
Auxiliary Learning with Joint Task and Data Scheduling

Hong Chen 1 Xin Wang 1 2 Chaoyu Guan 1 Yue Liu 1 Wenwu Zhu 1

Abstract
Existing auxiliary learning approaches only con-
sider the relationships between the target task
and the auxiliary tasks, ignoring the fact that
data samples within an auxiliary task could con-
tribute differently to the target task, which results
in inefficient auxiliary information usage and non-
robustness to data noise. In this paper, we propose
to learn a joint task and data schedule for auxil-
iary learning, which captures the importance of
different data samples in each auxiliary task to
the target task. However, learning such a joint
schedule is challenging due to the large number
of additional parameters required for the sched-
ule. To tackle the challenge, we propose a joint
task and data scheduling (JTDS) model for aux-
iliary learning. The JTDS model captures the
joint task-data importance through a task-data
scheduler, which creates a mapping from task,
feature and label information to the schedule in a
parameter-efficient way. Particularly, we formu-
late the scheduler and the task learning process
as a bi-level optimization problem. In the lower
optimization, the task learning model is updated
with the scheduled gradient, while in the upper op-
timization, the task-data scheduler is updated with
the implicit gradient. Experimental results show
that our JTDS model significantly outperforms the
state-of-the-art methods under supervised, semi-
supervised and corrupted label settings1.

1. Introduction
Auxiliary learning, utilizing auxiliary tasks to help improve
the target task, has drawn an increasing number of re-

1Department of Computer Science and Technology, Tsinghua
University 2THU-Bosch JCML center, Tsinghua University. Corre-
spondence to: Xin Wang <xin wang@tsinghua.edu.cn>, Wenwu
Zhu <wwzhu@tsinghua.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1Our code will be released at https://github.com/
forchchch/JTDS

search attentions in the community. This learning paradigm
aims to improve the model performance on the target task
via utilizing the useful information carried in the related
tasks (Navon et al., 2021; Liu et al., 2019a), and has been
widely adopted in different areas including image classi-
fication (Beyer et al., 2019), recommendation (Wen et al.,
2020), vision-language navigation (Zhu et al., 2020) and
reinforcement learning (Shelhamer et al., 2017), etc.

A typical and most widely adopted way in auxiliary learning
is to calculate the average or total loss of all training samples
for each task, linearly combine them into a single loss, and
then use the aggregated loss to optimize the task learning
model. To achieve promising performance on the target task,
the linear weights for task combinations are always tuned
with methods such as grid search or Hyper-parameter Opti-
mization (HPO) tools (Kandasamy et al., 2020; Snoek et al.,
2012). However, when the number of auxiliary tasks is large,
this paradigm generally fails because the complexity of the
search space will be exponentially explosive. More recent
works (Du et al., 2018; Shi et al., 2020; Lin et al., 2019)
utilize the gradient similarity between the target task and the
auxiliary tasks to automatically assign weights to different
auxiliary tasks in an adaptive way. Furthermore, by using a
small set of the target task as guidance, researchers (Navon
et al., 2021) propose to learn a nonlinear combination of the
given tasks to better utilize the auxiliary information.

Nevertheless, existing works only consider task-level rela-
tions, ignoring the important fact that data samples within
the same auxiliary task could contribute differently to the
target task. Taking the image classification task as an exam-
ple, when the target task is “correctly classifying a bird”,
“detecting the beak of a bird” becomes a helpful auxiliary
task. While an image of a frontal bird face is definitely help-
ful for the auxiliary task to improve the target task, an image
of a bird’s back provides little useful information. Moreover,
given that real-world data inevitably contain noises, these
noisy data samples may counterbalance the benefits of a
helpful auxiliary task as well. Therefore, existing works fail
to capture the relations of various data samples in different
auxiliary tasks towards the target task, suffering from inef-
ficient auxiliary information usage and non-robustness to
data noise.

In this paper, we propose to learn a joint task and data

https://github.com/forchchch/JTDS
https://github.com/forchchch/JTDS

Auxiliary Learning with Joint Task and Data Scheduling

schedule for auxiliary learning, which further captures the
importance of different data samples in each auxiliary task
to the target task. However, learning such a joint schedule
is challenging and still remains largely unexplored. As-
suming that the dataset contains m data samples and the
number of auxiliary tasks is n, then the number of required
parameters for the schedule is O(mn). Considering the
data-driven characteristics of current deep learning, even a
dataset with 104 samples and 1 auxiliary task will result in
2 ·104 parameters. To obtain the optimal value of such large
number of parameters, both searching-based and gradient-
based methods will be infeasible because of the explosive
computational cost, and existing approaches using a small
dataset of the target task (Navon et al., 2021) tend to suffer
from overfitting problems as indicated in Lorraine et al.’s
work (Lorraine et al., 2020). To tackle the challenge, we
propose a Joint Task and Data Scheduling (JTDS) model
for auxiliary learning. The proposed JTDS model utilizes
a novel parameter-efficient task-data scheduler to generate
appropriate schedules. Particularly, the task-data scheduler
creates a mapping from task, feature and label information
to the schedule. This mapping can accurately capture the
importance of different samples in each auxiliary task to
the target task, while largely reducing the required param-
eters for the schedule. To jointly optimize the parameters
of the task learning model and the task-data scheduler, we
formulate the overall learning process as a bi-level optimiza-
tion problem. In the lower level optimization, we optimize
the task learning model parameters under the schedule gen-
erated by the task-data scheduler, and in the upper level
optimization, we optimize the scheduler parameters using
the implicit gradient from a small developing dataset.

We conduct extensive experiments under supervised, semi-
supervised and corrupted label settings to validate the ef-
fectiveness of our proposed JTDS model. The significant
improvement over several state-of-the-art baselines further
demonstrates the capability of JTDS in exploiting the aux-
iliary information and being robust to noisy samples in the
data. In summary, we make the following contributions:

• We propose the JTDS model, a novel bi-level optimiza-
tion based framework for auxiliary learning with joint
task and data scheduling.

• We propose a parameter-efficient task-data scheduler,
which maps the task, feature and label information to
an appropriate schedule. The proposed scheduler is
able to capture the importance of different samples in
different tasks to the target task while largely reducing
the required parameters.

• We conduct extensive experiments to demonstrate the
superiority of our proposed JTDS model against several
baselines in terms of auxiliary information usage and
robustness to data noise.

2. The Proposed Method
In this section, we first formulate our problem, then describe
our proposed parameter-efficient task-data scheduler, and
finally present the overall learning process of the JTDS
model.

2.1. Preliminaries and Problem Formulation

Let Dt = {(xt
i, y

t
i1, y

t
i2, · · · , ytin, ytiG)}mi=1 be the training

set, comprised of m data samples that could be used for
n + 1 different tasks. In the training set, xt

i is the ith

data sample and ytik is its label for the kth task Tk. Let
Dv = {(xv

j , y
v
jG)}Nj=1 be the validation set containing N

data samples and the corresponding label of each sample
under TG, where G is the index of the target task.

