
GQNAS: Graph Q Network for Neural Architecture
Search

Yijian Qin1,2, Xin Wang1,3,4, Peng Cui1,3, Wenwu Zhu1,3,4
1Department of Computer Science and Technology, Tsinghua University

2BNRist 3Key Laboratory of Pervasive Computing, Ministry of Education 4Pengcheng Laboratory
qinyj19@mails.tsinghua.edu.cn, {xin wang, cuip, wwzhu}@tsinghua.edu.cn

Abstract—Neural Architecture Search (NAS), aiming to auto-
matically search for neural structure that performs the best,
has attracted lots of attentions from both the academy and
industry. However, most existing works assume each layer accepts
a fixed number of inputs from previous layers, ignoring the
flexibility of receiving inputs from an arbitrary number of
previous layers. Allowing to receive inputs from an arbitrary
number of layers benefits in introducing far more possible
combinations of connections among layers, which may also result
in much more complex structural relations in architectures.
Existing works fail to capture structural correlations among
different layers, thus limiting the ability to discover the optimal
architecture. To overcome the weakness of existing methods, we
study the NAS problem by assuming an arbitrary number of
inputs for each layer and capturing the structural correlations
among different layers in this paper. Nevertheless, besides the
complex structural correlations, considering an arbitrary number
of inputs for each layer may also lead to a fully connected
structure with up to O(n2) connections for n layers, posing
great challenges to efficiently handle polynomial numbers of
connections among different layers. To tackle this challenge, we
propose a Graph Q Network for NAS (GQNAS), where the states
and actions are redefined for searching architectures with input
from an arbitrary number of layers. Concretely, we regard a
neural architecture as a directed acyclic graph and use graph
neural network (GNN) as the Q-function approximation in deep
Q network (DQN) to capture the complex structural relations
between different layers for obtaining accurate Q-values. Our
extensive experiments show that the proposed GQNAS model is
able to achieve better performances than several state-of-the-art
approaches.

Index Terms—neural architecture search, graph neural net-
works, deep Q network

I. INTRODUCTION

Recent years have witnessed a significant surge in research
on automated machine learning [1], including hyper-parameter
optimization [2], [3] and Neural Architecture Search (NAS).
NAS aims at discovering good neural architectures without
manual interventions. Existing literatures on NAS can be
mainly categorized into four groups. Reinforcement learning

Yijian Qin, Xin Wang, Peng Cui, Wenwu Zhu are with the Department of
Computer Science and Technology, Tsinghua University, Beijing, China.
Corresponding Author: Xin Wang and Wenwu Zhu. This work is supported
by the National Key Research and Development Program of China No.
2018AAA0102000 and National Natural Science Foundation of China (No.
62050110, No. 62102222) and Tsinghua GuoQiang Research Center Grant
2020GQG1014.

(RL) based models [4]–[9] use a controller to sample archi-
tectures and set the performance of the architecture as reward
and run an agent to search for the best one. Evolutionary
algorithm (EA) based models [10]–[14] encode the architec-
tures as genes, and generate architectures through inheritance
and mutation. Gradient based methods [15]–[22] use gradient
descent to obtain the optimal architecture through converting
the discrete search space into continuous space. There are also
other types of methods [23]–[27] adopted on NAS problems.

However, existing approaches fail to search for the optimal
architecture because of the restrictions on search space. For
example, although one layer in a neural network architecture
can accept any number of inputs from previous layers, most
existing works narrow down the search space by constraining
that one layer only accepts a fixed number of inputs from
previous layers in the evaluation phase (though they may use
densely connected space in the search phase), which is set to
be at most two. Moreover, the few works [17], [28] considering
inputs from more than two mainly focus on an arbitrary num-
ber of operations between two layers instead of an arbitrary
number of inputs from different layers, which still ignores
the flexibility of receiving inputs from an arbitrary number of
previous layers. Allowing to receive inputs from an arbitrary
number of layers in NAS brings the opportunity of introducing
far more combinations of connections among different layers,
consequently resulting in much more complex relations among
layers in a structured graph form. Existing works fail to capture
structural correlations among different layers, which limit the
ability to discover the optimal architecture.

