

1 Function BPC(s):
/* s and its children remain unchanged */

2 if s is leaf node then
3 return {s←s}
4 else
5 Retrive ψs, child {ṡ1, ṡ2, ...ṡrs} // Eq.9

6 Nz← ∅
7 for ṡ ∈ {ṡi} do
8 Nz← Nz∪ BPC (ṡ)

9 return Nz

10 Function BPTL(s, ŝ):
/* s is supposed to be ŝ, find ∆z */

11 if s is leaf node then
12 return {s← ŝ} // reach leaf node;

13 else
14 Retrive ψs, child {ṡ1, ṡ2, ...ṡrs} // Eq.9

15 for ṡ ∼ {ṡi} do
/* note:s could be the same with ŝ */

16 Mz = BPTL (ṡ, φ−1
s (ṡ1, ...ṡ, ..., ṡrs ; ŝ))

17 Nz = BPC (ṡ1, ...ṡ, ..., ṡrs ; ŝ)
18 if Mz ./ Nz then
19 return Mz∪Nz // Mz/Nz no conflict

20 else
21 return RAND(∅) // Mz/Nz conflict

22 repeat
23 z′ ∼ p(·|x) // randomly sample a start point

24 repeat
25 ∆z =BPTL(∆φ[z′], y∗)
26 z′ = ∆z(z) // apply ∆z′ to z

27 until rand(0, 1)> α(z, z′) OR Reach max-try
28 if z is valid then
29 return z′ // find a valid z?

30 until Reach max-try
31 return ∅ // ∆φ could be self-conflict(Fig.3)

where p(y∗|x) is the distribution determined by Eq. (13).
After changing the order of the two expectations, Eq. (19)
could be rewritten as:

φ? = arg max
φ

E
Λ∼pφ(·)

[
Rθ(Λ)

]
, (20)

where
Rθ(Λ) = E

z∼pθ(·|x)

[
1(∆Λ[z] |= y∗

]
. (21)

.
Using the log gradient trick [36], the gradient to φ could be:

∇φJ ′(x, y∗) = E
Λ∼pφ(·)

[Rθ(Λ) · ∇φ log qφ(Λ)] , (22)

where J ′(x, y∗) = p(y∗|x) has the same optimal value with
J (x, y∗). This can also be regarded as the REINFORCE [37]
algorithm with a reward function Rθ(Λ), which means: the
perception model acts as a reward function, assigning

Algorithm 2: The Deep&Logic Optimization

Input: D = {(x, y∗)} // y∗ is the 1-bit label.

Output: pθ(·|x),∆φ[·] // perception/logic model

1 pθ ← MIN PRETRAIN(D′) // See Sec.5.2

2 repeat
/* Update φ while keeping θ fixed */

3 for (x, y∗ ∈ D) do
4 Λ ∼ pφ(·), z ∼ p(·|x) // sample data

5 Compute Rθ(Λ) // see Eq.21

6 φ← φ+∇φJ ′(x, y∗) // see Eq.22

/* Update θ while keeping φ fixed */

7 for (x, y∗ ∈ D) do
8 z ∼ pθ(·|x), z∗ ∼ Q(z∗|z) // See Alg.1

9 θ ← θ +∇θ log pθ(z
∗|x) // see Eq.16

10 until performance unchanged

higher rewards to formulas Λs more consistent with data
(x, y∗).

5.2 Pretraining pθ and Convergence Analysis
Based on Eq. (16) and (22), pθ and pφ can be learned
by alternatively optimizing θ and φ. However, alternative
optimization from random initialization makes both pθ and
pφ suffer from noisy gradients, and hard to converge. In
literature, [7] uses a predefined Prolog [27] program, while
[28] uses a python calculator as the logic model pφ. In this
paper, as our goal is to learn both pθ and pφ jointly, we face
bigger challenge than [7], [28] do.

To solve the above problem, we propose that pθ could be
pretrained before the alternating optimization with a very
small pretraining cost. This pretraining has a very small cost
but could stabilize the alternating optimization process and
ensure convergence. 6.1.2. The whole learning algorithm is
presented in Alg. 2. Moreover, we show why a minimal
pretraining on pθ would ensure the convergence.

