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Temporal Sentence Grounding in Videos (TSGV), which aims to ground a natural language sentence that indicates complex

human activities in an untrimmed video, has drawn widespread attention over the past few years. However, recent studies

have found that current benchmark datasets may have obvious moment annotation biases, enabling several simple baselines

even without training to achieve state-of-the-art (SOTA) performance. In this paper, we take a closer look at existing

evaluation protocols for TSGV, and ind that both the prevailing dataset splits and evaluation metrics are the devils that

lead to untrustworthy benchmarking. Therefore, we propose to re-organize the two widely-used datasets, making the

ground-truth moment distributions diferent in the training and test splits, i.e., out-of-distribution (OOD) test. Meanwhile, we

introduce a new evaluation metric łdR@�,IoU=�ž that discounts the basic recall scores especially with small IoU thresholds,

so as to alleviate the inlating evaluation caused by biased datasets with a large proportion of long ground-truth moments.

New benchmarking results indicate that our proposed evaluation protocols can better monitor the research progress in

TSGV. Furthermore, we propose a novel causality-based Multi-branch Deconfounding Debiasing (MDD) framework for

unbiased moment prediction. Speciically, we design a multi-branch deconfounder to eliminate the efects caused by multiple

confounders with causal intervention. In order to help the model better align the semantics between sentence queries and

video moments, we enhance the representations during feature encoding. Speciically, for textual information, the query is

parsed into several verb-centered phrases to obtain a more ine-grained textual feature. For visual information, the positional

information has been decomposed from the moment features to enhance the representations of moments with diverse

locations. Extensive experiments demonstrate that our proposed approach can achieve competitive results among existing

SOTA approaches and outperform the base model with great gains.

CCS Concepts: · Computing methodologies→ Artiicial intelligence; Natural language processing; Computer vision.

Additional Key Words and Phrases: Temporal Sentence Grounding in Videos, Dataset Bias, Evaluation Metric, Dataset

Re-Splitting, Out-Of-Distribution Test

1 INTRODUCTION

Temporal Sentence Grounding in Videos (TSGV) has received increased attention in recent years. Speciically,
given one descriptive sentence, the TSGV task aims to retrieve a video segment (i.e., moment) from an untrimmed
video corresponding to the sentence query. For example, as shown in Fig. 1 (a), when the sentence describes
a person pouring cofee into a cup in the dining room, the corresponding video segment (21.3s-30.7s) should
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(b) (c)

(a)

Charades-STA ActivityNet Captions

Sentence query: 
Person pouring coffee into a 
cup in the dining room.

21.3s 30.7s

= =

Fig. 1. (a): Given an untrimmed video and a sentence query, TSGV aims to localize the semantic-related moment with
the start timestamp (21.3s) and end timestamp (30.7s). (b): The performance comparisons of some SOTA TSGV models
with the Bias-based baseline (orange bar) on Charades-STA with evaluation metric łR@1,IoU=0.7ž. (c): The performance
comparisons of some SOTA TSGV models with PredictAll baseline (orange bar) on ActivityNet Captions with evaluation
metric łR@1,IoU=0.3ž.

be located. It can be observed that TSGV needs to understand both visual information in videos and textual
information in sentences, which is an extremely challenging task in the multimedia community [33, 60].
In recent years, a number of approaches [5, 11, 20, 29, 45, 54, 57] have emerged to solve the TSGV problem.

Although each newly proposed method can plausibly achieve better performance than the previous one, a recent
study [32] reveals that current state-of-the-art (SOTA) methods may take shortcuts by itting the ground-truth
moment annotation distribution biases, without truly understanding the multimodal inputs. As shown in the
Fig. 1 (b), the Bias-based approach, which samples a moment from the frequency statistics of the ground-truth
moment annotations in the training set as prediction, can unexpectedly outperform several SOTA deep models
on Charades-STA [11] dataset. This observation indicates that current benchmark datasets may have obvious
biases in terms of moment location distribution, and it is hard to judge whether existing methods are merely
itting the biases or truly learning the semantic alignment relationship between the two modalities. Another
characteristic of biased datasets is that they have a large proportion of long samples, e.g., 40% queries in the
ActivityNet Captions dataset [25] refer to a moment occupying over 30% temporal ranges of the whole input
video. Since prevailing metric for TSGV task is łR@�,IoU=�ž, i.e., the percentage of testing samples which have
at least one of the top-� results with IoU larger than�, these overlong ground-truth moments can be hit easily
especially with small IoU threshold�, resulting in untrustworthy evaluation results. As an extreme case, a simple
baseline which directly returns the whole video as the prediction (c.f ., the PredictAll baseline in Fig.1 (c)) can
still achieve a SOTA performance with the metric of łR@1,IoU=0.3ž.
Therefore, to disentangle the efect caused by the biases and alleviate the inlating evaluation, we propose to

re-split the datasets and design a new metric. Speciically, we re-organize two widely-used datasets, i.e., Charades-
STA and ActivityNet Captions and name them Charades-CD and ActivityNet-CD (CD means under Changing
Distribution). For each dataset, besides the test set with the same distribution as the training set (test-iid), we
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also construct a test set with a completely diferent distribution of moment locations from the training set
(dubbed as test-ood set), i.e., Out-Of-Distribution (OOD) test. As for metrics, we design a new evaluation metric
łdR@�,IoU=�ž that takes temporal distances between the predicted moment and ground-truth moment into
consideration. The new metric can discount the basic recall scores especially under small IoU thresholds. So
our proposed evaluation protocols (i.e., re-organized dataset splits and improved evaluation metric) are able to
provide more trustworthy evaluation results for existing methods and igure out whether they just it the moment
annotation biases. Several representative TSGV methods are tested with such new evaluation protocols and one
key inding is that the performances of the vast majority of these methods degrade signiicantly on test-ood set
compared to test-iid set, which indicates the fact that current methods heavily rely on the biases for moment
prediction. Therefore, how to efectively debias a TSGV model to make it truly focus on the semantic alignment
between the two modalities becomes one primary issue to be addressed.

To reduce the efects of moment annotation biases, we further propose a novel causality-based Multi-branch

Deconfounding Debiasing (MDD) framework. Speciically, by constructing a causal graph, we ind that multiple
confounders can lead to spurious correlations between the multimodal inputs (video moments and descriptive
sentences) and inal predicted matching scores. Thus we present a multi-branch deconfounder to block the efects
caused by the confounders with backdoor adjustment. Furthermore, we also enhance the representation capability
for two modalities. For textual information, we exploit a semantic role labeling toolkit to parse the sentence into
a three-layer semantic role tree, and a more ine-grained sentence feature is obtained by adopting hierarchical
attention mechanism on the tree. For visual information, in order to discriminate video moments and distinguish
diferent temporal relationships, a reconstruction loss function is created to enhance the video moment features.
Extensive experiments demonstrate that the adopting of our debiasing strategy can signiicantly improve the
grounding accuracy on both the test-iid and test-ood sets of two datasets.
This paper is a substantial extension of our ACM Multimedia HUMAWorkshop paper [52], which won the

best paper award. Compared with the previous version, we make several improvements:

• We propose a new Multi-branch Deconfounding Debiasing (MDD) framework for unbiased moment prediction.
The proposed multi-branch deconfounder can simultaneously remove the spurious correlation between
multimodal inputs and predicted scores caused by multiple confounders, avoiding the excessive abuse of
dataset biases.