The general auxiliary learning process can be formulated by
Eq. (1), where the task learning model {fk} is parametrized
by θ and fk outputs the predictions for task Tk. The training
loss function is Lt and the loss optimization process P ()
generates a set of candidate {θp}. We choose the one that
minimizes the validation error Ev as the parameter for the
target task. This practice is commonly adopted in deep learn-
ing, where during training, after some pre-defined epochs,
we will evaluate our model on the validation set Dv , and fi-
nally record the parameter with the best performance as our
final model parameter, and T in Eq.(1) is the total evaluation
times. Since different fk generally share some parameters
during training, the information of auxiliary tasks can be
transferred to the target task. In summary, the goal of auxil-
iary learning is to design an appropriate Lt to combine the
information of the given tasks, so as to obtain the best task
learning model (parameterized by θ) for the target task.

θ∗ = argmin
θp

Ev(fG, Dv; θp), (1)

s.t. {θp}Tp=1 = P (argmin
θ

Lt(f1, · · · , fn, fG, Dt; θ)).

One simple but widely adopted method to utilize the auxil-
iary tasks is to combine the average training loss for each
task in a linear way as formulated in Eq. (2), where lk(·, ·)
is the loss function for task Tk, and then tune the weight
wk for each task with grid search or other HPO methods.
However, these methods suffer from the problem of ex-
ponentially explosive searching space when the number of
auxiliary tasks is large. Recent approaches propose to assign
weights for different tasks based on the gradient similarities
between the target task and the auxiliary tasks. Since the
gradient similarity is usually changing during the training
process, this line of method assigns an adaptive weight to
each task. However, these methods are limited in exploiting
useful information in auxiliaries due to the ignorance of data

Auxiliary Learning with Joint Task and Data Scheduling

TLM(𝜃0) …

Parameter-efficient

Task-data Scheduler(𝜷)

−𝜂1𝛻𝜃𝐿𝑡
TLM(𝜃∗)

𝐷𝑑𝑒𝑣

−𝜂2𝛻𝛽𝐿𝑑𝑒𝑣(𝜃
∗(𝛽))

𝐿𝑑𝑒𝑣(𝜃
∗(𝛽))

M-step Lower Level Optimization
𝐷𝑡

One-step Upper
Level Optimization

Enc.

data

feature
loss matrix

Adaptive Pass Filters

…

…

schedule

…

…

Task Prototype

Task Relation Vector

sum(·)

𝐿𝑡

Task Learning Model — TLM(𝜽)

Parameter-efficient

Task-data Scheduler(𝜷)

Detailed Model Design Overall Optimization Process

…

Task Headn

Task HeadG

Task Head2

Task Head1

𝐷𝑡

TLM(𝜃1) TLM(𝜃𝑀−1)
−𝜂1𝛻𝜃𝐿𝑡

TLM(𝜃∗)
1st step 𝑀𝑡ℎ step2nd step

Figure 1. The overall framework for the JTDS model. (1)The left part presents the model details of the parameter-efficient task-data
scheduler and the task learning model. For the task learning model, we use the most widely used hard parameter sharing architecture(one
common backbone encoder and several task-specific heads for each task) as an example, where different tasks are best viewed in shape.
(2)The right part illustrates the bi-level optimization process for the task learning model and the task-data scheduler. During the lower-level
optimization, the task learning model updates its parameters θ with the scheduled gradient for M times on Dt. After the M-step lower
level optimization, the loss of the task learning model on Ddev is calculated to obtain the implicit gradient ∇βLdev , which we use to
update β, the parameters of the scheduler.

sample level information.

Lt =
∑

k∈{1,··· ,n,G}

wk ·
1

m

m∑
i=1

lk(fk(x
t
i), y

t
ik; θ). (2)

Our Solution To tackle this problem, we propose to
jointly schedule task and data sample for auxiliary learning.
In particular, we provide the task learning model with a
schedule about the importance of each data sample within
each task to the target task. By denoting all the training task
ID as U = {1, 2, · · · , n,G}, different from Eq. (2), our
training optimization objective Lt is expressed in Eq. (3),
where wik gives the importance of sample i within task
Tk. The key challenge is how to decide the value of the
totally m(n + 1) parameters {wik}. As aforementioned,
to directly optimize such a large number of parameters is
challenging, thus designing a parameter-efficient scheduler
to generate wik is necessary. To this end, we will in detail
describe our parameter-efficient task-data scheduler in the
next subsection.

Lt =

m∑
i=1

∑
k∈U

wik · lk(fk(xt
i), y

t
ik; θ). (3)

For easier understanding towards the proposed method, we
list the following used notations in Table 1.

Table 1. Notations

Notation Description
θ the parameters of the task learning model
α the task relation vector
fk,enc the encoder for the kth task
Pk the prototype vector of the kth task
ak, bk the parameters of the kth adaptive pass filter
β the whole parameters of the task-data scheduler
K the number of truncated Neumann series terms
M the lower optimization steps
cik the feature of the ith sample within task Tk

interval the interval between two evaluations on Dv

Ddev, Ldev the developing dataset and the target loss on Ddev

2.2. The Parameter-efficient Task-data Scheduler

Given all the training data samples and tasks, the scheduler
outputs {wik}, the schedule that captures the importance of
each data sample within each task to the target task. The
Detailed Model Design part of Figure 1 demonstrates details
of our proposed Parameter-efficient Task-data Scheduler and
its interactions with the task learning model (TLM).

To decide an appropriate schedule while using fewer param-
eters, a natural practice is to relate the schedule to existing
information. With consideration to the factors that influence
the importance of each data sample within each task to the

Auxiliary Learning with Joint Task and Data Scheduling

target task, we propose two hypotheses that can help to
build the parameter-efficient task-data scheduler. The first
hypothesis focuses on the relationships between the target
task and each data sample within each auxiliary task:

Hypothesis 1. Data sample xt
i in auxiliary task Tk is ben-

eficial to the target task TG, if task Tk is beneficial to the
target task TG and the pair (xt

i, y
t
ik) is beneficial to task Tk.

The first hypothesis indicates the task and the data sample
make multiplicative contribution to the target task. Either
Tk has low relevance to TG or (xt

i, y
t
ik) is less informative

for Tk will make lk(fk(x
t
i), y

t
i ; θ) carry little importance.

This hypothesis enables that i) the same data sample within
different auxiliary tasks can express different levels of im-
portance in terms of the relevance to the target task, and ii)
different data samples in the same auxiliary task Tk can also
demonstrate different levels of importance based on how
informative the data sample is to Tk.

The second hypothesis, on the other hand, focuses on evalu-
ating how beneficial the training pair (xt

i, y
t
ik) is to Tk:

Hypothesis 2. (xt
i, y

t
ik) is beneficial to task Tk, if xt

i con-
tains useful features for Tk and ytik is a correct label.

The second hypothesis suggests that the feature of xt
i and

the loss term lk(fk(x
t
i), y

t
i ; θ) can provide a hint on the

importance of (xt
i, y

t
ik) to Tk. Here we note that the correct-

ness of a label can be determined by its corresponding loss
value (Arazo et al., 2019).

The first hypothesis decomposes wik into two parts, i.e., (1)
the relevance between Tk and TG, and (2) the importance of
(xt

i, y
t
ik) to Tk. The second hypothesis further decomposes

part (2) into the importance of the sample feature and the
rationality of the label. Based on the two hypotheses, we
propose the parameter-efficient task-data scheduler.