Given the target Λ∗, another random structure 3 Λ− and
an optimal perception model pθ∗ , we have:

Rθ∗(Λ
∗) = E

z∼pθ∗ (·|x)

[
1(∆Λ∗ [z] |= y∗

]
= 1 (∆Λ∗ [z] |= y∗) = 1 > Rθ∗(Λ

−).
(23)

With an untrained perception model pθ− , there would be
no evidence which formula would perform better, i.e.:

Rθ−(Λ∗) u Rθ−(Λ−). (24)

Based on the above two inequalities, for a pre-trained pθ ,
s.t. pθ = εpθ∗ + (1− ε)pθ− with some ε > 0, we have:

Rθ(Λ
∗) = E

z∼pθ(·|vx)

[
1(∆Λ∗ [z] |= y∗

]
= εRθ∗(Λ

∗) + (1− ε) ∗Rθ−(Λ∗)

> εRθ∗(Λ
−) + (1− ε) ∗Rθ−(Λ−)

= E
z∼pθ(·|x)

[
1(∆Λ− [z] |= y∗

]
= Rθ(Λ

−).

(25)

This also implies that even a weak pre-trained model is
able to distinguish the target optimal formula from random
formulas.

3. Please note if two formulas both have reward 1, then they are logical
equivalent under the distribution of p(x, y∗).

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 9

TABLE 1: Accuracy on the MNIST-ADD dataset, where EXTRA SUP indicates whether the model is trained with extra
perception supervision or the only one-bit logic supervision, EXTRA TOOL indicats whether the model uses any extra tools
or not. PERCEPTION is the accuracy of x

pθ−→ z indicating the performance of pθ while LOGIC is the accuracy of x
pθ−→ z

pφ−→ y
indicating the performance of the cascaded pθ and pφ. Baselines without extra perception supervision could not report a
PERCEPTION accuracy (mark with ‘/’). Besides, DeepLogic− does not further train pθ . Both DeepLogic and DeepLogic− are
pretrained for 6 batches.

MODEL EXTRA SUP EXTRA TOOL
MNIST-ADD-α MNIST-ADD-β

PERCEPTION LOGIC PERCEPTION LOGIC

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

MLP
√

× 99.30% 98.88% 98.12% 75.20% 99.42% 98.71% 98.17% 24.01%
LSTM

√
× 99.41% 98.52% 99.25% 78.91% 99.03% 98.98% 99.90% 41.04%

RN
√

× 99.10% 99.00% 92.41% 83.10% 99.44% 98.45% 92.33% 49.62%
MLP × × / / 98.44% 66.42% / / 98.18% 22.32%
LSTM × × / / 99.11% 71.91% / / 99.60% 38.23%
RN × × / / 87.23% 79.12% / / 79.43% 56.20%
ABL [7] ×

√
/ / 41.11% 31.00% / / 37.45% 30.91%

ABL [7]+PRETRAIN ×
√

99.42% 98.89% 99.35% 99.12% 99.10% 98.90% 99.41% 99.12%
DEEPLOGIC− × × 64.19% 63.81% 62.10% 62.22% 62.56% 61.44% 60.61% 60.12%
DEEPLOGIC × × 99.70% 99.34% 99.92% 99.54% 99.30% 98.95% 99.46% 99.51%

6 EXPERIMENTS

In this section, we evaluate the performance, convergence,
stability, and generalization ability of the proposed Deep-
Logic framework on three logic-reasoning datasets. The first
and second datasets are manually constructed from MNIST
with multiple attributes and different rules, while the third
one is a widely used reasoning dataset designed to evaluate
machine’s reasoning ability. The detailed information of
datasets is summarized as follows:
• MNIST-ADD. MNIST-ADD is a simple single-digit

addition dataset. The task is to learn “single-digit addition” for-
mula given three MNIST images and a 1-bit “True/False”
label. The dataset includes 20,000 instances for training
and 20,000 for testing. We further split the dataset into
α and β split with different splitting strategies. In the β
split, the testing set has different addition instances from
instances in the training set. This setting is also known as
“training/testing distribution shift” which is difficult to solve
for neural networks.
• C-MNIST-RULE. C-MNIST-RULE is an extension to

MNIST-ADD where an extra attribute “color” and two
extra formulas “progression” and “mutual exclusion”
are included. Note that we use the same DeepLogic model
for MNIST-ADD and C-MNIST-RULE with the only differ-
ence lying in the number of output formula ∆φ, which is 1 in
and 3 in C-MNIST-RULE. DeepLogic is capable of learning
multiple formulas and perceptions simultaneously.
• RAVEN. RAVEN [15] dataset is developed with Raven’s

Progressive Matrices [18] to measure visual reasoning ability.
Though relaxing all the logic operations to continuous forms
using fuzzy logic [14], DLM can be combined with state-of-
the-art model CoPINet [38] to obtain significant performance
improvement.