• We also enhance the visual and textual features for better cross-modal matching. The gated ine-grained feature
extractor for queries and position reconstruction module for video moments can capture richer and more
discriminative representations of these two modalities.

• We conduct extensive studies on MDD framework compared with existing SOTA models. The experimental
results demonstrate that our approach can achieve competitive results among existing SOTA models and
outperform the base model with great gains on both test-iid and test-ood sets.

2 RELATED WORK

2.1 Temporal Sentence Grounding in Videos

Existing TSGV methods can be summarized into four main categories:
Two-Stage Methods. Early methods commonly address the TSGV task in a two-stage manner. In particular,

they irst extract a large number of moment candidates via sliding window sampling strategy, and then either
project the query and these candidates into a common space for subsequent cross-modal matching [20] or fuse
the query feature and video moment features to predict the alignment score and reine the moments with position
ofset regression [11, 14, 23, 26, 27, 38, 47, 48]. To reduce the number of candidates for accelerating the localization
process, Xu et al. [49] proposed QSPN, which ilters unlikely video moments by injecting the textual feature into
the early process of candidate generation.
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End-to-End Methods. Other than adopting the two-stage framework that is ineicient due to the redundant
computation with pre-segmented overlapping candidate moments, some studies start to address the TSGV task in
an end-to-end pipeline [3, 5, 6, 28, 53ś58]. TGN [5] adopts LSTM [21] to sequentially score a bunch of multi-scale
moment candidates ended at each time step in one single pass. Instead of candidate moment scoring, ABLR [54]
directly regresses the start and end timestamps of the predicted moments from the attention weights yielded
by the multi-turn cross-modal interaction. It is worth noting that both TGN and ABLR use LSTM to process
the video stream and some other TSGV frameworks adopt temporal convolutional networks as the solutions.
MAN [56] employs a hierarchical convolutional network to encode the whole video stream, where the language
features are integrated as its dynamic ilters to address semantic misalignment. Yuan et al. [53] presented SCDM,
which conducts a query semantics-guided feature normalization process among diferent temporal convolutional
layers. Both MAN and SCDM encode the video sequence with 1D feature map which can naturally indicate the
temporal locations and scales of diferent moments, while 2D-TAN [57] models the temporal relations between
video moments with a 2D temporal map. The 2D temporal map can encode the temporally adjacent relations of
diverse moments indicated by their 2D position coordinates. Thus more discriminative moment representations
can be learned for cross-modal matching.
RL-based Methods. Some recent works employ Reinforcement Learning (RL)-based frameworks, which

formulate the TSGV task as a problem of sequential decision making, progressively adjusting the temporal
boundaries of predicted moment [17, 18, 44, 45]. Speciically, He et al. [18] proposed the RL model that iteratively
regulates current locations according to the learned policy. The policy network is implemented by a recurrent
neural network (RNN) that outputs the probability distribution over its action space. Wang et al. [44] presented
a semantic matching RL (SM-RL) model, which is also based on RNN. The SM-RL integrates visual semantic
concepts into the video features to bridge the semantic gap between visual and textual information. TripNet [17]
can eiciently localize the desired moment without watching the entire video, by making the agent learn how to
intelligently move the candidate window around the video. Inspired by the coarse-to-ine human decision-making
paradigm, Wu et al. [45] designed a tree-structured policy based RL model, where the root policy and leaf policy
represent the coarse and ine decision-making steps respectively, to progressively regulate the predicted moment
locations.

Weakly Supervised Methods. Since the annotation process for temporal boundaries of retrieved moments is
labor-intensive and costly, some studies resort to address the TSGV problem with only the video-level descriptions
available for training [10, 13, 29, 39, 40]. This kind of setting is dubbed as weakly supervised TSGV. TGA [29]
learns a joint embedding network to align the text and video features, where the global visual features are
obtained by weighted pooling according to the text-guided attentions. Duan et al. [10] established a cycle system
that consists of the weakly supervised localization task and its dual problem (i.e., weakly supervised dense event
captioning) and minimized the reconstruction error for training such a loop system. Huang et al. [22] presented a
cross-sentence relations mining (CRM) method that explores the cross-sentence relations in the multi-sentence
paragraph to improve the per-sentence grounding accuracy.

2.2 Biases in Temporal Sentence Grounding in Videos

Recently, there aremanyworks that are related to uncovering some forms of biases in TSGV datasets [30, 32, 50, 59].
Otani et al. [32] revealed that the mainstream datasets have latent biases on ground-truth moment locations and
current deep models are good at making use of them. Yang et al. [50] stated that it is the location variable that
causes the spurious correlation between video moments and predicted scores as a confounder, and they further
presented a deconfounded cross-modal matching network to remove the confounding efects of the moment
location. However, these works either just point out the problem of dataset biases in TSGV without a solution or
design a debiased model without careful thinking about current evaluation protocols.
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Moreover, Zhou et al. [59] were devoted to dealing with another kind of bias, i.e., the single-style of annotations.
The proposed DeNet with a debiasing mechanism can produce diverse yet plausible predictions. Nan et al. [30]
proposed an approach to approximate the latent confounder set distribution based on the theory of causal inference
to deconfound selection biases introduced by datasets (e.g., in datasets, it appears more often that a person is
holding a vacuum cleaner than a person is repairing a vacuum cleaner). However, these two works [30, 59] can
not resolve the issue of moment annotation distribution biases in TSGV.

Diferent from the above relevant studies, we not only raise the location bias issue and design new evaluation
protocols including re-organized datasets and more reliable metrics, but propose a new debiasing framework
from the perspective of causality to resolve the problem as well.