In this paper, we study the NAS problem by assuming
an arbitrary number of inputs for each layer, as well as
utilize structural information and correlations among layers
during the architecture search procedure , aiming to discover
the optimal neural architecture through expanding the search
space. Nevertheless, two challenges remain unsolved:

1 Edge (Connection) Generation: Architectures allowing
inputs from an arbitrary number of layers will have un-
certain numbers of potential connections among different
layers, making it much more difficult to decide whether
generating edges (connections) from previous layers to
the current layer or not. Besides, considering an arbitrary
number of inputs for each layer may lead to a fully
connected structure with up to O(n2) connections for n

1288

2021 IEEE International Conference on Data Mining (ICDM)

978-1-6654-2398-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00159

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

78
-1

-6
65

4-
23

98
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
51

62
9.

20
21

.0
01

59

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview framework of the proposed GQNAS model. Top Row: The construction process of the best architecture. It is constructed by a series of
actions until the terminate action is adopted. Bottom Row Left: The strategy of how to choose an action. We use a Graph Q Network to estimate the Q-value of
all possible action. The action with the maximum Q-value is chosen. Bottom Row Right: Graph Q Network. We adopt the network on the graph corresponding
to the architecture and get an estimated Q-value.

layers, posing great challenges to efficiently handle poly-
nomial numbers of connections among different layers.

2 Complex Structural Correlations: Receiving inputs
from an arbitrary number of layers leads to the necessity
of discovering complex structural correlations among
different layers in the architectures. Capturing key infor-
mation of these correlations has no doubt to enhance the
ability to accurately estimate model performances across
different architectures, which in turn helps to discover the
optimal architecture in the expanded search space.

To solve these challenges, we propose a graph Q net-
work for neural architecture search (GQNAS), whose general
framework is shown in Figure 1. Particularly, to address the
edge (connection) generation problem, we propose a deep
Q network (DQN) with new definitions for states and actions,
treating the architecture as a directed acyclic graph (DAG).
Each state can then be regarded as a DAG and each action
becomes an alteration on the DAG. These definitions can de-
termine whether or where to add new edges in the architecture,
and therefore become capable of handling inputs from an
arbitrary number of layers. To tackle the complex structural
correlations issue, we resort to graph neural network (GNN)
as the Q-function approximation on the architecture, given that
GNN has shown its great power in capturing structural features
in many areas involving graphs. We conduct extensive exper-
iments to evaluate the proposed GQNAS model on various
datasets including CIFAR-10 and ImageNet, demonstrating the
advantages of our GQNAS model against baseline approaches.

II. RELATED WORK

A. Reinforcement learning based NAS

In recent years, RL has shown its effectiveness in NAS
problem. RL agent constructs architectures by deciding which
action should be taken at each state. Then the agent adjusts
its strategy according to the performance of those chosen

architectures. Existing works construct an architecture layer by
layer. The performance of the architecture will then be treated
as reward which is observable to the RL agent at terminate
state. For RL based NAS models with gradient policy [4],
RNN is used to generate architectures. For Q-Learning mod-
els [6], [7], Q-value is used to record the evaluation of the
expected reward for each pair of state and action. Besides,
ENAS [8] introduces the weight sharing technique which is
widely adopted by various methods.

However, these approaches have their own limitations. Gra-
dient policy models treat different operations separately due
to the Markov assumption, limiting their learning abilities
during training and deteriorating their performance in test. Q-
Learning models can not learn informative knowledge from
evaluating similar architectures, resulting in poor efficiency.