6.1 Evaluation on MNIST-ADD

Each instance in this dataset is sampled from single-digit
integer addition instances such as (“3+4=7”, True) and
(“4+1=6”, False). Then, three corresponding MNIST images

are sampled as the inputs. There are two splits of this
dataset: i) MNIST-ADD-α, where the training and test set
both contain all the possible integer addition instances; ii)
MNIST-ADD-β, where the training set and test set each
includes different (disjoint) sets of instances, e.g., “3+4=7”
appears in the training set and does not appear in the test
set.

6.1.1 Setup
Configuration. We first define the basic operations and
predicates for MNIST-ADD:

1) The operations set includes Add(·) and Keep(·) where
the subscription implies the arity;

2) The predicates set includes Eq(·);
3) The logic connectives include And(·), Or(·), Not(·) and
Keep(·).

The system is basically implemented with two term layers
and one formula layer, and we also provide results with more
layers to test the robustness and stability of our proposed
DeepLogic framework.
Baselines. We mainly focus on evaluating the model’s
superiority compared with DNN-based methods, and show
that our algorithm is able to learn both the neural perception
and logical reasoning jointly. Basically, all the methods share
the same CNN-based perception model, while the logical
reasoning are incorporated into MLP [39], LSTM [40], two
popular models used in traditional DNN methods, and
Relation Network (RN) [41] which is widely used to model
relationships. Under the weak-supervision setting of this
paper, these baselines perform worse and only have a final
logic accuracy. We thus add extra perception supervisions
for them. Besides, we compare our methods with [7] who
has an extra predefined out-of-box Prolog [27] program to
conduct the logic reasoning.
Evaluation. We use the official MNIST-CNN net 4 to conduct
perception across all the approaches. To alleviate overfitting,
we preliminarily select the hyperparameters on an extra

4. https://github.com/pytorch/examples/blob/master/mnist/main.py

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 10

TABLE 2: Accuracy on C-MNIST-RULE, where f indicates
the model is trained with extra symbol annotations and
w indicates no extra symbol annotations are involved.
DeepLogic− does not further train pθ. Both DeepLogic and
DeepLogic− are pretrained for 10 batches. LOGIC is the
accuracy of final prediction y while PERCEPTION is the
accuracy for predicting the hidden symbol z.

MODEL f/w
PERCEPTION LOGIC

TRAIN TEST TRAIN TEST

MLP f 99.82% 99.71% 75.4% 67.57%
LSTM f 99.73% 99.58% 78.56% 68.37%
RN f 99.51% 98.95% 50.11% 50.24%
MLP w / / 55.23% 50.12%
LSTM w / / 56.12% 50.49%
RN w / / 50.23% 49.90%
DEEPLOGIC− w 74.45% 73.28% 70.55% 72.12%
DEEPLOGIC w 99.88% 99.64% 99.44% 99.54%

10 50 100 500 2000 6000
Number of Images for Training

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 L
og

ic
Ac

cu
ra

cy

MLP(train)
MLP(val)

LSTM(train)
LSTM(val)

RN(train)
RN(val)

DL(train)
DL(val)

32 64 128 256 512 1024
Model Hidden Size (Model Complexity)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Te
st

 L
og

ic
Ac

cu
ra

cy

RN(p=0.25)
RN(p=0.25)

RN(p=0.5)
RN(p=0.5)

RN(p=0.75)
RN(p=0.75)

DL(train)
DL(val)

Fig. 4: Top: test accuracy with different scales of training
images on MNIST-ADD-α, where DL is short for DeepLogic.
Bottom: test accuracy with different model hidden sizes and
different dropout probabilities of RN and DL.

validation set. Finally, we train these models with 20 epochs,
and report the performance of the final trained model. Our
proposed DeepLogic is trained with Alg. 2 using the weak-
supervision signals, and DNN-baselines are either trained
with the same weak-supervision signals or full-supervision
signals with extra digit labels for each MNIST image.