2.3 Biases in Other Tasks

Besides TSGV, the dataset bias issue has been observed and addressed in many other multimedia tasks [1, 2, 9, 16,
31, 41, 51].
In Visual Question Answering (VQA), due to the unbalanced distribution of answers, some models are able

to give fairly good answers without understanding the visual contents. Thus, a new data split namely VQA-CP
(under Changing Priors) [1] that alters the language prior distribution is proposed to evaluate the generalization
ability of models. In VQA-CP dataset, the answer distribution for each question type in the test set is diferent
from that in the training set. To avoid exploiting the language biases, some ensemble-based methods including
fusion-based approaches [1, 2, 7ś9, 15] and adversarial-based approaches [16, 35] have emerged.
However, these debiased VQA methods are not able to give a formal formulation of the bias. CF-VQA [31]

creatively revisits the methods above from a causal perspective, formulating the language biases as the direct
causal efect of questions on answers, and it further presents a novel counterfactual inference framework. The
causality can provide good interpretability and theoretical support for debiasing strategies. Such causality-based
debiasing idea has also inspired other ields [41, 51]. Tang et al. [41] proposed an unbiased method from biased
training for Scene Graph Generation (SGG). Speciically, after analyzing the causal graph, they attempt to remove
the harmful bias by computing Natural Direct Efect with counterfactual causality. Yang et al. [51] analyzed
the hidden cause in image captioning and pointed out the confounder is the pre-training dataset. They further
presented DICv1.0 framework with both front-door and back-door adjustment.

3 REVISITING EVALUATION PROTOCOLS

In this section, we perform a deep analysis on the limitations of current evaluation protocols including the
benchmark datasets and metrics in Section 3.1. To address such limitations, we propose new and more trustworthy
evaluation protocols in Section 3.2.

3.1 Analysis of Current Evaluation Protocols

To igure out where the speciic biases come from and why the metrics cause unreliable model evaluation, we
thoroughly analyze the datasets and metrics that are commonly adopted in TSGV.

3.1.1 Datasets. In TSGV research communities, four public datasets arewidely used for evaluation, i.e.,TACoS [36],
DiDeMo [20], Charades-STA [11] and ActivityNet Captions [25]. However, some of them have obvious and
inherent shortcomings, e.g., the video scene is restricted into the kitchen domain in TACoS dataset, and the
ground-truth moments are comprised of the ive-second video segment units in DiDeMo dataset. Therefore, the
remaining two datasets (i.e., Charades-STA and ActivityNet Captions) have become the mainstream datasets for
TSGV evaluation [5, 17, 49, 53, 55, 57], which are also what we focus on.
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(a) Charades-STA

(b) ActivityNet Captions

Fig. 2. The ground-truth moment annotation distributions of all query-moment
pairs in Charades-STA and ActivityNet Captions. The deeper the color, the larger
density in distributions.

Fig. 3. The histogram of the normal-
ized ground-truth moment durations
in Charades-STA and ActivityNet Cap-
tions.

Table 1. The detailed statistics of datasets, including the num-
ber of videos and query-moment pairs for each data split.

Dataset Split # Videos # Pairs

Charades-STA
training 5,338 12,408
test 1,334 3,720

ActivityNet Captions
training 10,009 37,421
test 4,917 34,536

Charades-CD (Ours)

training 4,564 11,071
val 333 859
test-iid 333 823
test-ood 1,442 3,375

ActivityNet-CD (Ours)

training 10,984 51,415
val 746 3,521
test-iid 746 3,443
test-ood 2,450 13,578

Below are more details about Charades-STA and
ActivityNet Captions datasets. Charades-STA [11] is
built upon the original Charades dataset [37], focusing
on those videos containing indoor daily activities. Its
video length is around 30 seconds on average. The
training/test splits are of 12,408/3,720 query-moment
pairs.ActivityNet Captions [25] is extended fromAc-
tivityNet v1.3 dataset [19] for dense event captioning.
The videos cover various complex human activities.
Each video is annotated with multiple descriptive sen-
tences and their corresponding temporal boundaries of
video moments. Since the test split is withheld for the
public competition challenge, the two accessible vali-
dation sets (i.e., łval 1ž, łval 2ž) are commonly merged
as a test set for the TSGV evaluation. The training/test
splits are of 37,421/34,536 query-moment pairs, respec-
tively.

We visualize the joint distribution of normalized start and end points of the ground-truth moments (c.f . Fig. 2)
in both datasets. An obvious observation is that the distributions of training and test sets for each dataset are
almost the same, in other words, these two sets follow the independent and identical distribution (iid). We can
also observe that each dataset has its own characteristics of the biased distribution. For Charades-STA, as we can
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see from Fig. 2 (a) that the vast majority of ground-truth moments are shorter than 0.5 (after normalization). The
fact that the high-density parts concentrate on top-right and bottom-left corners indicates that moments are
likely to be either at the beginning/end of the whole videos. For ActivityNet Captions (c.f ., Fig. 2 (b)), there are
mainly three types of ground-truth moments appearing more frequently: Short moment samples (≤ 0.3 after
normalization) that start either at the beginning or end of the videos and overlong moment samples that nearly
cover the whole length (top-left corner). The main reason for so many overlong samples in ActivityNet Captions
is that this dataset is originally created for dense video captioning, which should be annotated with video-level
captions. Table 1 shows more detailed statistics about these two datasets. In summary, both of these two datasets
have strong biases of the ground-truth moment distribution. A simple baseline method that only exploits such
biases may be able to achieve competitive results with SOTA models (c.f ., Fig. 1).

3.1.2 Evaluation Metrics. The commonly used evaluation metric for assessing the moment localization results in
TSGV is łR@�,IoU=�ž [11]. It measures the percentage of positive samples out of all testing samples, which is
formally deined as:

R@�,IoU=� =

1

��

︁

�

� (�,�,�� ) , (1)

where for each query �� , � (�,�,�� ) = 1 if at least one of the top-� predicted moments has an IoU (Intersection-
over-Union) larger than threshold� with the ground-truth moment, otherwise � (�,�,�� ) = 0. The total number
of all samples is �� .
Some existing works [5, 27, 49, 54, 57] report the metric scores with some small IoU thresholds like � ∈

{0.1, 0.3, 0.5}. However, such metrics with small IoU thresholds may overrate the model performance when
datasets have obvious annotation biases. As shown in Fig. 3. (b), for ActivityNet Captions, a substantial proportion
of ground-truth moments occupy a long period of video duration. In statistics, 40%, 20%, and 10% of queries refer
to a moment occupying over 30%, 50%, and 70% duration of the entire video, respectively. Such annotation biases
can increase the chance of hitting the ground-truth moments when IoU thresholds are small. Taking an extreme
case as an example, when the IoU threshold is 0.3, if the ground-truth moment is the entire video, any predictions
with a duration longer than 0.3 can be seen as positive. Thus, the metric łR@�,IoU=�ž with small� is unreliable
for current biased annotated datasets.

3.2 New Evaluation Protocols

In order to overcome the shortcomings of current evaluation protocols, we come up with solutions for both the
datasets and metrics. As for datasets with obvious annotation biases, we propose to re-organize them, deliberately
changing the moment location distribution in the test set. As for unreliable evaluation metrics with small IoU
thresholds, we design new metrics to rectify the overrating performance scores.