We first introduce a learnable task relation vector α =
[α1, · · · , αn, αG] to describe the relationships between each
task Tk and the target task TG, where each αk represents
the importance of Tk to TG. Additionally, the importance of
(xt

i, y
t
ik) to TG relies on the sample feature and sample loss.

Within each task Tk, the data sample xt
i will be sent to the

task learning model fk to obtain its feature cik = fk,enc(x
t
i)

and its loss lk(fk(xt
i), y

t
ik; θ), where fk,enc(·) is the encoder

of the task learning model for Tk. To judge the importance
of (xt

i, y
t
ik) to Tk from the feature perspective, we introduce

a set of learnable task prototypes P = {Pk}k∈U . Each Pk in
P is a vector that has the same dimension with cik, represent-
ing the feature prototype of task Tk. These prototypes are
used to evaluate whether data sample xt

i contains useful fea-
tures for Tk, preventing feature level noise from xt

i. Inspired
by the idea that the normalized loss distribution of clean
and noisy data can be modeled with two beta distributions
parameterized by two groups of parameters (Arazo et al.,

2019), the scheduler assigns each task with an adaptive pass
filter to filter out the noisy pairs. These filters are flexible
to different scenarios by introducing learnable parameters
{ak}k∈U and {bk}k∈U . By denoting lk(fk(x

t
i), y

t
ik; θ) as

lik, the scheduler generates the joint schedule wik as shown
in Eq. (4), where σ() is the activation function to ensure
non-negative values. The second term utilizes the inner
product between the task prototype and the sample feature
to evaluate the informativeness of xt

i. The third term is a
linear classifier to judge whether (xt

i, y
t
ik) is a noisy pair for

Tk, and l̂ik is the loss after normalization. Considering that
wik relies on the loss, feature and the introduced learnable
parameters, which are always updated during the training
process, wik is naturally adaptive.

wik = σ(αk) · σ(P T
k cik) · σ(ak l̂ik + bk). (4)

The proposed scheduler comprehensively considers task,
feature and label information, while only introducing an ad-
ditional learnable parameter set β = {α,P, {ak, bk}k∈U},
where the number of parameters is O(dn) and d is the di-
mension of the features if we assume that the features of all
tasks have the same dimension d. Considering the fact that
the feature dimension d (typical value {32, 64, 128, 256})
is usually much smaller than the dataset size m, the parame-
ters to optimize are therefore largely reduced. In the next
subsection, we present the overall auxiliary learning process
and optimization for parameters θ and β.

2.3. JTDS Overall Framework and Learning Algorithm

The overall framework of the JTDS model is presented
in Figure 1, containing two main components, i.e., the
parameter-efficient task-data scheduler and the task learn-
ing model for general auxiliary learning. We expect the
task-data scheduler to provide an appropriate joint sched-
ule for training the task learning model, so that we could
obtain a task learning model that has excellent performance
on the target task TG. The task learning model parame-
ters θ are updated with the goal of minimizing the loss in
Equation (3). To optimize the parameters β in the sched-
uler, we introduce another small developing dataset Ddev =
{(xdev

i , ydeviG)}ri=1. The dataset Ddev only contains informa-
tion about task TG, i.e., the target task, which is a small sub-
set sampled from the validation set Dv . Given that the goal
for the scheduler is to obtain an optimal training schedule
for the target task on Dv , the loss on Ddev can be utilized to
update the parameters β. Formally, our problem can be for-
mulated as a bi-level optimization problem shown in Eq. (5),
where Ldev(θ

∗(β)) =
∑r

i=1 lG(fG(x
dev
i), ydeviG ; θ∗(β)),

and Lt(θ, β) is the scheduled training loss in Eq. (3). Note
that wik is parameterized by β.

β∗ = argmin
β

Ldev(θ
∗(β)),

s.t. θ∗ = argmin
θ

Lt(θ, β).
(5)

Auxiliary Learning with Joint Task and Data Scheduling

During the lower level optimization, with the parameters
of the scheduler β fixed, we update θ, the parameters of
task learning model. θ is updated by using the scheduled
gradient (weighted gradient sum of the data samples within
different tasks) as shown in Eq. (6).

∇θLt(θ, β) =
∑
k∈U

m∑
i=1

wik∇θlk(fk(x
t
i), y

t
ik; θ). (6)

During the upper level optimization, we need to derive
the gradient of Ldev(θ

∗(β)) with respect to β. Given that
Ldev(θ

∗(β)) directly relies on θ instead of β, we follow the
literature (Lorraine et al., 2020) and utilize implicit differ-
entiation to obtain this implicit gradient. With Theorem 2.1,
we can obtain the gradient of Ldev(θ

∗(β)) with respect to
β using the chain rule as in shown in Eq. (7). For detailed
derivation of the implicit gradient, see Appendix A.

∇βLdev(θ
∗(β)) = ∇θLdev · ∇βθ

∗

=−∇θLdev · (∇2
θLt)

−1 · ∇β∇θLt|(β,θ∗(β)).
(7)

Theorem 2.1. (Cauchy,Implicit Function Theorem). If there
exists one point (θ0, β0) where ∇θLt(θ, β) = 0 and the
regularity conditions are satisfied, then within the neigh-
borhood of (θ0, β0), there exists a implicit function θ∗(β)
s.t.∇θLt(θ, β) = 0|β,θ∗(β) and the derivative of θ∗ w.r.t. β
is: ∇βθ

∗ = −(∇2
θLt)

−1 · ∇β∇θLt|(β,θ∗(β)).

However, directly computing the inverse of the Hessian
is intractable for deep models. We adopt the K-truncated
Neumann series to approximate this inverse as illustrated in
Eq. (8). By using this approximation to approach the inverse
of the Hessian, the implicit gradient∇βLdev(θ

∗(β)) can be
calculated in Eq. (9).

(∇2
θLt)

−1 =

∞∑
i=0

(I −∇2
θLt)

i ≈
K∑
i=0

(I −∇2
θLt)

i, (8)

∇βLdev = −∇θLdev ·
K∑
i=0

(I −∇2
θLt)

i · ∇β∇θLt. (9)

Upon obtaining the gradient of θ and β, Algorithm 1
presents the complete algorithm that simultaneously learns
the task learning model and the task-data scheduler. During
the lower level optimization, the parameters β are fixed, and
the scheduler Scheduler(;β) gives the importance wik to
each sample within each task as in Eq. (4). The parameters
θ are updated with gradient in Eq. (6) at the learning rate
η1. Instead of waiting θ to converge, we conduct the more
efficient M-step optimization as in (Lorraine et al., 2020),
i.e., after θ has been updated for M times, we switch to the
upper optimization to optimize β. According to Eq. (9), we
first calculate Ldev and Lt, and then use the implicit gra-
dient to update β at the learning rate η2. To avoid the task

learning model overfitting to Ddev , after each interval iter-
ative upper and lower optimization, we test the task learning
model on the validation set Dv and record the θ with the
lowest error as our final learned model for the target task as
in Eq. (1).