B. NAS with GNN

Recently, NAS models using GNN have been proposed. In
particular, GHN [29] resorts to the graph hypernetwork to
generate weights of a neural network directly, which may help
to evaluate newly generated architectures, though failing to
design architectures with graph knowledge being taken into
consideration. Bayesian optimization [30], [31] and predic-
tion [32], [33] based NAS methods with GNN use GNN as
a surrogate function, which is only for predicting architecture
performances, lacking a mechanism to use graph knowledge
for architecture generation. Graph variational autoencoder
(GVAE) based NAS methods [34], [35] obtain a continuous
search space for various architectures. However, training a
GVAE needs a relatively long time (8 GPU days in [35]).

Our proposed GQNAS model differs from existing literature
in adopting GNN as a Q-function within a tailored deep Q
network to generate more adequate architectures and evaluate
their performances with the help of graph knowledge.

1289

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

conv
3x3

+

𝑐𝑘−2 𝑐𝑘−1

𝑐1

𝑐2

𝑐3

𝑐4
𝒄𝒌

conv
3x3

conv
3x3 mean

pool

con
cat

normal layer

pooling layer

normal layer

pooling layer

normal layer

fc

input

output

a b c d

block cell layer CNN

Fig. 2. Structure of the search space. a: Block. b: Cell. c: Layer. d:
Convolutional neural network

III. GRAPH Q NETWORK FOR NEURAL ARCHITECTURE
SEARCH: THE PROPOSED GQNAS MODEL

A. Search Space

We follow previous works [7]–[9], [11], [24] and adopt
the cell-based search space. As shown in Figure 2, we use
block, cell and layer to characterize the structure of the
network where block is the smallest structure. Different from
previous works where a block is constrained to receive a
fixed number of inputs (at most 2 inputs in most cases), our
proposed GQNAS model allows an arbitrary number of inputs
for each block, expanding the search space through enabling
more complex structures. Each block adopts an operation after
taking average of all inputs. A cell is defined to be constructed
with n blocks. A layer is defined to be a series of cells stacked
one by one with the same inner structure.

For convolutional network, three normal layers and two
pooling layers connect alternately with each other before
feeding into a fully-connect layer at the end of the architecture,
as shown in Figure 2.d. We do not search for the inner
architecture for a pooling layer, which has only one cell
where 2 × 2 convolution with stride 2 is adopted in the
pooling cell, making the size of a picture shrink to half size.
At the same time, the number of channels is doubled. In
normal layers, several cells with the same inner structures are
stacked, and block operations are chosen from these options:
3 × 3 convolution, 5 × 5 convolution, 3 × 3 max pooling,
3 × 3 mean pooling and skip connect. A cell’s output is
concatenation of results of all blocks.

B. Deep Q Network

We employ DQN to generate architectures and evaluate
their performances while taking more advantage of graph
knowledge in learning more adequate architectures. DQN
consists of an agent, a set of states S and a set of actions
A. The agent decides which action should be taken in each
state. Once an action is performed, the agent moves to another
state according to some certain rules (s, a) → s′ where
s, s′ ∈ S, a ∈ A, and then gets a reward r(s, a). The goal
of the agent is to find a trajectory which maximizes the total
reward. Bellman Equation is adopted as a general approach to
solve the problem:

Q∗(si, a) = Esj |si,a[Er|si,a[r|si, a] + γ max
a′∈A(sj)

Q∗(sj , a
′)],

(1)

where Q∗(s, a) indicates the maximum total expected reward
after the agent performs action a at state s. This function is
referred as Q-function, and its value is known as Q-value. If
the agent has precise Q-values for all states and all actions, it
will know how to perform the optimal sequence of actions.
However, Bellman Equation is hard to solve directly, and
therefore a series of functions Qi are used to approximate
the real Q-function Q∗ in practice, with Qi being updated in
an iterative way:

Qt+1(si, a) = (1−α)Qt(si, a)+α[rt+γ max
a′∈A(sj)

Qt(sj , a
′)],

(2)
where α is the learning rate to control the iteration speed, γ
is the discount factor which defines the importance of future
reward, rt is the reward of action a at state si.