3.2.1 Dataset Re-spliting. We propose to re-organize the two datasets (i.e., Charades-STA and ActivityNet Cap-
tions), naming the re-organized ones as Charades-CD and ActivityNet-CD (CD means Changing Distribution),
respectively. To be speciic, each dataset is re-split into four sets, i.e., training, validation (val), test-iid, and
test-ood. We make all samples from the training, val, and test-iid sets follow the independent and identical
distribution, and make the samples of test-ood set out-of-distribution. Obviously, the performance gap between
the test-iid set and test-ood set can efectively evaluate the generalization capability of the model. The following
parts further describe the details during the process of data re-splitting.

Dataset Aggregation and Splitting. For each dataset, we collect all the query-moment pairs (samples) in the
training and test sets, and use the Gaussian kernel density estimation to it the moment annotation distribution
as mentioned in Section 3.1 (c.f ., Fig. 2). Afterwards, we sort all the samples based on their probabilistic density
values (from high to low), and take the lowest 20% samples as the preliminary test-ood set since the distribution
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(a) Charades-CD

(b) ActivityNet-CD

Fig. 4. (a) and (b) illustrate the ground-truth moment annotation distributions of each split in two re-organized datasets.

is furthest diferent from that of the whole dataset. The remaining 80% samples are divided into the preliminary
training set.

Conlicting Video Elimination. Since each video is associated with several sentence queries (samples), it is
necessary to ensure that no video simultaneously appears in both the training and test sets. Thus, after obtaining
the preliminary test-ood set, we check whether the videos of test-ood samples are also in the preliminary training
set. If so, we move all samples (i.e., query-moment pairs) referring to the same video into the split with most
of samples. In addition, to avoid the inlating performance of overlong predictions in ActivityNet-CD (c.f ., the
PredictAll baseline in Fig. 1), we leave all samples with ground-truth moment occupying over 50% video
duration in the training set.
After elimination of all conlicting videos, the inal test-ood set occupying around 20% query-moment pairs

of the entire dataset is obtained. Then, we randomly split the remaining samples (based on videos) into three
groups for the collection of the training, val, and test-iid sets, which occupy around 70%, 5%, and 5% samples,
respectively. More detailed statistics of the re-organized datasets should be found in Table 1.

New Split Analysis. Fig. 4 depicts the ground-truth moment distributions of these two re-organized datasets.
An obvious observation is that the annotation distributions of test-ood set (best expressed in orange) are
signiicantly diferent from others while the distributions of other three sets (best expressed in green) are similar
with those of original training/test splits (c.f ., Fig. 2). We investigate the diference of the proposed test-ood
split for each of these two datasets: 1) For Charades-CD, the start points of the ground-truth moments are
distributed more diversely, instead of concentrating at the beginning of the videos. 2) For ActivityNet-CD, instead
of concentrating in three corners, there are more samples locating in relatively central areas so that models will
fail to perform well by merely exploiting the moment distribution biases.
We also investigate the action distribution in each of the original and re-organized datasets. We count the

frequency of each verb occurring in the sentence queries of each split, which obviously forms a long-tail
distribution. Then the top-30 frequent verbs are shown in Fig. 5, with action coverage of 92.7% and 52.9% for
Charades-CD and ActivityNet-CD, respectively. We can observe that the action distribution of new test-ood set is
still similar with that of either original or re-organized training split for each datasets, which indicates that the
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Charades-STA Charades-CD ActivityNet Captions ActivityNet-CD

training test training test-ood training test training test-ood

Fig. 5. Top-30 frequent actions in training/test splits for each dataset. The longer the bar, the more frequently the action
appears.

OOD comes from each speciic verb. As shown in Fig. 6, for a given verb, the moment annotations of the training
and test-ood sets are of signiicantly diferent distributions.

3.2.2 Proposed EvaluationMetric. As discussed in Section 3.1.2, themost prevailing evaluationmetric ÐR@�,IoU=�
Ð is untrustworthy under small threshold�. To alleviate this issue, as shown in Fig. 7, we propose to calibrate

Fig. 6. The moment annotation distributions of the query-indicated moments which contain a specific action (e.g., cook) in
the training and test-ood sets of Charades-CD. The deeper the color, the larger the density in the distribution.

ACM Trans. Multimedia Comput. Commun. Appl.



10 • Lan, et al.

the � (�,�,�� ) value by considering the łtemporal distancež between the predicted and ground-truth moments.
Speciically, we propose a new metric discounted-R@�,IoU=�, denoted as łdR@�,IoU=�ž:

dR@�,IoU=� =

1

��

︁

�

� (�,�,�� ) · ��� · ��
� , (2)

Groundtruth

Prediction 

Fig. 7. An illustration of the proposed łdR@�,IoU=�ž metric.

where �∗
� = 1 − abs(�∗� − �∗� ), and abs(�∗� − �∗� ) is

the absolute distance between the boundaries of pre-
dicted and ground-truth moments. Both �∗� and �

∗
� are

normalized to the range (0, 1) by dividing the video
duration. When the predicted and ground-truth mo-
ments are very close to each other, the discount ratio
�∗
� will be close to 1, i.e., the new metric can degrade to

łR@�,IoU=�ž with exactly accurate predictions. Oth-
erwise, even the IoU threshold condition is met, the
score � (�,�,�� ) will still be discounted by �∗

� , which
helps to alleviate the inlating recall scores under small
IoU thresholds. With the proposed łdR@�,IoU=�ž metric, those speculation methods which over-rely on moments
annotation biases (e.g., long moments annotations in ActivityNet Captions) will not perform well.

4 PROPOSED DEBIASING APPROACH

To reduce the efects of moment annotation biases, we further propose a novel debiasing approach. The overall
framework is shown in Fig. 8. Basically, we add three key components to the base model for unbiased moment
predictions. In this section, we irstly deine the TSGV problem and illustrate how the base model works.
Afterwards, each of the key components will be described in detail, along with ultimate learning objectives.

4.1 Problem Formulation

As shown in the example of Fig. 1, a formal TSGV task takes a sentence query and an untrimmed video as inputs.
The untrimmed video can be divided into multiple candidate moments. We let� denote the sentence query and�
denote the candidate video moments. For a proposal-based method which outputs the matching scores between
the sentence query and each of candidate moments, a function F (�,� ) should be learned. The highest output
score of the function indicates the best matching query-moment pair.

4.2 Base Model

Due to the superior performance of 2D-TAN [57] in recent public models, we adopt it as the base model for
our unbiased temporal sentence grounding. The core idea of 2D-TAN is utilizing a 2D feature map to represent
candidate moments of various lengths and locations, where one dimension depicts the start indices of moments
and the other one represents the end.