Discussion wik is also a function of θ because both
fk,enc(x

t
i) and lik rely on θ as shown in Eq. (4), but when

we update θ in Eq. (6), we only consider the gradient of
lik w.r.t. θ and ignore the gradient of wik to θ because our
target is to find the most useful task-data pairs and use their
loss to train the task learning model. In fact, if we con-
sider the gradient of wik w.r.t. θ, it is likely that we obtain
some trivial solution of θ. One possible solution could be
that θ minimizes Lt by forcing all wik equal to zero. In
such situation, the model will ignore the loss of each task
and data sample pair, thus failing to learn any knowledge
about the tasks in the lower optimization. Therefore, the
gradient in Eq. (6) only involving the loss lik is reasonable.
For consistency, during the upper optimization, we drop
the gradient of the feature cik and loss l̂ik w.r.t. θ using
the detach() operation. Additionally, although in this paper,
we only consider the scenario that all the tasks share the
same data samples with different labels, our method can
also be applied to the scenario where each task has an inde-
pendent dataset. The joint task-data consideration can make
it handle some domain adaptation (Wang & Deng, 2018) or
multimodal scenarios (Zhu et al., 2015; Wang et al., 2021a)
with both task and data level adaptation.

3. Experiments
In this section, we empirically assess the efficacy of our
proposed JTDS in exploiting the auxiliary information and
whether the parameter-efficient scheduler provides a reason-
able task and data schedule.

3.1. Experimental Setup

Task and Dataset We first evaluate our methods on the
fine-grained bird classification problem on the CUB (Wah
et al., 2011) dataset, which contains 11788 images of 200
bird species. There is an associated set to each image that de-
scribes its 312 visual attributes, e.g., head color. In general,
it is difficult for non-domain-experts to classify these birds,
but it is much easier to discriminate the visual attributes.
Therefore, a natural practice is to utilize the attribute classi-
fication as auxiliary tasks to help the bird species classifica-
tion. Thus, we regard the bird classification problem as the
target task and the 312 attribute classification problem as the
auxiliary tasks. There are total 313 tasks for training. Then,
we focus on one currently popular practice that utilizes the
self-supervised learning task as auxiliary tasks (Beyer et al.,
2019; Mangla et al., 2020), where the target task is the gen-
eral image classification problem and the rotation degree

Auxiliary Learning with Joint Task and Data Scheduling

Algorithm 1 JTDS for Auxiliary Learning
Input: Dt, Ddev , Dv , interval,η1, η2, K,M ;
Initialize θ, β, θopt, t = 0, errorv = 1.0;
while not converged do

// lower optimization
for j = 1 to M do

for (xt
i, y

t
ik) ∈ Dt do

lik = lk(fk(x
t
i), y

t
ik; θ), l̂ik = norm(lik),

cik = fk,enc(x
t
i), wik = Scheduler(l̂ik, cik;β);

end for
θ ← θ − η1

∑
k∈U

∑m
i=1 wik∇θlik;

end for
t← t+ 1;
// record the best parameters on Dv

if t%interval == 0 then
error = Ev(fG, Dv; θ);
if error < errorv then

errorv = error, θopt = θ;
end if

end if
// upper optimization
Ldev =

∑r
i=1 lG(fG(x

dev
i), ydev

iG ; θ);
for (xt

i, y
t
ik) ∈ Dt do

l̂ik = norm(lk(fk(x
t
i), y

t
ik; θ)).detach(),

cik = fk,enc(x
t
i).detach(),

wik = Scheduler(l̂ik, cik;β);
end for
Lt =

∑
k∈U

∑m
i=1 wik ∗ lik;

β ← β + η2∇θLdev ·
∑K

i=0(I −∇
2
θLt)

i · ∇β∇θLt;
end while
Return θopt

prediction problem is the auxiliary task. We conduct this
experiment on CIFAR10, CIFAR100 (Krizhevsky & Hinton,
2009) and Oxford-IIIT Pet dataset (Parkhi et al., 2012), and
in the auxiliary task, we rotate each image with degrees of
{0, 90, 180, 270}. CIFAR10 is a widely used image classifi-
cation dataset that contains 60000 images with 10 categories
and CIFAR100 with 100 categories. and Oxford-IIIT Pet
contains 7349 images of 37 species of pets. Except for
image classification, we also evaluate our method on the
recommendation task on the MovieLens-1M dataset (Harper
& Konstan, 2016), where we regard the rating prediction as
the target task and the CTR prediction as the auxiliary task.
The input for the recommendation task is the features of the
users and items provided in the dataset. The MovieLens-1M
dataset contains 1 million user-item interaction.

Baselines We compare our methods with several auxiliary
learning methods and dynamic weighting multitask learning
methods. Single task learning(STL) is a proper baseline to
judge whether the auxiliary information benefits the target
task. Another natural baseline is the naive auxiliary learning
method(NAL) that combines the main loss and the auxiliary
loss in a linear way and tune the weights with some search
algorithms as conducted in (Beyer et al., 2019). Gradi-
ent cosine similarity(GCS) (Du et al., 2018) is an adaptive

weighting methods for auxiliary learning by using the gra-
dient similarity between the main task and the auxiliary
tasks. AuxL (Navon et al., 2021) is a recent method that
proposes to dynamically learn non-linear combinations of
different tasks to better utilize the auxiliary information.
Uncertainty (Kendall et al., 2018) is a multitask learning
dynamic weighting methods that weight each task according
to its uncertainty. N-JTDS is a naive implementation of our
proposed joint task and data schedule where we directly as-
sign a learnable weight to each sample within each task, and
also optimize these m(n+1) weights with the same bi-level
optimization process. Detailed implementation algorithm
of the N-JTDS can be found in the Appendix A.

Implementation Details In our experiments, we adopt
the most widely used hard parameter sharing structure for
the task learning model(one backbone followed by several
task heads). In the CUB, Pet, CIFAR100 dataset, we use
the ResNet18 (He et al., 2016) as the backbone, which is
used as the aforementioned encoder for the task learning
model, i.e., fk,enc, and all the tasks share the same back-
bone encoder. Particularly, to fit the smaller image size in
CIFAR100, we replace the original 7x7 convolution kernel
to 3x3 and remove the maxpooling layer in the first block.
In CIFAR10, we use a 4-layer ConvNet as the backbone,
and in MovieLens-1M, we use the AutoINT (Song et al.,
2019) as the backbone. As for the task heads, we adopt
the Multi-layer Perceptron(MLP) with number of layers
searched in {1,2} by the STL baseline. The datasets are
split into training, validation and test set as the officially
recommended. We sample 200 samples from the validation
set to form Ddev . For the baselines that do not use Ddev as
guidance, we add these samples to their training set for fair
comparison. For more implementation details, please refer
to Appendix A.

3.2. Auxiliary Information Usage

To assess whether our proposed method has stronger ability
in exploiting auxiliary information, we conduct experiments
on two different settings, the fully supervised setting and
semi-supervised setting for the target task. For the fully
supervised setting, all training samples are equipped with
labels on the target task. However, on the semi-supervised
setting(with the CUB, Pet, and CIFAR100 dataset), only
20% of the training samples have labels on the target task.
Considering that NAL and GCS baseline cannot handle
such large number of auxiliary tasks in CUB dataset, we
regard all loss of the auxiliary tasks as a whole to implement
these two methods in CUB dataset. The image classification
task is evaluated with the accuracy and the rating prediction
is evaluated with RMSE(rooted mean square error) as the
metric. The experimental results are presented in Table 2
and Table 3 where we run three random seeds for each
experiment and report the mean performance.