6.1.2 Results and Analysis
Overall Results. The overall results are summarized in Tab. 1.
On both MNSIT-ADd-α and MNIST-ADD-β datasets, DNN
models overfit to the training set. We further utilize the
widely-used methods (changing model size, using dropout,
etc.) to overcome the overfitting issue, though they are shown
to have little help as illustrted in Fig 4 (Bottom). Especially
when it comes to the unbalanced β split, those DNN-based

0 50 100 150 200 250 300
Number of Batches

0.2

0.4

0.6

0.8

1.0

Pr
et

ra
in

in
g

Pe
rc

ep
tio

n
Ac

cu
ra

cy

Where DeepLogic starts to converge

0 100 200 300 400 500
Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 L
og

ic
Ac

cu
ra

cy

Pretrain 5 batches, Perception-Acc: 55%

Pretrain 6 batches, Perception-Acc: 62%
Pretrain 10 batches, Perception-Acc: 68%

Pretrain 30 batches, Perception-Acc: 92%

0 100 200 300 400 500
Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 L
og

ic
Ac

cu
ra

cy

Pretrain 5 batches

Pretrain 6 batches

Pretrain 10 batches

Pretrain 30 batches

Fig. 5: Top: PERCEPTION accuracy when pretraining pθ on
MNIST-ADD-α dataset; Middle: Training LOGIC accuracy
of DeepLogic- with different batches of pretraining data on
MNIST-ADD-α datasets; Bottom: Training LOGIC accuracy
of DeepLogic with different batches of pretraining data on
MNIST-ADD-α dataset. The major findings are: 1) more
pretraining batches ensures better accuracy; 2) only very few
pretraining is required for DeepLogic to finally converge.

models perform extreme worse. They could distinguish those
digits and thus have an acceptable perception accuracy, but
they fail to model the underlying logic and perform worse
with respect to the logic accuracy. Compared with the ABL
[7] model, our model could reach a higher accuracy without
the out-of-box Prolog [7] program, which is more flexible.
Finally, the comparison between DeepLogic− and DeepLogic
shows that back-propagation through the logic (Alg. 1) could
indeed help to provide supervision for the perception model.
Data Efficiency. As shown in Fig. 4(top), DeepLogic outper-
forms its DNN-counterparts across all settings. Moreover,
DeepLogic converges to an accuracy of more than 95% only
with roughly 100 training images, which is because the
neural-symbolic learning actually disentangles the process
of neural perception and logical reasoning. Therefore, it is
sufficient to train the perception model with quite a few
images.
The Necessity of Pretraining. As the theoretical analysis
in Sec. 5.2 demonstrates, the whole system would not con-
verge without pretraining. Here, we experimentally validate

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 11

TABLE 3: Typical formulas learned under different settings
in MNIST-ADD dataset. M denotes the number of term
layers and N denotes the number of formula layers. The
last column is the percentage of successful convergence in 5
random trials.

M + N EXAMPLE LEARNED FORMULAS SUCCESS

2 + 1 Eq Add z1, z2 , Keep z3 100%

2 + 2 Keep Eq Add z1, z2 , Keep z3

And
Eq Add z1, z2 , Keep z3 ,

Eq Add z1, z2 , Add z1, z2

100%

2 + 3
Or

And
Eq Add z1, z2 , Keep z3 ,
Eq Add z1, z2 , Keep z3

,

Not Eq Keep z1 , Keep z1

100%

3 + 1
Eq

Add Keep z1 , Keep z2 ,
Keep Keep z3

80%

3 + 2
And

Eq
Add Add z1, z2 , Add z1, z2 ,
Add Add z1, z2 , Add z1, z2

,

Eq
Add Add z1, z2 , Keep z3 ,

Add Add z1, z2 , Add z1, z2

80%

3 + 3
Keep Keep Eq

Keep Keep z3 ,
Keep Add z1, z2

40%

2+1 2+2 2+2 2+3

this claim and further show that the cost of pretraining
actually can be very small to guarantee the convergence.
In Fig. 5, we show that DeepLogic requires only 6 batches
of pretraining to reach convergence, indicating that we can
take only a few efforts in pretraining to finally obtain a
well-performed and logically reasonable model. Moreover,
Fig. 5 also shows that higher pretraining accuracy will boost
the convergence speed of logic learning, which plays an
important role in multi-rule and multi-attribute scenarios
such as the C-MNIST-RULE dataset (Sec. 6.2).
Model Stability. The most proper setting for this task is
two term layers with one formula layer to learn “Eq(Add(Z1,
Z2), Keep(Z3))”. However, the proper setting may not be
available in real applications. In Tab. 3, we show the different
logic results learned by the system with different settings.
Each of these experiments is conducted with 5 different
random seeds, and the best learned models are also traced.
We observe that the model converges easily even with much
redundant information, and the system is also robust with
respect to different initializations.

