
0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 1

A Survey on Curriculum Learning
Xin Wang, Member, IEEE , Yudong Chen, and Wenwu Zhu, Fellow, IEEE

Abstract—Curriculum learning (CL) is a training strategy that trains a machine learning model from easier data to harder data, which
imitates the meaningful learning order in human curricula. As an easy-to-use plug-in, the CL strategy has demonstrated its power in
improving the generalization capacity and convergence rate of various models in a wide range of scenarios such as computer vision
and natural language processing etc. In this survey article, we comprehensively review CL from various aspects including motivations,
definitions, theories, and applications. We discuss works on curriculum learning within a general CL framework, elaborating on how to
design a manually predefined curriculum or an automatic curriculum. In particular, we summarize existing CL designs based on the
general framework of Difficulty Measurer + Training Scheduler and further categorize the methodologies for automatic CL into four
groups, i.e., Self-paced Learning, Transfer Teacher, RL Teacher, and Other Automatic CL. We also analyze principles to select different
CL designs that may benefit practical applications. Finally, we present our insights on the relationships connecting CL and other
machine learning concepts including transfer learning, meta-learning, continual learning and active learning, etc., then point out
challenges in CL as well as potential future research directions deserving further investigations.

Index Terms—Curriculum Learning, Machine Learning, Training Strategy, Example Reweighting, Self-Paced Learning.

F

1 INTRODUCTION

Human learning has inspired various algorithm de-
signs throughout the development of machine learning. As
an outstanding feature of human learning, curriculum, or
learning in a meaningful order, has been exploited and
transferred to machine learning, which forms the subdisci-
pline named curriculum learning (CL). In essence, human ed-
ucation is highly organized as curricula, by “starting small”
and gradually presenting more complex concepts. For ex-
ample, to learn calculus at college, a student should first
learn basic arithmetic at primary school, abstract function
at middle school, and then derived function at high school.
However, in traditional machine learning algorithms, all the
training examples are randomly presented to the model,
ignoring the various complexities of data samples and the
learning status of the current model. Therefore, an intuitive
question is: “could the curriculum-like training strategy ever
benefit machine learning?” According to the extensive experi-
ments from early work [6], [54], [131] to recent efforts [17],
[29], [33], [86] in various applications of machine learning,
we may summarize the answer as: “yes, but not always.” As
we will demonstrate in this survey, the power of introduc-
ing curriculum into machine learning depends on how we
design the curriculum for specific applications and datasets.

The original concept of CL is first proposed by Bengio
et al. [6]. In short, curriculum learning means “training
from easier data to harder data”. More specifically, the basic
idea is to “start small” [15], train the machine learning
model with easier data subsets (or easier subtasks), and then
gradually increase the difficulty level of data (or subtasks)
until the whole training dataset (or the target task(s)). An
illustration of CL is demonstrated in Fig. 1, where we take
the image classification task as an example. Initially, CL
trains the model on a small subset of “easy” images, i.e.,

• Xin Wang, Yudong Chen, Wenwu Zhu are with the Department of
Computer Science and Technology, Tsinghua University, Beijing, China.
E-mail: xin wang@tsinghua.edu.cn, cyd18@mails.tsinghua.edu.cn,
wwzhu@tsinghua.edu.cn.

…"# "$ = &"'

small & easy
subset

larger & harder
subset

whole training
dataset

Curriculum

Data

Model

…
Training process

… …

… …

Fig. 1. Illustration of the Curriculum Learning (CL) concept (The fruit
images are from [106]). CL is a training strategy for machine learning
that trains from easier data to harder data, imitating human curricula.
Specifically, CL initially trains the model on a small and easy subset.
With the progress of the training, CL gradually introduces more harder
examples into the subset, and finally trains the model on the whole train-
ing dataset. This CL strategy can improve both model performance and
convergence rate, compared with direct training on the whole training
dataset. Qt here stands for a reweighting of the training data distribution
P at the t-th training epoch (See details in Sec. 2).

the images of apples and oranges are clear, typical, and
easily recognizable. With the progress of model training, CL
adds more “harder” images (i.e., harder to recognize) to the
current subset, which is akin to the increasing difficulty of
learning materials in human curricula. Finally, CL leverages
the whole training dataset for training.

As the idea of CL serves as a general training strat-
egy beyond specific machine learning tasks, scholars have
been exploiting its power in considerably wide application
scopes, including supervised learning tasks within com-
puter vision (CV) [31], [40], natural language processing
(NLP) [86], [112], healthcare prediction [14], etc., various
reinforcement learning (RL) tasks [20], [77], [93] as well
as other applications such as graph learning [25], [88] and
neural architecture search (NAS) [32]. The advantages of
applying CL training strategies to miscellaneous real-world

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 2

Training
set

Difficulty
Measurer

Training
Scheduler

Model
TrainerSorted

data
Sample
batch @!