Auxiliary Learning with Joint Task and Data Scheduling

In the semi-supervised setting, all the methods that utilize
the auxiliary tasks outperforms the STL baseline, indicating
that these auxiliary tasks are quite beneficial when the labels
for the target task are scarce. Our method, JTDS, achieves
the best performance among all the auxiliary methods, show-
ing its ability in better auxiliary information usage. In the
supervised setting, JTDS also outperforms all the baselines
on the 5 datasets. Particularly, in the CUB, CIFAR10 and
CIFAR100 experiments, most auxiliary methods fail to out-
perform the STL baseline, indicating that the auxiliary tasks
on average are not so beneficial when the labels for the
target task are adequate. This phenomenon has also been
pointed out by (Navon et al., 2021). However, our method
still surprisingly brings substantial improvement over STL,
showing the power of the joint task and data schedule. This
improvement to some extent fits our intuition that the ben-
eficial and harmful information under the same auxiliary
task will counterbalance each other, where only considering
task level relations cannot make full use of the auxiliary
information. Additionally, the results of the N-JTDS and
JTDS show that directly optimizing m(n+ 1) parameters
will suffer different degree of overfitting problem. In the CI-
FAR10, CIFAR100 and the Pet experiments where the num-
ber of tasks is 2, the data sample number is comparatively
small, and the number of required schedule parameters for
N-JTDS is not so large, N-JTDS shows comparatively ac-
ceptable ability in using auxiliary information. However, in
the CUB experiment, when the number of auxiliary tasks
is 312 and the number of the required schedule parameters
for N-JTDS reaches million level, N-JTDS suffers large
performance drop as indicated in (Lorraine et al., 2020),
which is similar in ML-1M. In contrast, our method, JTDS,
shows consistent superiority over all the baselines. Overall,
our proposed JTDS model has better ability in utilizing the
auxiliary information under different settings and shows
excellent scalability to number of samples and tasks.

Table 2. Performance of different methods under the fully-
supervised setting(CF-10, CF-100, ML-1M respectively represents
the CIFAR10, CIFAR100, MovieLens-1M dataset).

Metric Accuracy(%) RMSE
Method CUB Pet CF-10 CF-100 ML-1M
STL 73.86 61.45 71.60 74.14 0.9112
NAL 73.42 66.09 70.42 73.38 0.9101
Uncertainty 72.54 67.14 70.93 68.10 0.9103
GCS 73.70 66.30 70.64 74.14 0.9098
AuxL 74.32 66.30 71.23 73.80 0.9097
N-JTDS 71.38 67.28 70.57 75.06 0.9181
JTDS(ours) 77.04 70.01 72.59 75.68 0.9087

3.3. Robustness to Corrupted Labels

To further assess the ability of our model in distinguishing
beneficial and harmful information, we conduct experiments

Table 3. Image classification accuracy(%) of different methods
under the semi-supervised setting.

Method CUB Pet CIFAR100
STL 38.35 30.21 55.16
NAL 48.15 38.00 57.52
Uncertainty 46.66 43.57 57.70
GCS 46.50 36.80 55.66
AuxL 50.19 36.42 55.94
N-JTDS 46.50 45.53 57.54
JTDS 51.21 53.49 58.56

under a more severe setting where the training labels for the
target task are corrupted. On the CUB dataset, the labels for
the bird species are uniformly corrupted by different ratios
as in (Zhang et al., 2017). The results are shown in Figure 2.

Comparing the results of STL with that of the auxiliary meth-
ods, we find that auxiliary information plays a more and
more important role as the corrupted ratio becomes larger.
This phenomenon is consistent to the semi-supervised set-
ting where the useful labels of the target task are scarce.
Among all the methods using auxiliary tasks, it is obvious
that our proposed method shows best robustness to corrupted
labels, which benefits from joint consideration to the task
and data sample schedule.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
corupted ratio

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

ac
cu

ra
cy STL

AuxL
NAL
Uncertainty
GCS
JTDS(ours)

Figure 2. Accuracy of different models under different ratios of
corrupted labels

To further show the ability of our method in detecting the
harmful information, we randomly sample 64 training im-
ages within the target task in the 0.2 corrupted setting, and
present the 64 scheduled weights in Figure 3(b). In Fig-
ure 3(a), we present the ground truth whether the sampled
image label is correct, where 0.0 means corrupted label
while 1.0 means correct label. Comparing the dark color
part of the two figures, we find that the corrupted ones un-
der the target task are all scheduled with extremely small
weights. This result shows that our proposed method can al-
leviate the impact of the harmful information by decreasing

Auxiliary Learning with Joint Task and Data Scheduling

the weights for the harmful samples. The schedule provided
by our scheduler is reasonable and fits human intuition.

0 2 4 6

0
1
2
3
4
5
6
7 0.0

0.2

0.4

0.6

0.8

1.0

(a) label correctness (b) scheduled weights

Figure 3. Corrupted Sample Detection

3.4. Effectiveness Analysis

To further validate the impact of different components pro-
posed in the scheduler, we conduct ablations about variants
of our proposed method on the CUB dataset under all the
aforementioned settings. The results are shown in Table 4.
We consider four variants of our methods, i.e., 1)only task:
the scheduler only assigns each task with a common weight
for all samples within this task, 2)w/o loss: remove the term
about normalized loss in Equation (4), 3)w/o feature: re-
move the similarity between each sample feature and the
task prototype in Equation (4), 4)w/o aux, we only train on
the target task while ignoring the auxiliary tasks, where our
method degenerates to scheduling data for the target task.

The comparison between only task and our method again
shows the importance of joint considering the task and data
level information. The results of w/o loss shows that the
loss information plays an important role for the scheduler
to detect the noisy samples. Without the loss information,
performance on the corrupted settings largely drops. Also,
feature is an important factor to decide the importance of
a data sample within a task. Without using the feature,
the method shows poor auxiliary information usage under
the full and semi-supervised setting. These results fit our
hypothesis that both feature and label are necessary for
deciding whether a sample is suitable for a task. The w/o
aux results again show that when the useful information for
the target task becomes less, auxiliary tasks become more
important. Interestingly, the results of STL and w/o aux
show that only data schedule can also help to improve the
model performance to some extent. This improvement could
be explained by the benefits of curriculum learning (Wang
et al., 2021b), where different methods reweight the data
according to different metrics so as to obtain better model
performance. From this perspective, under one task scenario,
our method could serve as an automatic curriculum learning
that simultaneously utilizes the loss and feature information
to reweight the data. The results also show that this variant

of our method could give a promising curriculum.