6.2 Evaluation on C-MNIST-RULE.
C-MNIST-RULE contains multiple rules and attributes,
where we color MNIST images to add the color property
and implement three rules according to Raven’s Progressive
Matrix (RPM) [18]. Similar to MNIST-ADD, the C-MNIST-
RULE dataset includes 20,000 training instances and 20,000
testing instances.

6.2.1 Setup
C-MNIST-RULE is similar with MNIST-ADD except that it
contains more attributes and rules.

0 50 100 150 200 250 300 350 400
Number of Iterations

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Re
wa

rd

Formula 1
Formula 2
Formula 3

0 50 100 150 200 250 300 350 400
Number of Iterations

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

Color
Number

Fig. 6: Average reward of three formulas and accuracy of two
attributes of DeepLogic on C-MNIST-RULE. Best viewed in
color.

Attributes. C-MNIST-RULE contains 2 different at-
tributes:

1) NUMBER. The digit number of each image.
2) COLOR. Each image has a color attribute which is

sampled from the color wheel 5 with 12 different colors.
Logic Rules. C-MNIST-RULE implements 3 rules accord-

ing to [18], which are as follows,
1) ADD. The first two attributes can sum up to get

the third one. The ground-truth logic formula is
Eq(Add(Z1, Z2),Keep(Z3))

2) Progression. The three attributes are increased or de-
creased in an equidistant manner, with step size of 1.
For example, they could be 3, 4, 5 or, 5, 4, 3 respectively.
The attributes could be Eq(Add(Z1, Z3), Add(Z2, Z2)).

3) Mutual Exclusion. The attributes of the three input
images are different with each other, i.e., mutually
excluded. These attributes can be logically formalized
as And(Not(Eq(Z1, Z2)), Not(Eq(Z1, Z3))).

In Tab. 2, we show the accuracy of different models on
C-MNIST-RULE. We can observe that:
• Pure DNN-based methods get worse performance com-

pared to the results without symbol annotations on C-
MNIST-RULE.

• Pure DNN-based methods converge with the help of ex-
tra symbol annotations, which is also consistent with [15]
where pure DNN or even ResNet fails to perform better
than random guess without extra annotations.

In Fig. 6, we show the learning curves of our model on
C-MNIST-RULE dataset, and we We discover that:
• formula 1 converges fast.

5. https://en.wikipedia.org/wiki/Color wheel

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 12

Number: 	𝐀𝐝𝐝: 	Eq Add z!, z" , Keep z# Color: 	𝐌𝐮𝐭𝐮𝐚𝐥	𝐄𝐱𝐜𝐥𝐮𝐬𝐢𝐨𝐧:Not Or Eq Z!, 𝑍" , Eq 𝑍", 𝑍#

1 2 3

3 3

	

𝑝$% 𝑝$% 𝑝$
%

√	
Eq&! ▪; 7

𝜅&! ▪; 7
4 3 2

7 2

×

𝑝$
% 𝑝$% 𝑝$

%

7

7
7

1 6 9

7 3

	

𝑝$
% 𝑝$

% 𝑝$
%

×	

(c) perception error

(b) Learn 𝑝$ with 𝑝% fixed; (a) Learn 𝑝% with 𝑝$ fixed

correct prediction;
keep 𝑝$ unchanged

wrong perception; update
𝑝$ based on 𝑝'	and BPTL

Number: 	𝐀𝐝𝐝 (√)

Color: ME (√)

Number: 	𝐀𝐝𝐝 (√)

Color: ME (√)

R$ Λ& = 4/4 R$ Λ' = 2/4

Number: 	𝐀𝐝𝐝 (√)

Color: ME (√)

Number: 	𝐀𝐝𝐝 (√)

Color: ME (×)

Number: 	𝐀𝐝𝐝 (√)

Color: ME (√)

Training: image patches; attributes; rules

√	

+

=

+

=

+𝜅

Number: 	𝐀𝐝𝐝 (×)

Color: ME (√)

4 5 9

9 14

	

𝑝$% 𝑝$% 𝑝$
%

×	

(d) logic error

0 0 0

0 0

𝑝$
% 𝑝$

% 𝑝$%

√	

(e) success prediction

Number: 	𝐀𝐝𝐝 (√)

Color: ME (√)

√	 √	target:
pred:

target:
pred:

target:
pred:

√	 target:
pred:

√	
Testing: image patches; attributes; rules

5 4 3

9 3

𝑝$
% 𝑝$% 𝑝$

%

×	
target:
pred:

√	 target:
pred:

×

Fig. 7: Left: data illustrations from C-MNIST-RULE dataset where the number attribute follows the ADD rule while the
color attribute follows the Mutual Exclusion rule. Right: training/testing illustration for the number attribute and Add
rule. (a) and (b) illustrates the learning process of pφ and pθ resptively using Eq. 22 and Eq. 16; (c) and (d) are unsuccessful
cases due to perception error (non-optimal pθ) and logic structure error(non-optimal pφ), respetively; (e) successful cases.