To enhance effectiveness and efficiency, DQN resorts to
a deep neural network for fitting Q-function. A deep neural
network is executed to obtain Q-values instead of referring to
the array in memory. The update for Q-values in Equation (2)
are replaced by training the deep neural network. Thus, we are
able to get the Q-value of a state not visited yet because the
neural network can learn relevant knowledge from Q-values
of other states and make an estimation for the target Q-value.

C. Architecture Search With Graph Q Network

Redefinition of States and Actions
Appropriately defining states and actions has always been

of great importance. Existing works define state as a block [6],
[7], ignoring complex interactions among multiple blocks
within a cell. To overcome this weakness, we differ from
existing works in redefining a state as the overall condition
of one cell, taking blocks within it into account. Firstly, we
describe a block bi as a triple (Oi, Ei, fi), where Oi is the
operation type. During the network construction process, we
allow each block to change its operation only once. We use fi,
a Boolean flag, to indicate whether Oi has changed or not. Ei

denotes the set of input sources. Since the network must be a
directed acyclic graph (DAG), we only allow the data to pass
from blocks with smaller ids to those with larger ids. A cell
consists of n blocks such that the cell can be represented by
n triples, i.e., ((O1, E1, f1) . . . (On, En, fn)). Thus, any cells
with possible combinations of blocks can be regarded as a state
in our redefinition. Besides, we also add one more Boolean
variable t to indicate whether a cell is at the terminating state.

We define three types of actions: changing operation,
adding edge and terminating. When we change an operation,
we can only choose blocks which have not experienced any
operation changing yet, and then turn fi to true afterwards. It
is allowed to add an edge between any two blocks, originating
from the block with smaller id to the one with larger id. We
can also terminate the process at any state.

At the terminating state, the agent obtains a reward accord-
ing to the performance of the chosen architecture. Following
ENAS [8], we set the reward as the classification accuracy.
The agent always gets zero reward at any other states except
for the terminating states.

1290

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

Graph Q Network
As discussed above, a neural network can be seen as a DAG

by treating each block as a node. The execution process of a
neural network can be regarded as data flows starting from the
root nodes through block nodes, stopping at the output node.
we propose the graph Q network which utilizes GNN to fit
the Q-function.

Since blocks inside a cell can take results from two previous
cells as inputs, we denote ck−1 and ck−2 as two special nodes
in the graph, as shown in Figure 2.b and Figure 1. Each node is
associated with features indicating the operation and whether
any changes happened before. Specifically, we adopt one-hot
vector as the original feature v0(b) We further expand the
feature vectors to represent special nodes such as previous cells
and the output node. Specifically, we add one extra dimension
as a Boolean flag to indicate the value of fi.

Aggregation in GNN is usually undirected, which means
connected nodes conduct feature aggregation from each other.
Since the data flow within the network is directed, i.e.,
nodes get no information from their output nodes, features
of the output node should have no influence towards each
of its input node. Therefore, our GQNAS model only allows
feature aggregation from input nodes through incoming edges,
updating feature vectors as follows,

vj+1(bi) = ReLU

(
MLP

(
aggregate

(
{vj(c)|c ∈ Ei}

)))
,

where vj(bi) is the feature vector of bi at j-th iteration, ReLU
is Rectified Linear Unit, MLP is Multilayer Perceptron. We
use sum as our aggregation function.

Previous works for graph classification aggregate feature
vectors of all nodes together [36], [37], which makes each
node has an equal opportunity to affect the graph feature
vector. However, we care about the information captured by
the output node in NAS problem. As such, our GQNAS model
adopts features of the output node instead of aggregating
information from all nodes to represent the whole graph. We
combine v0(bt), . . . , vk(bt) as v(bt), where bt is the output
node. Besides, we add one more dimension t to indicate
whether the architecture is in the termination state.The final
reward is then expressed as follows,

q = sigmoid
(
MLP

(
[v(bt) : t]

))
, (3)

where : denotes concatenation. We aggregate every dimension
of v(bt) by a fully-connected layer. Since we use accuracy as
reward, we add a sigmoid function at the end of the network
to guarantee that the Q-value is in (0, 1), which also helps to
converge.