More speciically, as shown in Fig. 8 (a), for the sentence query, it irst embeds the words within the sentence
query � via GloVe [34] to obtain the corresponding word vectors, and then the word vectors are fed into a

three-layer LSTM [21], where the last hidden state denoted as q� ∈ R�ℎ is used to encode the whole query. For the
video sequence, it irst segments the video into non-overlapping clips, then samples the clips to a ixed size. The
features of sampled � � video clips are extracted by a pre-trained CNN model and projected into the dimension of
�� , which can be denoted as {c1, c2, . . . , c� � }. The moment feature m� � (1 ≤ � ≤ � ≤ � �) out of the 2D feature

map M ∈ R� �×� �×��
can be obtained by adopting max pooling strategy on clips {c� , c�+1, . . . , c� }. Afterwards,

the 2D feature map M is fused with the query feature q� and fed into a temporal adjacent network to model
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Fig. 8. The overall framework of the Multi-branch Deconfounding Debiasing (MDD) framework. Specifically, (a) briefly shows
the pipeline of base 2D-TAN model [57], based on which, we develop three important components indicated by łsemantic
role treež, łposition recontructionž and łmulti-branch decondounderž, yielding our proposed MDD model as shown in (b).
More specifically, (i) we enhance the moment representations with position reconstruction module and (ii) parse the query
into the semantic role tree to get more fine-grained textual features. (iii) During the multimodal fusion process, we adopt a
multi-branch deconfounder to remove the efects caused by multiple confounders.

the temporal relations of moments. Then it passes through a fully connected layer and a Sigmoid function to
generate the inal 2D matching score map.
However, the inherent structure of 2D-TAN has natural advantages in exploiting location bias of datasets,

since 2D feature map M is indexed by moment locations. Therefore, we propose to improve this base model
from two aspects. On the one hand, due to the diiculties of semantic alignment between two modalities, the
representation capability from each single modality should be enhanced. On the other hand, we attempt to debias
the model from perspective of causality as causality-based methods have proven to be successful in debiasing
from other ields.

4.3 Improvements on Feature Extraction

In order to improve the representation of both modalities, we propose to perform more detailed and efective
feature extraction. Section 4.3.1 depicts the process of extracting more ine-grained query feature, instead of
directly involving the global query feature q� into subsequent multimodal fusion, a more ine-grained one denoted
as q� is obtained based on q� and the sentence structure. Section 4.3.2 illustrates how to enhance the 2D moment
representations M via position reconstruction, which aims to make it explicitly associated with the location
attribute.

4.3.1 Gated Fine-grained uery Feature. In order to ultimately obtain the ine-grained query feature q� , one
of-the-shelf toolkit [12, 46] is used to parse the sentence into a semantic role tree. By adopting hierarchical

attention mechanism on the tree, we can get the phrase-level features {g� }
�����

1 . Then the phrase-level features
are aggregated to obtain the inal ine-grained sentence representation.

Attention from Sentence-level to Verb-level. More speciically, we irst initiate the representation h ∈ R�ℎ

of each node with sequential outputs of the three-layer LSTM. Then we obtain the attention weights of verbs
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A person closes the cabinet and eats the food

close

person cabinet

eat

person food

Fig. 9. The parsed three-layer semantic role tree, where the root represents the whole sentence, and each subtree below the
root represents a phrase centered by a verb with relevant objects (nouns) as leaf nodes.

according to the root:

�
(�)
�

= W� (tanh(W���h
(� ) | |W����h

(�)
�

)), � = 1, . . . , ����� , (3)

where W��� ∈ R�ℎ×�ℎ , W���� ∈ R�ℎ×�ℎ and W� ∈ R1×2�ℎ are learnable variables. h(� ) ∈ R�ℎ is the global

feature of the whole sentence (i.e., q� ) and h
(�)
�

∈ R�ℎ denotes the feature of the �-th verb node. | | implies the
concatenation operation.
Attention from Verb-level to Noun-level. Then we aggregate all the verb nodes to obtain the global verb

representation h̃(�) ∈ R�ℎ as:

h̃(�)
=

�����︁

�=1

�
(�)
�

h
(�)
�

,

� (�)
= Softmax(� (�) ) .

(4)

Afterwards, we use a similar attention module to obtain the attention weights of noun (leaf) nodes:

�
(�)
�

= W� (tanh(W��� h̃
(�) | |W����h

(�)
�

)), � = 1, . . . , ����� , (5)

where h
(�)
�

denotes the feature of the �-th noun node. It is worth noting thatW� ,W��� andW���� are the sharing
parameters with Equation (3).

Phrase-level Features. Then the phrase-level representation of each subtree g� can be yielded by aggregating
all nodes within the subtree based on the weights:

� = Softmax(� (�)
�

, �
(�)
��,1 , �

(�)
��,2 , . . . , �

(�)
��,���

) ,

g� = �0h
(�)
�

+
���︁

�=1

� �h
(�)
� ,

(6)

where ��,∗ is a set of indices to enumerate all leaf nodes of subtree � .
Then all the subtree representations are aggregated to obtain the gating signal ḡ, and inally the ine-grained

sentence feature representation q� is obtained as follows:

ḡ =

1

�����

�����︁

�=1

g� ,

q� = q� + q� ⊙ ḡ .

(7)
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Fig. 10. (a) is the causal graph for one single confounder. (b) illustrates the pipeline of multi-branch deconfounder, the
dictionary of one single confounder is aggregated by the weights based on the fusion of multimodal inputs.

4.3.2 Enhanced Moment Representation via Position Reconstruction. For visual information, in order to better
discriminate video moments with unique position information, we attempt to decouple the positional feature
from the video moment feature to enhance the moment representation. Speciically, we feed the 2D temporal
moment feature map M ∈ R� �×� �×��

into a fully-connected layer to obtain the learned 2D position embedding

M� ∈ R� �×� �×��
, and then we establish a reconstruction loss function to make M� close to the 2D position

encoding M� ∈ R� �×� �×��
:

M� = tanh(FC(M)) ,
L����� = | |M� −M� | |2.

(8)

Here, | | · | |2 denotes L2-norm, 2D position encoding M� is computed by sine and cosine functions of the diferent
frequencies following [43] and �� denotes the dimension of positional features.

4.4 Multi-branch Deconfounder

Analysis on Multiple Confounders. Inspired by the work [50], we leverage the structured causal model to
analyze the underlying relations among all variables of this TSGV problem. The causal graph which is a directed
acyclic graph (DAG) is shown in Fig. 10 (a), where the nodes denote the variables and the directed edges denote
the relations between nodes. � is the variable of query, � denotes the video moment and � is the variable of
predicted matching score. For those traditional TSGV models, they train a model to obtain the probabilities
� (� |�,� ) that is conditioned on � and � . However, there may exist a confounder � that has connections with
both the multimodal inputs (i.e.,� and�) and output scores � . The confounder is harmful since it causes spurious
correlation between the inputs and outputs.