• The converged formula 1 supervises the Color property
to converge.

• The converged Color property further boosts the learning
of formula 2 and others.

In Fig. 7, we illustrate several instances of the C-MNIST-
RULE dataset along with the logic back propagation and
show the final learned formula.

6.3 Evaluation on RAVEN.
RAVEN [15] is proposed to measure the abstraction and
reasoning ability of neural models. Each instance contains an
3 × 3 image blocks, where the first two rows / columns
illustrate one rule sampled from Arithmetic, Progression,
Mutual Exclusion, Constant on image attributes. The third
row / column missed its last image (the 9-th image in the
instance), and the task is to find that missing image from
several candidates. An exemplar illustration of RAVEN is
shown in Fig. 8. More details can be found in [15] and [38].

We make a relaxation in our deep-logic module (DLM)
by replacing all the logic operators with continuous repre-
sentations through fuzzy logic [14] to construct Soft-DLM
module. Basically, the new connective operators are defined
as:

a ∨ b , a+ b− ab; a ∧ b , ab; ¬a , 1− a, (26)

where a, b ∈ [0, 1] are the relaxation of True/False.
By replacing the original fusion method in the state-of-

the-art model CoPINet [38] with Soft-DLM module, we can

???

Color: addition

Shape: mutual-exclusive







        

1 2 3

1c

2c

ac

Training Inference

Sampling Fixed

......

1
P

Logic layer. Training with logic sampling. Inference with learned logic

connections (grey edges could be deleted for computing efficiency).

2
P 3

P *
2

P


*
3

P
*

1

P


mple. Left: images; right: logis



1

2

3

1

2

3

(a) (b)

Fig. 8: Illustration of the DLM module in RPM task. Images
are treated as inputs and then fed into logic layers, where
the logic operation is selected from all the possible candidate
combinations.

obtain a significant performance improvement, as shown in
Tab. 4. Particularly, in those complex scenarios like “2×2”
and “3×3”, Soft-DLM brings much more performance im-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 13

TABLE 4: Testing Accuracy on RAVEN dataset. ACC is the final accuracy, while other columns represent different task
configurations.

METHOD ACC CENTER 2X2GRID 3X3GRID L-R U-D O-IC O-IG

RESNET* [15] 53.43% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
COPINET [38] 91.42% 95.05% 77.45% 78.85% 99.19% 99.65% 98.50% 91.35%
COPINET+SOFTDLM 95.60% 98.20% 85.30% 89.65% 99.85% 99.85% 99.55% 96.80%

HUMAN [15] 84.41% 95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%

provement, which validates the generalizability of DeepLogic
and its potential in the continuous domain.

7 CONCLUSION

In this paper, we propose DeepLogic, a novel framework
that targets at jointly learning neural perception and logical
reasoning for the neural-symbolic learning task. Our pro-
posed DeepLogic framework is able to learn logic formulas
and deep perception model with weak 1-bit supervisions. In
particular, we design the deep-logic module (DLM) which
is capable of representing any first-order logic formula,
and we further propose the deep&logic optimization (DLO)
algorithm to unify logical reasoning with the neural percep-
tion through mutual supervised signals between them. A
theoretical proof for the model convergence is also provided
to demonstrate the soundness of the proposed DeepLogic
framework. Experimental results show that our proposed
DeepLogic framework outperforms DNN-baselines by a
significant margin. Further analysis validates the conver-
gence, robustness, and generalization ability of DeepLogic,
demonstrating its potential to be applied in more complex
scenarios.

ACKNOWLEDGMENTS

This research is supported by the National Key Research
and Development Program of China (No.2020AAA0106300,
No.2020AAA0107800), National Natural Science Foundation
of China No.62050110 and Tsinghua GuoQiang Research
Center Grant 2020GQG1014.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097–1105, 2012.

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” arXiv preprint arXiv:1409.3215,
2014.

[3] B. Lake and M. Baroni, “Generalization without systematicity:
On the compositional skills of sequence-to-sequence recurrent
networks,” in International Conference on Machine Learning. PMLR,
2018, pp. 2873–2882.