Table 4. CUB Fine-grained image classification accuracy (%).

settings
corrupted ratio

Method full semi 0.2 0.4 0.6
STL 73.86 38.35 65.89 54.94 36.91
only task 72.90 39.97 65.93 54.82 40.95
w/o loss 76.33 49.23 67.24 57.82 44.24
w/o feature 73.97 44.63 67.14 59.79 47.15
w/o aux 75.47 38.44 70.18 61.84 39.65
JTDS 77.04 51.21 72.77 65.98 50.70

3.5. Learning Behavior

Joint task-data schedule We visualize how the schedule
changes during the training process to find some training
pattern. Under the supervised setting on the CUB dataset,
we present the schedule for 20 samples within 20 tasks
in Figure 4, where each column represents weights of the
20 samples within one task and task 0 is the target task,
i.e., fine-grained image classification. The results show that
the schedule will quickly focus on the target task within
a few steps and then the model will keep training on the
target task for a period. This indicates that our method
has the ability to discover the most beneficial information.
In the later training process, the model will also gradually
increase the weights of other auxiliary tasks while keeping
on the target task. This behavior could be explained as to
prevent overfitting on the target training set, and the loss
of the auxiliary tasks will serve as a regularization term.
Additionally, the weights of the samples under the same task
are different from each other, indicating that it is necessary
to jointly taking the sample and task level information into
consideration. For more learning behavior of the models,
please refer to the Appendix A.

0 5 10 15

0

5

10

15 0.25

0.50

0.75

1.00

(a) epoch0

0 5 10 15

0

5

10

15 0.25

0.50

0.75

1.00

(b) epoch1

0 5 10 15

0

5

10

15 0.25

0.50

0.75

(c) epoch20

0 5 10 15

0

5

10

15 0.25

0.50

0.75

1.00

(d) epoch50

0 5 10 15

0

5

10

15 0.25

0.50

0.75

1.00

(e) epoch90

0 5 10 15

0

5

10

15 0.25

0.50

0.75

1.00

(f) epoch95

Figure 4. Schedule Evolving

Auxiliary Learning with Joint Task and Data Scheduling

4. Related Work
Auxiliary Learning Auxiliary learning aims at improving
the model performance on the task of interest by utilizing
the information of related auxiliary tasks. Most of existing
works use auxiliary tasks by linearly combining the auxil-
iary losses and the main loss, and then use search methods
like grid search to tune the linear weights (Beyer et al., 2019;
Wen et al., 2020). However, this simple and widely used
method generally fails when the number of auxiliary tasks
is large because the search space complexity is exponential
explosive. To find the beneficial auxiliary tasks, some recent
works (Lin et al., 2019; Du et al., 2018; Shi et al., 2020)
utilize the parameter gradient similarity between the main
task and the auxiliary tasks to weight each task loss. Further-
more, Navon et al. propose to learn nonlinear combinations
of different tasks to better utilize the auxiliary information.

However, these existing works all average the data level
effect to consider the relationships among tasks, causing
counterbalance between the useful and useless data infor-
mation within a task and leading to sub-optimal information
usage. This may be the reason why in (Navon et al., 2021)
the existing auxiliary methods fail to achieve better perfor-
mance than single task learning with full supervision.

Multitask Learning Another line of highly related works to
auxiliary learning is multitask learning (Crawshaw, 2020),
where there are several equally important tasks to learn.
Multi-task learning aims to obtain a model that performs
well on all the given tasks, different from auxiliary learning
that only concerns the performance on the main task. Exist-
ing multitask learning methods mainly contain the multitask
architecture design, the multitask learning optimization, and
the multitask relationship learning. The multitask architec-
ture design aims to design proper architectures to decide
which parameters to share under different tasks (Liu et al.,
2019b; Gao et al., 2019; Qin et al., 2021), the multitask op-
timization focus on optimizing the architecture parameters
by using methods like loss weighting (Kendall et al., 2018;
Chen et al., 2018), and the multitask relationship learn-
ing focuses on obtaining the explicit relationships among
tasks (rel; Dwivedi & Roig, 2019; Zhao et al., 2019).

Curriculum Learning Curriculum learning points out that
the order of presenting data will influence the model per-
formance. The curriculum learning aims to define a proper
data training order so that the model can achieve faster con-
vergence and better performance (Wang et al., 2021b). Con-
ventional curriculum learning works follow the easy-to-hard
training paradigm (Platanios et al.; Spitkovsky et al., 2010;
Wei et al., 2017; Chen et al., 2021b). However, these meth-
ods generally need domain-specific knowledge to define
the hardness of samples, hard to be applied to the general
settings. Later works rely on the loss of each sample to
judge the sample hardness (Kumar et al.; Meng et al., 2017),

named self-paced learning. The model will start learning
from the samples with small loss in self-paced learning.
However, this easy-to-hard paradigm does not always work
well. To tackle the problem, more recent works (Saxena
et al., 2019; Raghu et al., 2021; Wang et al., 2020; Chen
et al., 2021a; Zhang et al., 2022) propose to learn the cur-
riculum in an automatic way. However, these works only
focus on learning with a single task, failing to consider the
influence of a sample within an auxiliary task to the target
task. Specifically, DDS (Wang et al., 2020) also adopts a
bi-level optimization framework to select data, but it cannot
handle the joint task-data selection for auxiliary learning
because the required parameters for the selector will be ex-
tremely large, which is both memory-consuming and hard
to optimize with a small developing dataset.

Position of Our Work Our work focuses on the auxiliary
learning where we utilize the information of auxiliary tasks
to help of the task of interest. The further fine-grained con-
sideration to data samples is inspired by curriculum learn-
ing (Wang et al., 2021b). Our method can be regarded as
a special kind of curriculum learning that simultaneously
schedules the task and data samples, which is one further
step towards the self-directed machine learning (Zhu et al.,
2022). Additionally, in this work, we explicitly investigate
the factors that could influence the schedule, including task,
sample feature and sample label, and the experiments val-
idates the effectiveness of these factors, which is scarcely
explored before. Further works can explore more ways to
combine these factors or investigate other factors that will
influence the schedule. The limitation of this work is that it
requires a small developing dataset that contains clean data
of the target task, how to obtain a proper schedule without
the clean dataset is also an interesting future direction.

5. Conclusion
In this paper, we propose to give a joint task and data sched-
ule for auxiliary learning. The proposed parameter-efficient
task-data scheduler offers an appropriate schedule while
using much fewer additional parameters. To optimize the
task learning model and the scheduler, we design a bi-level
optimization based algorithm. Our method shows better abil-
ity in auxiliary information usage under supervised, semi-
supervised and corrupted label settings, promising to many
applications in real life scenario.

Acknowledgement
This work is supported by the National Key Re-
search and Development Program of China No.
2020AAA0106300National Natural Science Founda-
tion of China No. 62102222 and partially funded by
THU-Bosch JCML center.

Auxiliary Learning with Joint Task and Data Scheduling

References

Arazo, E., Ortego, D., Albert, P., O’Connor, N., and
McGuinness, K. Unsupervised label noise modeling and
loss correction. In International Conference on Machine
Learning, pp. 312–321, 2019.

Beyer, L., Zhai, X., Oliver, A., and Kolesnikov, A. S4L:
self-supervised semi-supervised learning. In ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019,
pp. 1476–1485, 2019.

Chen, H., Chen, Y., Wang, X., Xie, R., Wang, R., Xia, F.,
and Zhu, W. Curriculum disentangled recommendation
with noisy multi-feedback. Advances in Neural Informa-
tion Processing Systems, 34, 2021a.

Chen, Y., Wang, X., Fan, M., Huang, J., Yang, S., and
Zhu, W. Curriculum meta-learning for next poi recom-
mendation. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
2692–2702, 2021b.