Fast Updating of Q-function
We design a fast updating equation according to the property

of super network. While evaluating testing architectures, we
obtain the current reward rT . We next build (state, reward)
pairs to update Q-function according to Equation (2). We set
γ = 1 in Equation (2) in our proposed GQNAS model. The
updating strategy is executed through Equation (4):

Algorithm 1 GQNAS
Input: Initial a GNN Q, the number of optimal architecture
candidates C
Output: the best architecture

1: Warm up the super network and graph Q network
2: for ε = 1; ε downto 0 do
3: Collect the last element of sample(ε) repeatedly
4: Train super network using the architecture set
5: while replay memory not enough do
6: Call traj = sample(ε) to sample a trajectory
7: Evaluate the last element of traj on super network
8: Create replay by Equation (4) and add it to memory
9: end while

10: Train Q using batches sampled from replay memory
11: Empty replay memory and reset n
12: end for
13: for i=0; i to C do
14: Set arch as the last element of sample(0)
15: q = Q(arch)
16: keep arch if q is the largest;
17: end for
18: return the best arch

Q(si, a) = (1− 1

ni
)Q(si, a) +

1

ni
[rT + γ max

a′∈A(sj)
Q(sj , a

′)],

(4)
where ni is the number of times we update Q(si, a) in current
iteration. Different from Equation (2), we use 1

ni
to replace a

hyper-parameter α. At the beginning, ni = 1, so Q(si, a) will
totally forget previous information. We can do this because
the newest reward has the largest probability to be the max
reward since it comes from the best trained super network
so far. When ni increases, Q(si, a) will be updated to the
average of rewards in current iteration. By this equation, we
can conveniently update Q-function.

D. Training Procedure

Algorithm 2 Sample
Input: ε
Output: trajectory

1: initial arch as a random tree architecture
2: trajectory = [arch]
3: while not arch.t do
4: r = random(0, 1)
5: if r < ε then
6: randomly adopt an action on arch
7: else
8: construct a set of all possible next states S ′
9: arch = argmaxs∈S′ Q(s)

10: end if
11: trajectory.append(arch)
12: end while

1291

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PERFORMANCES OF DIFFERENT MODELS ON CIFAR-10 AND IMAGENET (ALL METHODS USE THE CELLS SEARCHED ON CIFAR-10)

Architecture CIFAR-10 ImageNet # ops† Search Cost # ops† Search

Error(%) # cells # ch‡ Error(%) # cells # ch‡ per cell (GPU days) type Method

NASNet [4] 2.65 - - 26.0 - - - 2000 13 RL(PG)
ENAS [8] 2.89 21 24 - - - 4 0.5 6 RL(PG)
BlockQNN [6] 3.54 6 80 24.3 12 64 13 96 8 RL(QL)
AmoebaNet [11] 2.55 20 36 - - - 10 3150 19 evolution
PNAS [24] 3.41 11 48 25.8 13 54 10 225 8 SMBO
DARTS [15] 2.76 20 36 26.7 14 48 8 4 7 gradient
SNAS [16] 2.85 20 36 27.3 14 48 8 1.5 7 gradient
GDAS [19] 2.93 20 36 26.0 14 52 8 0.13 7 gradient
P-DARTS [38] 2.50 20 36 24.4 14 48 8 0.3 7 gradient
PC-DARTS [21] 2.57 20 36 25.1 14 48 8 0.13 7 gradient

Random 3.75 20 36 - - - 8 1.7 5 random
GQNAS 2.49 20 36 24.0 14 48 8 0.20 5 RL(DQN)

† op: operation. ‡ ch: channel

𝑐𝑘−2

𝑐𝑘−1

Fig. 3. The best convolutional cell discovered by GQNAS.