[4] A. Trask, F. Hill, S. Reed, J. Rae, C. Dyer, and P. Blunsom, “Neural
arithmetic logic units,” arXiv preprint arXiv:1808.00508, 2018.

[5] P. Flach, A. C. Kakas, and A. M. Hadjiantonis, Abduction and
Induction: Essays on Their Relation and Integration. Springer Science
& Business Media, 2000, vol. 18.

[6] J. W. Lloyd, Foundations of logic programming. Springer Science &
Business Media, 2012.

[7] W.-Z. Dai, Q. Xu, Y. Yu, and Z.-H. Zhou, “Bridging machine
learning and logical reasoning by abductive learning,” in Advances
in Neural Information Processing Systems, 2019, pp. 2811–2822.

[8] Y. Bengio, “From system 1 deep learning to system 2 deep learning,”
in Thirty-third Conference on Neural Information Processing Systems,
2019.

[9] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B. Tenenbaum,
“Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding,” arXiv preprint arXiv:1810.02338, 2018.

[10] Y. Yang and L. Song, “Learn to explain efficiently via neural logic
inductive learning,” arXiv preprint arXiv:1910.02481, 2019.

[11] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and
L. De Raedt, “Deepproblog: Neural probabilistic logic program-
ming,” in Advances in Neural Information Processing Systems, 2018,
pp. 3749–3759.

[12] R. Evans and E. Grefenstette, “Learning explanatory rules from
noisy data,” Journal of Artificial Intelligence Research, vol. 61, pp. 1–64,
2018.

[13] M. Bošnjak, T. Rocktäschel, J. Naradowsky, and S. Riedel, “Pro-
gramming with a differentiable forth interpreter,” in International
conference on machine learning. PMLR, 2017, pp. 547–556.

[14] P. Hájek, Metamathematics of fuzzy logic. Springer Science &
Business Media, 2013, vol. 4.

[15] C. Zhang, F. Gao, B. Jia, Y. Zhu, and S.-C. Zhu, “Raven: A dataset
for relational and analogical visual reasoning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
5317–5327.

[16] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv preprint arXiv:1410.5401, 2014.

[17] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou, “Neural logic
machines,” arXiv preprint arXiv:1904.11694, 2019.

[18] P. A. Carpenter, M. A. Just, and P. Shell, “What one intelligence
test measures: a theoretical account of the processing in the raven
progressive matrices test.” Psychological review, vol. 97, no. 3, p. 404,
1990.

[19] A. Newell, “Physical symbol systems,” Cognitive science, vol. 4,
no. 2, pp. 135–183, 1980.

[20] A. Newell and H. Simon, “The logic theory machine–a complex
information processing system,” IRE Transactions on information
theory, vol. 2, no. 3, pp. 61–79, 1956.

[21] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou, “Neural logic
machines,” arXiv preprint arXiv:1904.11694, 2019.

[22] D. A. Hudson and C. D. Manning, “Compositional attention
networks for machine reasoning,” arXiv preprint arXiv:1803.03067,
2018.

[23] M. Zimmer, X. Feng, C. Glanois, Z. Jiang, J. Zhang, P. Weng, L. Dong,
H. Jianye, and L. Wulong, “Differentiable logic machines,” arXiv
preprint arXiv:2102.11529, 2021.

[24] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 39–48.

[25] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learn-
ing to reason: End-to-end module networks for visual question
answering,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 804–813.

[26] A. Saha, S. Joty, and S. C. Hoi, “Weakly supervised neuro-
symbolic module networks for numerical reasoning,” arXiv preprint
arXiv:2101.11802, 2021.

[27] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,”
Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96,
2012.

[28] Q. Li, S. Huang, Y. Hong, Y. Chen, Y. N. Wu, and S.-C. Zhu, “Closed
loop neural-symbolic learning via integrating neural perception,
grammar parsing, and symbolic reasoning,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 5884–5894.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 14

[29] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences
from natural supervision,” arXiv preprint arXiv:1904.12584, 2019.

[30] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick, “Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 2901–2910.

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[32] Y. Yu, H. Qian, and Y.-Q. Hu, “Derivative-free optimization via
classification,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[33] Y. I. Manin, A course in mathematical logic for mathematicians.
Springer Science & Business Media, 2009, vol. 53.

[34] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient
neural architecture search via parameters sharing,” in International
Conference on Machine Learning. PMLR, 2018, pp. 4095–4104.

[35] L. Boltzmann, Lectures on gas theory. Courier Corporation, 2012.
[36] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy

gradient methods for reinforcement learning with function approx-
imation,” Advances in neural information processing systems, vol. 12,
1999.