Chen, Z., Badrinarayanan, V., Lee, C., and Rabinovich,
A. Gradnorm: Gradient normalization for adaptive loss
balancing in deep multitask networks. In ICML 2018, pp.
793–802. PMLR, 2018.

Crawshaw, M. Multi-task learning with deep neural net-
works: A survey. CoRR, 2020.

Du, Y., Czarnecki, W. M., Jayakumar, S. M., Pascanu, R.,
and Lakshminarayanan, B. Adapting auxiliary losses
using gradient similarity. CoRR, 2018.

Dwivedi, K. and Roig, G. Representation similarity analysis
for efficient task taxonomy & transfer learning. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pp. 12387–12396. Computer Vision Foundation / IEEE,
2019.

Gao, Y., Ma, J., Zhao, M., Liu, W., and Yuille, A. L. NDDR-
CNN: layerwise feature fusing in multi-task cnns by neu-
ral discriminative dimensionality reduction. In CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp. 3205–
3214, 2019.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4):19:1–19:19, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778.
IEEE Computer Society, 2016.

Kandasamy, K., Vysyaraju, K. R., Neiswanger, W., Paria, B.,
Collins, C. R., Schneider, J., Póczos, B., and Xing, E. P.
Tuning hyperparameters without grad students: Scalable
and robust bayesian optimisation with dragonfly. J. Mach.
Learn. Res., pp. 81:1–81:27, 2020.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics. In CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 7482–7491, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. Computer Science, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Handbook of Systemic
Autoimmune Diseases, 1(4), 2009.

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Advances in Neural
Information Processing Systems 23: 24th Annual Con-
ference on Neural Information Processing Systems 2010.
Proceedings of a meeting held 6-9 December 2010, Van-
couver, British Columbia, Canada, pp. 1189–1197.

Lin, X., Baweja, H. S., Kantor, G., and Held, D. Adaptive
auxiliary task weighting for reinforcement learning. In
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 4773–4784, 2019.

Liu, S., Davison, A. J., and Johns, E. Self-supervised gener-
alisation with meta auxiliary learning. In NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 1677–
1687, 2019a.

Liu, S., Johns, E., and Davison, A. J. End-to-end multi-task
learning with attention. In CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pp. 1871–1880, 2019b.

Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing mil-
lions of hyperparameters by implicit differentiation. In
The 23rd International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2020, 26-28 August 2020,
Online [Palermo, Sicily, Italy], Proceedings of Machine
Learning Research, pp. 1540–1552. PMLR, 2020.

Mangla, P., Singh, M., Sinha, A., Kumari, N., Balasubra-
manian, V. N., and Krishnamurthy, B. Charting the right
manifold: Manifold mixup for few-shot learning. In IEEE
Winter Conference on Applications of Computer Vision,
WACV 2020, Snowmass Village, CO, USA, March 1-5,
2020, pp. 2207–2216. IEEE, 2020.

Meng, D., Zhao, Q., and Jiang, L. A theoretical under-
standing of self-paced learning. Inf. Sci., 414:319–328,
2017.

Auxiliary Learning with Joint Task and Data Scheduling

Navon, A., Achituve, I., Maron, H., Chechik, G., and Fetaya,
E. Auxiliary learning by implicit differentiation. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V.
Cats and dogs. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3498–3505, 2012.

Platanios, E. A., Stretcu, O., Neubig, G., Póczos, B., and
Mitchell, T. M. Competence-based curriculum learning
for neural machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
1162–1172.

Qin, Y., Wang, X., Zhang, Z., and Zhu, W. Graph differ-
entiable architecture search with structure learning. In
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 16860–16872, 2021.

Raghu, A., Raghu, M., Kornblith, S., Duvenaud, D., and
Hinton, G. E. Teaching with commentaries. In 9th Inter-
national Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021.

Saxena, S., Tuzel, O., and DeCoste, D. Data parameters: A
new family of parameters for learning a differentiable cur-
riculum. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 11093–11103, 2019.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T.
Loss is its own reward: Self-supervision for reinforce-
ment learning. In ICLR 2017, Toulon, France, April
24-26, 2017, Workshop Track Proceedings, 2017.

Shi, B., Hoffman, J., Saenko, K., Darrell, T., and Xu, H.
Auxiliary task reweighting for minimum-data learning.
In NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012., pp. 2960–2968, 2012.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In Proceedings of the
28th ACM International Conference on Information and

Knowledge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, pp. 1161–1170. ACM, 2019.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. From baby
steps to leapfrog: How ”less is more” in unsupervised
dependency parsing. In Human Language Technologies:
Conference of the North American Chapter of the Asso-
ciation of Computational Linguistics, Proceedings, June
2-4, 2010, Los Angeles, California, USA, pp. 751–759.
The Association for Computational Linguistics, 2010.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The Caltech-UCSD Birds-200-2011 Dataset. Technical
report, 2011.

Wang, M. and Deng, W. Deep visual domain adaptation: A
survey. Neurocomputing, 312:135–153, 2018.

Wang, X., Pham, H., Michel, P., Anastasopoulos, A., Car-
bonell, J. G., and Neubig, G. Optimizing data usage
via differentiable rewards. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 9983–9995.
PMLR, 2020.

Wang, X., Chen, H., and Zhu, W. Multimodal disentangled
representation for recommendation. In 2021 IEEE Inter-
national Conference on Multimedia and Expo (ICME),
pp. 1–6. IEEE, 2021a.

Wang, X., Chen, Y., and Zhu, W. A survey on curriculum
learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021b.

Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M., Feng,
J., Zhao, Y., and Yan, S. STC: A simple to complex
framework for weakly-supervised semantic segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 39(11):2314–
2320, 2017.

Wen, H., Zhang, J., Wang, Y., Lv, F., Bao, W., Lin, Q., and
Yang, K. Entire space multi-task modeling via post-click
behavior decomposition for conversion rate prediction.
In SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pp. 2377–2386, 2020.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking gener-
alization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017.

Zhang, Z., Zhang, Z., Wang, X., and Zhu, W. Learning to
solve travelling salesman problem with hardness-adaptive
curriculum. CoRR, abs/2204.03236, 2022.

Auxiliary Learning with Joint Task and Data Scheduling

Zhao, H., Stretcu, O., Smola, A. J., and Gordon, G. J. Ef-
ficient multitask feature and relationship learning. In
Proceedings of the Thirty-Fifth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel,
July 22-25, 2019, volume 115 of Proceedings of Machine
Learning Research, pp. 777–787. AUAI Press, 2019.

Zhu, F., Zhu, Y., Chang, X., and Liang, X. Vision-language
navigation with self-supervised auxiliary reasoning tasks.
In CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
10009–10019, 2020.

Zhu, W., Cui, P., Wang, Z., and Hua, G. Multimedia big
data computing. IEEE multimedia, 22(3):96–c3, 2015.

Zhu, W., Wang, X., and Xie, P. Self-directed machine
learning. CoRR, abs/2201.01289, 2022.