We further investigate the characteristics of TSGV task and ind there may exist multiple confounders. Some
of the confounders are observable, e.g., the location variable � [50]. Since the location information is naturally
encoded in the moment representations while we can also use the moment location distribution priors shown in
Fig. 4 to perform moment predictions. Moreover, the action variable � could also be the confounder. The activity
concepts implicitly exist in the inputs of video moments and queries while the model could also predict the
matching score with only the action label. For example, it can localize on a short moment at the beginning of the
video when seeing action łopenž based on the action-conditioned moment annotation distribution shown in Fig. 6.
Besides, some of the confounders (denoted as� ) are not observable, such unobserved confounders should also be
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taken into consideration. Therefore, the do-calculus operation for intervening multiple confounders should be:

� (� |�� (�,� )) =
︁

�

� (�)
︁

�

� (�)
︁

�

� (�) · � (� |�,� , �, �,�) . (9)

Here, we assume that all the confounder variables are independent of each other.
Implementation of Base Model. After obtaining the 2D temporal moment feature M and gated ine-grained

query feature u, the probabilities � (� |�,� ) without do-calculus can be learned by:

� (� |�,� ) ≈ � (W� (Φ���� (u ⊙ M))) . (10)

Here, the moment features are fused with the broadcasting query feature via Hadamard product. Then such
multimodal representations are fed into the temporal convolutional network Φ���� , followed by a fully connected
layer with learnable matrix W� and the Sigmoid function � (·) to get the inal 2D temporal matching scores.
Implementation of Multi-branch Deconfounder. As shown in Fig. 10 (b), we consider getting three

confounders �, � and � intervened as the multi-branch deconfounder. Each confounder is represented by a
dictionary of enumerable elements. Speciically, we implement such intervention by adding a weighted embedding
of all elements in the dictionary for each query-moment pair. More concretely, we assign the dictionary of location
� with the 2D position encodings which is the same as the position reconstruction module (Section 4.3.2), and
we initiate the dictionary of action � with the corresponding word embeddings of limited top-frequency action
labels. The unobserved confounder� can be represented by learnable dictionary embeddings of a ixed size. In
order to get all confounders intervened at the same time, the weighted representations of multiple confounders
are subsequently fused by element-wise multiplication to achieve multi-branch de-confounding. � (� |�� (�,� ))
can be approximated as:

� (� |�� (�,� )) ≈ � (W� (Φ���� (u ⊙ (M +M� ⊙ M� ⊙ M�)))) , (11)

where the efects of multiple confounders are implemented by integrating all the weighted 2D embedding
M� ∈ R� �×� �×��

, � ∈ {�, �,�}, and then adding such integrated embedding to M (c.f ., Fig. 10 (b)). Each M�

with � ∈ {�, �,�} denotes the efect of any confounder belonging to {�,�,� }, which is the weighted average
of all elements within the dictionary E� [ℎ�� (�)]. E� [ℎ�� (�)] can be computed with the multi-head attention
module [43] whose query is the fusion of M and q� . In other words, the attention weight of each element within
the dictionary is determined by each query-moment pair. Speciically, M� can be deined as:

M� = E� [ℎ�� (�)] = Concat(Ã1, . . . , Ã� ) ,

Ã� =

[
Softmax(

Q�D
�
��√

��
)D��

]
� = 1, . . . , � ,

(12)

where� is the head number and�� =

��

�
is the dimension of each subspace.D ∈ R��×��

represents the dictionary

containing �� elements. AndD� = DW1,D� = DW2 with learnable parametersW1,W2 ∈ R�
�×��

. The query for
multi-head attention isQ = FC� (FC� (q�) +FC� (M)), where FC� , FC� , FC� are all the fully connected layers with

learnable parameters ∈ R��×��
. Note that Q is latten to R�

�×��
for subsequent computation, where �� = � � ×� � .

Then D� is equally divided into � parts {K� }�1 ∈ R��×��
along the feature dimension, so do D� and Q.

4.5 Learning Objectives

Besides the reconstruction loss ������ , we use the scaled ground-truth IoU in [57] as the binary cross entropy loss:

L��� =

�︁

�=1

�� log �� + (1 − �� ) log(1 − �� ) , (13)
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where �� is the scaled IoU score and �� is the predicted matching score. The inal learning objectives are deined
as:

L = L��� + �L����� , (14)

where � is the hyperparameter.

5 EXPERIMENTS

In this section, we conduct a series of experiments to validate the efectiveness of new evaluation protocols and
our proposed debiasing framework.

5.1 Implementation Details

For benchmarking existing methods, we used their open-sourced codes and claimed hyperparameters to train the
models with our proposed data splits. The models were validated by the iid set and tested by both the test-iid
and test-ood sets. For fair comparisons, we uniformly used pre-trained I3D [4] features for Charades-CD and
C3D [42] features for ActivityNet-CD as video encoding. For query encoding, we used GloVe [34] to embed the
words.

For our debiasing framework, we followed [57] to use three-layer uni-directional LSTM to sequentially encode
the queries and adopted max-pooling strategy for moment feature extraction. For both datasets, all of the hidden
sizes (i.e., �� , �ℎ and �� ) were set to 512 and the number of sampled clips (i.e., � �) was set to 16. The head number
� was set to 4. The number of stacked convolutional layers for predicting matching scores was set to 4 with
kernel size of 5. The sizes for the dictionaries of �, � and � were set to 256(� � × � �), 80 and 80 respectively.
During the training process, batch sizes were set to 64 and 32 for Charades-CD and ActivityNet-CD, respectively,
and hyperparameter � was 1. During the inference stage, we set the non maximum suppression threshold (NMS)
as 0.45. We used Adam optimizer [24] with learning rate of 1e−4.

5.2 Performance Comparisons on the Original and Proposed Data Splits

To evaluate the generalization ability of existing methods and demonstrate the diiculty of the newly proposed
splits (i.e., Charades-CD and ActivityNet-CD), we compared the performance of two simple baselines and eight
representative SOTA methods. In general, we can group all methods into following categories:

• Non-deep methods: Non-deep methods contain two simple baselines without training. The irst one is the
Bias-based method, which uses the Gaussian kernel density estimation to it the moment annotation
distribution, and randomly samples several locations based on the itted distribution as the inal moment
predictions. The second one is the PredictAll method, which directly predicts the whole video as the inal
moment predictions.

• Two-Stage methods: Cross-modal Temporal Regression Localizer (CTRL) [11], and Attentive Cross-modal
Retrieval Network (ACRN) [26].

• End-to-End methods: Attention-Based Location Regression
(ABLR) [54], 2D Temporal Adjacent Network (2D-TAN) [57], Semantic Conditioned Dynamic Modulation
(SCDM) [53], and Dense Regression Network (DRN) [55].