[37] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[38] C. Zhang, B. Jia, F. Gao, Y. Zhu, H. Lu, and S.-C. Zhu, “Learning per-
ceptual inference by contrasting,” in Advances in Neural Information
Processing Systems, 2019, pp. 1073–1085.

[39] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A simple neural network module for
relational reasoning,” in Advances in neural information processing
systems, 2017, pp. 4967–4976.

Xuguang Duan is a graduate student at the De-
partment of Computer Science and Technology,
Tsinghua University. He got his B.E degree at the
Department of Electronic Engineering, Tsinghua
University. His research interests include ma-
chine learning, neural-symbolic systems, video
understanding. He has published some research
paper in top conference include NeurIPS, ACM
Multimedia etc.

Xin Wang is currently an Assistant Professor
at the Department of Computer Science and
Technology, Tsinghua University. He got both of
his Ph.D. and B.E degrees in Computer Science
and Technology from Zhejiang University, China.
He also holds a Ph.D. degree in Computing
Science from Simon Fraser University, Canada.
His research interests include relational media
big data analysis, multimedia intelligence and
recommendation in social media. He has pub-
lished several high-quality research papers in top

conferences including ICML, KDD, WWW, SIGIR ACM Multimedia etc. He
is the recipient of 2017 China Postdoctoral innovative talents supporting
program. He receives the ACM China Rising Star Award in 2020.

Peilin Zhao is currently a Principal Researcher
at Tencent AI Lab, China. Previously, he worked
at Rutgers University, Institute for Infocomm Re-
search (I2R), and Ant Group. His research in-
terests include: Online Learning, Recommenda-
tion System, Automatic Machine Learning, Deep
Graph Learning, and Reinforcement Learning etc.
He has published over 100 papers in top venues,
including JMLR, ICML, KDD, etc. He has been
invited as a reviewer, area chair or editor for many
international conferences and journals, such as

ICML, JMLR, etc. He received his bachelor’s degree from Zhejiang
University, and his PhD degree from Nanyang Technological University.

Guangyao Shen is currently a Ph.D. candidate
in the Department of Computer Science and
Technology, Tsinghua University, Beijing, China.
His research interests include affective computing
and video generation.

Wenwu Zhu is currently a Professor in the De-
partment of Computer Science and Technology at
Tsinghua University. He also serves as the Vice
Dean of National Research Center for Information
Science and Technology, and the Vice Director of
Tsinghua Center for Big Data. Prior to his current
post, he was a Senior Researcher and Research
Manager at Microsoft Research Asia. He was
the Chief Scientist and Director at Intel Research
China from 2004 to 2008. He worked at Bell Labs,
New Jersey as Member of Technical Staff during

1996-1999. He received his Ph.D. degree from New York University in
1996. His research interests are in the area of data-driven multimedia
networking and Cross-media big data computing. He has published over
350 referred papers and is the inventor or co-inventor of over 50 patents.
He received eight Best Paper Awards, including ACM Multimedia 2012
and IEEE Transactions on Circuits and Systems for Video Technology in
2001 and 2019.

He served as EiC for IEEE Transactions on Multimedia from 2017-2019.
He served in the steering committee for IEEE Transactions on Multimedia
(2015-2016) and IEEE Transactions on Mobile Computing (2007-2010),
respectively.He is an AAAS Fellow, IEEE Fellow, SPIE Fellow, and a
member of The Academy of Europe (Academia Europaea).

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3191093

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:20:07 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Works
	The DeepLogic Framework
	Formulation
	Modeling the Neural Perception (p)
	Modeling the Logical Reasoning (p)
	Joint Learning of Neural Perception and Logical Reasoning

	The Deep-logic Module (DLM)
	Preliminaries on FOL
	Terms and Formulas
	Recursive Definition of A FOL Model

	The Definition of the Deep-logic Module
	A logic Layer
	The Implementation of the Deep-logic Module

	The Deep&logic Optimization (DLO)
	Optimization
	Optimize p with p fixed
	Optimize p with p fixed

	Pretraining p and Convergence Analysis

	Experiments
	Evaluation on MNIST-ADD
	Setup
	Results and Analysis

	Evaluation on C-MNIST-RULE.
	Setup

	Evaluation on RAVEN.

	Conclusion
	References
	Biographies
	Xuguang Duan
	Xin Wang
	Peilin Zhao
	Guangyao Shen
	Wenwu Zhu