Our whole training procedure is shown in Algorithm 1. We
use ε-greedy strategy in our model to sample architectures
from the search space. The detailed sample algorithm is shown
in Algorithm 2. In practice, we decrease ε from 1.0 to 0.0 by
10 steps. At each step, we firstly train the super network by
sampled architectures, which is used to estimate architecture
performances efficiently. Then we generate architectures to
construct RL trajectory and use experience replay to train the
graph Q network.

IV. EXPERIMENTS

A. Searching Convolutional Cells

We evaluate our model on CIFAR-10. Following previous
works, we search for the optimal architecture in a proxy
fashion which contains 8 layers, and then retrain a larger archi-
tecture with 20 layers from scratch. We choose a variety of the
SOTA NAS methods as baselines, including RL, EA, gradient
based methods and others. To guarantee fair comparision, we
keep some key metrics of the search space (the number of
cells, operations per cell, channels) the same as DARTS-like
space in our experiment. The results are listed in Table I.
Since we use a different search space from previous works,
we also use random search as a baseline. We train 4 random
architectures and choose the best one at epoch 100. The other
training details are not changed. Besides, we evaluate the

transferability of our model. We train the best architecture
designed by our models on ImageNet. The results are listed
in Table I. All experiments are run on GeForce GTX TITAN
X.

warm up

𝜺 = 𝟏 𝜺 = 𝟎

warm up

Fig. 4. Searching process curve on CIFAR-10. left: Top-1 training accuracy.
right: Top-5 training accuracy.

B. Results Analysis

For results on CIFAR-10, GQNAS uses a very short time
(within 5 hours) to achieve comparable performance with other
state-of-the-art models. Compared with ENAS [8], which uses
the gradient policy method, GQNAS uses less than half of
its searching time to design an architecture, showing that our
framework has higher efficiency on using knowledge learning
from different architectures. According to the cell shown in
Figure 3, our model can design architectures that have blocks
with arbitrary numbers of inputs. Also, Our convolutional cell
designed on CIFAR-10 are smoothly transferred to ImageNet
and reaches high performance of 24% test error, surpassing all
other state-of-the-art methods, indicating high transferability
of the designed architectures. These experiment results show
the high effectiveness and high efficiency of our model on
searching neural architectures.

C. Ablation Study

In this part, we demonstrate the power of our designed
Graph Q network upon normal DQN. Since DQN needs a

1292

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

deep neural network to predict the Q-values, we choose the
simplest one, MLP. as the predictor. We further use RNN as
the predictor as well. Therefore, in this experiment, we replace
the GNN Q-function part by RNN and MLP.

1) For RNN Q-function, we concatenate our block feature
described in Section III-C and the corresponding row
in adjacent matrix. Then we sequentially put them into
LSTM. The hidden dimension is set to be 64, the
same as in GCN. LSTM’s output is brought into a
fully connected layer followed by a sigmoid function,
similarly with Equation (3).

2) For MLP Q-function, we concatenate all block feature
and the adjacent matrix described in Section III-C as
the input of a 2-layer MLP. The hidden dimension is
the same as in GCN. A sigmoid function is followed at
the end.

3) A random training procedure is also a baseline. There
is no Q-function in this baseline. All architectures used
for training are randomly sampled.

We use 15 epochs to warm up the super network and 40
epochs to train the network using architectures given by ε-
greedy algorithm. The average training accuracy is demon-
strated in Figure 4. We observe that using GNN as Q-fucntion
can achieve better performance than random training, which
means GQNAS can generate better architecture distributions
during training procedure. Differently, using RNN or MLP
as Q-function cannot even beat random training strategy. The
experiment results show that GNN is able to better capture
structural and correlational architecture features than RNN and
MLP.

V. CONCLUSION

In this paper, we propose a novel neural architecture search
model GQNAS, which is capable of capturing architecture
features that reflects structural correlated interactions among
different blocks. The proposed GQNAS model can design
convolutional cells with layers taking an arbitrary number of
inputs from different previous layers. Our extensive experi-
ments demonstrate that the GQNAS model can achieve better
performance comparing with several state-of-the-art neural
architecture search models. Adopting the model in more areas
is a probable future direction.