• RL-based method: Tree-Structured Policy based Progressive Reinforcement Learning (TSP-PRL) [45].
• Weakly-supervised method: Weakly-Supervised Sentence Localizer (WSSL) [10].

We report the performance of all mentioned TSGV methods with metric łR@1,IoU=0.7ž in Fig. 11. We can
observe that almost all methods have a signiicant performance gap between the test-iid and test-ood sets, i.e.,
these methods are prone to over-relying on the moment annotation biases, and fail to generalize to the OOD
test. Meanwhile, the evaluation results on the original test set and the proposed test-iid set are relatively close,
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(a)

(b)

=

=

Fig. 11. Performances (%) of SOTA TSGV methods on the test set of original splits (Charades-STA and ActivityNet Captions)
and test sets (test-iid and test-ood) of proposed splits (Charades-CD and ActivityNet-CD). We use metric R@1,IoU=0.7 in all
cases.

which shows that the moment distribution of the test-iid set is similar to the majority of the whole dataset. More
detailed experimental result analyses are provided in the following:
Non-deep Methods. The Bias-based method that only exploits the annotation biases of the training set is

apparently unable to perform well after changing the moment annotation distributions in test splits. Statistically,
its performance on ActivityNet-CD heavily degrades from 13.6% of the test-iid set to 0.1% of the test-ood set. As
for the PredictAll method, since all the ground-truth moments in Charades-CD account for less than 50% range
of the whole videos, simply taking the entire video as the prediction will inevitably lead to łR@1,IoU=0.7ž of 0.0
on all test splits. The test samples in ActivityNet-CD are much longer, so the PredictAll method can achieve high
results of 11.9% and 13.8% on the original test set and new test-iid set, respectively. However, the longer moments
are excluded in the test-ood set, thus the performance decreases to 0.0 as well.
Two-Stage Methods. We ind that the two-stage methods (i.e., CTRL and ACRN) are less sensitive to the

domain gaps between the test-iid and test-ood sets. This is because they utilize a sliding-window strategy to obtain
moment candidates, and match these moment candidates with each query individually. In this way, all moment
candidates without speciic positional attributes are treated equally, thus the moment annotation distribution
has less efect on the evaluation results. It is observed that the performance of the test-iid and test-ood sets on
Charades-CD are competing while the OOD performance presents a more obvious drop on ActivityNet-CD. The
primary reason for this observation is that the moment candidates have more chance to hit the Charades-CD
ground-truth moments, which take up a longer percentage of the entire videos (c.f ., Fig. 4 (a)). Despite the less
sensitivity against the annotation biases, the performances of these two-stage methods are still far behind those
of the SOTA methods from other categories.
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Table 2. Performance comparisons with dR@1,IoU=� (%) (The BOLD number indicates the best performance and the
UNDERLINE number indicates the second best one).

Charades-CD ActivityNet-CD

test-iid test-ood test-iid test-ood

�=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7

Bias-based 16.87 9.34 5.04 2.21 19.81 12.27 0.26 0.11
PredictAll 0.00 0.00 0.06 0.00 20.05 12.45 0.00 0.00

CTRL [11] 29.80 11.86 30.73 11.97 11.27 4.29 7.89 2.53
ACRN [26] 31.77 12.93 30.03 11.89 11.57 4.41 7.58 2.48
ABLR [54] 41.13 23.50 31.57 11.38 35.45 20.57 20.88 10.03
2D-TAN [57] 46.48 28.76 28.18 13.73 40.87 28.95 18.86 9.77
SCDM [53] 47.36 30.79 41.60 22.22 35.15 22.04 19.14 9.31
DRN [55] 41.91 26.74 30.43 15.91 39.27 25.71 25.15 14.33

TSP-PRL [45] 35.43 17.01 19.37 6.20 33.93 19.50 16.63 7.43

WSSL [10] 14.06 4.27 23.67 8.27 17.20 6.16 7.17 1.82

TCN-DCM [50] 52.50 35.28 40.51 21.02 42.15 29.69 20.86 11.07
MDD (Ours) 52.78 34.71 40.39 22.70 43.63 31.44 20.80 11.66

End-to-EndMethods. For all tested end-to-endmethods, we can observe common and signiicant performance
drops on the test-ood set compared to the test-iid set with both two datasets. All of these methods have considerate
thoughts about the temporal relations and contextual information of the whole video, since some queries may
contain words indicating temporal locations and orders like łbeginž, łendž, łirstž, łbeforež and łafterž, and some
of them intend to model the temporal relations between moments. Unfortunately, although our test-ood split
does not break any temporal relations, their OOD performances still drop signiicantly, which demonstrates that
current TSGV methods fail to utilize the visual temporal relation or cross-modal interaction.

RL-based Method. The RL-based method (i.e., TSP-PRL) sufers from obvious OOD performance drops on the
test-ood set as well. TSP-PRL adopts IoU between current predicted moment and the ground-truth at each step as
the training reward, so the temporal annotations can directly afect the learning process. Therefore, the changing
of temporal annotation distributions will inevitably cause the model performance degradation.
Weakly-supervised Method. The evaluation results of the weakly-supervised method WSSL are thought-

provoking: it achieves higher performance on test-ood set compared to test-iid set in Charades-CD, but results of
these splits in ActivityNet-CD are exactly the reverse. One key inding after investigating the grounding results is
that the normalized (start, end) moment predictions of both two re-organized datasets converge on a few certain
intervals (i.e., (0, 1), (0, 0.5), (0.5, 1)), which indicates that WSSL does not learn the semantic alignment between
the videos and sentences at all. It only speculatively guesses several likely locations instead.

5.3 Our Proposed MDD Framework vs. SOTA Methods

We also compare our approach to the above methods with the new metrics łdR@1,IoU={0.5,0.7}ž. As shown in
Table 2, our approach outperforms the base model 2D-TAN with a great gain and has comparable results with
another debiasing method TCN-DCM [50].
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Table 3. Efectiveness of each component in our proposed MDD on ActivityNet-CD with metrics of dR@1,IoU=� (%) (EM:
Enhanced Modalities, MC: Multi-branch Confounder (���� ∗ ���� ∗ ���� ).