Auxiliary Learning with Joint Task and Data Scheduling

A. Appendix
A.1. Derivation of the Implicit Gradient

We present the derivation of the implicit gradient here. Ac-
cording to the Cauchy Implicit Function Theorem, if there
exists one point (θ0, β0) where ∇θLt(θ, β) = 0 and the
regularity conditions are satisfied, then within the neigh-
borhood of (θ0, β0), there exists a implicit function θ∗(β)
s.t.∇θLt(θ, β) = 0|β,θ∗(β). Assuming that ∇2

θLt(θ
∗, β) is

positive definite, we have the following derivation,

∇θLt(θ
∗(β), β) = 0, (10)

∇2
θLt(θ

∗, β)∇βθ
∗ +∇β∇θ∗Lt(θ

∗, β) = 0, (11)

∇βθ
∗ = −(∇2

θLt(θ
∗, β))−1∇β∇θLt(θ

∗, β) (12)

From Eq.(10) to Eq.(11), we take the derivative to β on
both sides of the Eq.(10). By assuming that ∇2

θLt(θ
∗, β) is

positive definite, ∇2
θLt(θ

∗, β) will have an inverse so we
can obtain the implicit gradient in Eq.(12).

A.2. Computational Complexity Analysis

We provide the computational time complexity of differ-
ent methods as follows. Denoting lower step as M, auxil-
iary task number as N, the truncated Neumann series num-
ber as K, we regard the STL(single task learning) as base-
line(assuming its time complexity as 1). The complexity
of different methods to obtain their optimal weights are as
follows. (1)STL:1; (2)NAL: 2N (assuming 2 candidates for
each task weight).; (3)Uncert:1; (4):N+1, considering that
most of the compuational time comes from the backward
process; (5)AuxL&ours:1+(K+3)/M, typical value in our pa-
per is 1.3, after each M step lower optimization, one upper
optimization needs (3+K) backward. Therefore, the time of
our method is (M+K+3)/M that of STL baseline.

A.3. More Learning behavior

Loss behavior during bi-level optimization Our proposed
method optimizes the task learning model and the joint
scheduler in a bi-level iterative way. It is important that
the loss on the training set and the developing set could
stably descend. We visualize the loss of the target task
on the training set and the developing set in the CUB and
CIFAR100 dataset and present them in Figure 5. The target
training loss and the loss on the developing set are optimized
in a stable way.

The learned adaptive filters To distinguish whether a sam-
ple is noisy or not, we design a filter based on the sample
loss for each task. We present the final learned functions for
the target task on the CUB dataset in both the supervised
and 0.2 corrupted ratio settings in Figure 6. We can observe
that in the setting of 0.2 ratio of corrupted labels, larger
normalized loss will result in lower schedule weights. This

0 25 50 75 100125150175200
training epochs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

lo
ss

training loss
developing set loss

(a) CIFAR100

0 20 40 60 80
training epochs

0

1

2

3

4

5

lo
ss

training loss
developing set loss

(b) CUB

Figure 5. Loss behavior on the CUB and CIFAR100 experiment

learned function also fits the results in (Arazo et al., 2019)
where noisy samples usually result in larger value of loss.
However, in the supervised setting, the weights all samples
are close to 1, indicating that the labels for the samples
are almost correct. The learned different filter functions
for the main task suggests that under different settings, the
most suitable filters are different. It is necessary to give
the filters learnable parameters {ak} and {bk} make them
automatically adaptive to different scenarios.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
normlized loss

0.0

0.2

0.4

0.6

0.8

1.0

fil
te

r o
ut

pu
t w

ei
gh

t
supervised setting
0.2 corrupted label

Figure 6. Target task filter function for supervised and corrupted
settings.

A.4. Experimental Details

Model Structure In our experiments, we adopt the most
widely used hard parameter sharing model as the task learn-
ing model. In the CIFAR100, CUB and Pet datasets, we
use the ResNet18 (He et al., 2016) as the backbone which
is used as the aforementioned fk,enc. Particularly, to fit the
smaller image size in CIFAR100, we replace the original
7x7 convolution kernel to 3x3 and remove the maxpooling
layer in the first block. For the CIFAR10 dataset, we adopt
a 4-layer ConvNet as the backbone. Each layer is composed
of the [Conv2d, BatchNormalization, ReLU] components.
After the 2nd and the 4th layer, there is a 2× 2 Maxpooling
layer. The number of output channel for all the layers is set
to 32, and the kernel size for the Conv2d is 3 × 3 and the
stride is 1. For the recommendation task, AutoINT (Song
et al., 2019) is the adopted backbone composed of 4 trans-
former encoder block with head number 4 and embedding
dimension 16. As for the task heads, we adopt the Multi-
layer Perceptron(MLP) with number of layers searched in

Auxiliary Learning with Joint Task and Data Scheduling

{1,2} by the STL baseline.

Hyper-parameter About the optimization process, in the
CIFAR100 and CIFAR10 dataset, we optimize θ using SGD
with initial learning rate searched from {0.01,0.02,0.05}
and a cosine annealing scheduler, and in the CUB, Pet,
MovieLens-1M dataset we use Adam (Kingma & Ba, 2014)
with learning rate searched from {1e-3,1e-4}. To optimize
β, we use SGD with learning rate from {1e-2,1e-3}. Addi-
tionally, M in the Algorithm is searched from {10, 20, 50}
and K is searched from {3,5} considering the performance
and computational cost as recommended in (Lorraine et al.,
2020). The datasets are split into training, validation and
test set as officially recommended. We sample 200 samples
from the validation set to form Ddev with stratified sampling.
For the baselines that do not use Ddev as guidance, we add
these samples to their training set for more fair comparison.
The running epoch is 200 for CIFAR100 and Pet, 100 for
CUB, 15 for MovieLens-1M. Additionally, the weights for
baseline NAL is searched from {0.1,1.0,10.0}.

A.5. The Implementation of N-JTDS algorithm

We present the algorithm implementation of the N-JTDS
baseline in Algorithm 2. This algorithm is a naive implemen-
tation of the joint task and sample scheduling for auxiliary
learning. The scheduler does not rely on any information
to predict the schedule but assigns one learnable parameter
as the weight to each data sample under each task. The
gradient of these weights are also calculated in the same
implicit differentiation way as our proposed JTDS. We also
denote all the weights parameters β = {wik}mi=1,k∈U .

Algorithm 2 N-JTDS for Auxiliary Learning
Input: Dt, Ddev , Dv , interval, η1, η2, K,M ;
Initialize θ, β, θopt, t = 0, errorv = 1.0;
while not converged do

// lower optimization
for j = 1 to M do

for (xt
i, y

t
ik) ∈ Dt do

lik = lk(fk(x
t
i), y

t
ik; θ);

end for
θ ← θ − η1

∑
k∈U

∑m
i=1 wik∇θlik;

end for
t← t+ 1;
// record the best parameters on Dv

if t%interval == 0 then
error = Ev(fG, Dv; θ);
if error < errorv then

errorv = error, θopt = θ;
end if

end if
// upper optimization
Ldev =

∑r
i=1 lG(fG(x

dev
i), ydeviG ; θ);

for (xt
i, y

t
ik) ∈ Dt do

lik = lk(fk(x
t
i), y

t
ik; θ),

end for
Lt =

∑
k∈U

∑m
i=1 wik ∗ lik;

β ← β + η2∇θLdev ·
∑K

i=0(I −∇2
θLt)

i · ∇β∇θLt;
end while
Return θopt