REFERENCES

[1] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[2] K. Tu, J. Ma, P. Cui, J. Pei, and W. Zhu, “Autone: Hyperparameter
optimization for massive network embedding,” in KDD, 2019.

[3] X. Wang, S. Fan, K. Kuang, and W. Zhu, “Explainable automated graph
representation learning with hyperparameter importance,” in ICML,
2021.

[4] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[5] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer search
with reinforcement learning,” in ICML, 2017.

[6] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in ICLR, 2017.

[7] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” in CVPR, 2018.

[8] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in ICML, 2018.

[9] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in CVPR, 2018.

[10] L. Xie and A. Yuille, “Genetic cnn,” in ICCV, 2017.
[11] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution

for image classifier architecture search,” in AAAI, 2019.
[12] Z. Yang, Y. Wang, X. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu,

“Cars: Continuous evolution for efficient neural architecture search,” in
CVPR, 2020.

[13] C. Guan, X. Wang, and W. Zhu, “Autoattend: Automated attention
representation search,” in ICML, 2021.

[14] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[15] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in ICLR, 2019.

[16] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architec-
ture search,” in ICLR, 2019.

[17] J. Chang, Y. Guo, G. MENG, S. XIANG, C. Pan et al., “Data:
Differentiable architecture approximation,” in NeurIPS, 2019.

[18] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” in NeurIPS, 2018.

[19] X. Dong and Y. Yang, “Searching for a robust neural architecture in
four gpu hours,” in CVPR, 2019.

[20] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L. Zelnik, “Xnas:
Neural architecture search with expert advice,” in NeurIPS, 2019.

[21] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient architecture
search,” in ICLR, 2020.

[22] Y. Qin, X. Wang, Z. Zhang, and W. Zhu, “Graph differentiable archi-
tecture search with structure learning,” in NeurIPS, 2021.

[23] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing,
“Neural architecture search with bayesian optimisation and optimal
transport,” in NeurIPS, 2018.

[24] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in ECCV, 2018.

[25] H. Zhou, M. Yang, J. Wang, and W. Pan, “Bayesnas: A bayesian
approach for neural architecture search,” in ICML, 2019.

[26] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu, “Efficient neural architecture
search via proximal iterations,” in AAAI, 2020.

[27] X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, and Q. Tian, “Multinomial
distribution learning for effective neural architecture search,” in ICCV,
2019.

[28] Y. Wang, W. Dai, C. Li, J. Zou, and H. Xiong, “SI-VDNAS: semi-
implicit variational dropout for hierarchical one-shot neural architecture
search,” in IJCAI, 2020.

[29] C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for neural
architecture search,” in ICLR, 2018.

[30] L. Ma, J. Cui, and B. Yang, “Deep neural architecture search with deep
graph bayesian optimization,” in WI. IEEE, 2019.

[31] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang, “Bridging the
gap between sample-based and one-shot neural architecture search with
bonas,” NeurIPS, 2020.

[32] W. Li, S. Gong, and X. Zhu, “Neural graph embedding for neural
architecture search.” in AAAI, 2020, pp. 4707–4714.

[33] T. Chau, Ł. Dudziak, M. S. Abdelfattah, R. Lee, H. Kim, and N. D.
Lane, “Brp-nas: Prediction-based nas using gcns,” NeurIPS, 2020.

[34] M. Zhang, H. Li, S. Pan, X. Chang, Z. Ge, and S. Su, “Differentiable
neural architecture search in equivalent space with exploration enhance-
ment,” NeurIPS, 2020.

[35] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang, “Does unsupervised
architecture representation learning help neural architecture search?”
NeurIPS, 2020.

[36] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[37] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,” Journal
of computer-aided molecular design, 2016.

[38] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,”
in ICCV, 2019.

1293

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:30:48 UTC from IEEE Xplore. Restrictions apply.