w/old metric w/new metric

test-iid test-ood test-iid test-ood

�=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7

base 46.35 31.25 21.36 10.37 40.87 28.95 18.86 9.77

base + EM 47.89 32.94 22.75 11.73 42.48 30.69 20.35 11.08

base + EM + MC 49.03 33.72 23.19 12.33 43.63 31.44 20.8 11.66

For Charades-CD dataset, MDD achieves the best results on both iid-0.5 and ood-0.7 (iid/ood-� denotes
łdR@1,IoU=�ž for test-iid/ood set). The performance of MDD on iid-0.7 and ood-0.5 is slightly lower than
the best with 0.57% and 1.21%, respectively. These observations indicate that the enhancement of textual and
visual features and the causal intervention strategy via multi-branch deconfounder can efectively improve the
performance and increase the robustness of moment prediction.
For ActivityNet-CD, the absolute gain of MDD against the base model (e.g., 2.76%/2.49% on iid-0.5/iid-0.7) is

not as signiicant as Charades-CD (e.g., 6.30%/5.95% on iid-0.5/iid-0.7) since ActivityNet-CD is more challenging
with diverse actions and complex scenarios. But MDD obviously surpasses all methods with test-iid set and
get competitive results with test-ood set, which demonstrates that the ine-grained extraction module can
better capture the relations of diferent objects within the queries, and the reconstruction module can obtain
more discriminative moment features for further cross-modal matching. Notably the DRN model has achieved
signiicantly great results on the test-ood set of ActivityNet-CD. One possible reason is that ActivityNet-CD has
longer video lengths than Charades-CD, and the dense regression network is much more useful for the dataset of
more sparse annotated positive frames. But its policy of densely regarding the frames within the groundtruth
moment as positive can still make the model get inluenced by the biased groundtruth moment annotations.

5.4 Ablation Studies for MDD Framework

5.4.1 Model Component Analysis. We investigate the efects of each component in our proposed MDD model,
including the modality enhancement module and causality-based multi-branch deconfounder module. As shown
in Table 3, the basemodel is implemented by 2D-TAN, and a visible gain can be observed in the base + EMmodel
after improving the representations of two modalities as described in Section 4.3, since the modality enhancement
operation does enhance the representation power. And the base + EM + MC model which further includes the
multi-branch confounder (Section 4.4) yields more improvement based on the base + EM model, proving the
efectiveness of intervention of multiple confounders.

5.4.2 Analysis on multi-branch deconfounder. As shown in Table 4, we further explore the impacts of diferent
combinations of confounders to the model performance on the Charades-CD dataset. For example, MDD-
���� ∗ ���� ∗ ���� denotes the multi-branch deconfounder with combining three confounders including location
�, action � and unobserved variable � . Firstly, we consider using only one variable as the confounder. It can
be observed that the performance of MDD-���� is close to that of MDD-����, and both of them can surpass
the base model with a large gap. This observation demonstrates that introducing the intervention with any
confounder (i.e., location, action, unobserved variables) can beneit the model and reduce the inluence of the
location bias. Then we attempt to increase the number of confounders and the performance gets higher as the
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Table 4. Performance comparisons of diferent combinations of confounders on Charades-CD with metrics of dR@1,IoU=�
(%).

w/old metric w/new metric

test-iid test-ood test-iid test-ood

�=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7 �=0.5 �=0.7

base 50.67 30.38 31.58 14.68 46.48 28.76 28.18 13.73

MDD-���� 54.56 36.70 44.22 23.28 50.44 34.81 39.64 21.78
MDD-���� 55.89 36.45 45.70 23.34 51.50 34.57 40.85 21.77
MDD-���� 57.11 35.72 43.95 22.60 52.68 33.98 39.37 21.16

MDD-���� ∗ ���� 57.11 36.57 42.76 21.56 52.75 34.79 38.26 20.16
MDD-���� ∗ ���� 56.38 37.42 44.07 22.42 52.18 35.57 39.51 21.01
MDD-���� ∗ ���� 56.38 37.30 44.66 24.08 51.91 35.39 39.99 22.50

MDD-���� ∗ ���� ∗ ���� 56.50 36.09 42.44 21.03 52.02 34.19 37.96 19.70
MDD-���� ∗ ���� ∗ ���� 57.23 36.57 45.08 24.32 52.78 34.71 40.39 22.7

amount increases. After many trials we ind that the best case to introduce external intervention for unbiased
temporal sentence grounding is using the combination of one location variable and two unobserved variables
(i.e., MDD-���� ∗ ���� ∗ ���� ) as multiple confounders.

5.5 Performance Gap Between R@1,IoU=m and dR@1,IoU=m

=

Fig. 12. Performance (%) comparisons of
SOTA TSGV methods between original met-
ric (łR@1,IoU=�ž) and proposed metric
(łdR@1,IoU=�ž). All results come from the test
set of ActivityNet Captions.

Fig. 12 shows the performance gap between the old and new met-
ric. When the IoU threshold is small, łdR@1,IoU@�ž is much
lower than łR@1,IoU@�ž, and the gap between them gradually
decreases with the increase of IoU threshold. In other words, the
performance scores can get discounted by the new metric more
heavily under small IoU thresholds, which is able to avoid unreli-
able evaluation results. For example, it is observed that the simple
bias-based method can beat some SOTA methods under the old
metric with small IoU threshold of 0.1, but it cannot outperform
others under the new one. This observation further proves the
value brought by the proposal of new metrics.

These results further indicate that recall values under small
IoU thresholds are untrustworthy and overrated. Although some
moment predictions reach the IoU threshold, they still have a
great discrepancy to the ground-truth moments. Instead, our pro-
posed łdR@�,IoU=�ž metric can discount the recall value based
on the temporal distances between the predicted and ground-
truth moment. When the moment prediction meets the larger
IoU requirements, the discount efect will be weakened, i.e.,
the łdR@�,IoU=�ž values and łR@�,IoU=�ž values will be closer to each other. Therefore, our proposed
łdR@�,IoU=�ž metric is more stable on diferent IoU thresholds, and it can suppress some inlating results (such

ACM Trans. Multimedia Comput. Commun. Appl.
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as Bias-based or PredictAll baselines) caused by the moment annotation biases in the datasets. Moreover, the
results also reveal that it is more reliable to report the localization accuracy with large IoU thresholds.

6 CONCLUSION

In this paper, we take a closer look at mainstream benchmark datasets for temporal sentence grounding in videos
and inds that there exists signiicant annotation bias, resulting in highly untrustworthy results for evaluating
model performance. Therefore, we propose to re-split the datasets so that the location distribution of moment
annotation in the training and test sets are diferent. To alleviate the inlating performance evaluation that
is caused by biased datasets as well, we design a new metric to discount the scores considering the temporal
distances. The re-organized datasets with the new metric can better monitor current research progress of TSGV.

In addition, we design a new debiasing framework to reduce the negative efect caused by the biases from two
perspectives: one is to strengthen representations of two modalities, which makes the model easier to learn the
semantic alignment between two modalities, and the other is to perform debiasing based on causality, which can
both provide good theoretical support and achieve efective debiasing. Experiments show that the newly proposed
approach can outperform the base model with a great gap and the evaluation results are also competitive with
those of other SOTA models, laying a solid foundation for future research work. In the future, we will explore
more debiasing strategies to increase the generalizability of the TSGV model in both data-level and model-level.
We will also consider applying our benchmark design and debiasing strategy to other multimedia applications
with untrustworthy benchmarks.
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