If model converges

Curriculum Design

Epoch !

Self-paced Learning
(Sec.4.3.1)

Transfer Teacher
(Sec.4.3.2)

RL Teacher
(Sec.4.3.3)

Other Automatic CL
(Sec.4.3.4)

Training
set

Difficulty
Measurer

Training
Scheduler

Model
TrainerSorted

data
Sample
batch @!

Curriculum Design

Epoch !Training loss @! as difficulty

Training
set

Difficulty
Measurer

Training
Scheduler

Model
TrainerSorted

data
Sample
batch @!

If model converges

Curriculum Design

Pretrain

External
dataset

Epoch !

Training
set

Difficulty
Measurer

Training
Scheduler

Model
TrainerSorted

data
Sample
batch @!

Epoch !
Student feedback @!

Curriculum Design

Reinforcement Learning

CL Methods
(Sec.4)

Automatic CL
(Sec.4.3)

Predefined CL
(Sec.4.1,4.2)

(a)

(b)

(c)

(d)

Fig. 2. A categorization of CL methods and the corresponding illustrations. We divide the existing methods into predefined CL and automatic CL,
the latter of which including Self-paced Learning, Transfer Teacher, RL Teacher and Other Automatic CL. As shown in the illustrations, most CL
methods comply with the general framework of Difficulty Measurer + Training Scheduler in Sec. 4.

scenarios can be mainly summarized as improving the model
performance on target tasks and accelerating the training process,
which cover the two most significant requirements in major
machine learning research. For example, in [86], CL helps
the neural machine translation model reduce training time
by up to 70% and improves the performance by up to 2.2
BLEU points, compared to plain training without curricula.
In [41], CL brings a relative 45.8% MAP boost from nor-
mal batch training with an obvious faster convergence in
multimedia event detection task. In [20], CL enables the RL
agents to solve hard goal-oriented problems that they can-
not solve without curricula. Apart from the above two main
advantages, CL is also easy-to-use, since it is a flexible plug-
and-play submodule independent of the original training
algorithms in most CL literature. However, to the best of
our knowledge, little effort has been made to systematically
summarize the methodologies and applications of CL.

In this paper, we fill this gap by comprehensively re-
viewing CL and summarizing its methodologies. To be more
specific, we hope to provide the readers with an overall
picture of CL, which includes comprehensible and elaborate
answers to the following questions: (i) What is the definition
of CL (Sec. 2)? (ii) Why is CL effective, and why should
researchers use CL (Sec. 3)? (iii) How to design a curriculum
(Sec. 4)? We conclude the paper with a comparison of “easier
first” and “harder first” training strategies and discussion
on the relationship between CL and other machine learn-
ing concepts in Sec. 5. We also summarize several open
questions and future directions for CL to inspire future
researchers in Sec. 6.

2 DEFINITION OF CL
History context. Empirical evidence supporting the mean-
ingfulness of taking curricula in human and animal learning
has been early provided in behavior and cognitive science

literature. Skinner [84], [105] provides the earliest behavior
evidence on the importance of shaping, i.e., another name
for CL in animal training context. Cognitive evidence is
then provided in human size constancy learning [116] and
language learning [79]. The idea of introducing a curriculum
into the training strategy of machine learning algorithms
can be traced back to Selfridge et al.’s work [99]. The authors
proposed to train a cart pole controller, a classic problem in
robotics, first on long and light poles and then gradually
on shorter and heavier poles. Later related work [95], [98] in
RL and robotics domains also discussed how to organize the
presenting order of tasks from easy to hard. The first attempt
of the curriculum-like idea on supervised learning is made
by Elman [15] in the NLP task of grammar learning with
recurrent networks. The author highlighted the importance
of “starting small”: restricting the range of data exposed
to neural networks during initial training. This strategy is
also revisited in [94] and [52], the latter of which provides
evidence for faster convergence.

Based on all these previous works, the concept of CL
was first proposed by Bengio et al. [6] with experiments
on supervised visual and language learning tasks, exploring
when and why a curriculum could benefit machine learning.
The original definition of CL by Bengio et al. [6] is as follows.

Definition 1: Original Curriculum Learning [6]. A cur-
riculum is a sequence of training criteria over T training
steps: C = 〈Q1, . . . , Qt, . . . , QT 〉. Each criterion Qt is a
reweighting of the target training distribution P (z):

Qt(z) ∝Wt(z)P (z) ∀example z ∈ training set D, (1)

such that the following three conditions are satisfied:
• 1) The entropy of distributions gradually increases,

i.e., H(Qt) < H(Qt+1).
• 2) The weight for any example increases, i.e.,

Wt(z) ≤Wt+1(z) ∀z ∈ D.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 3

• 3) QT (z) = P (z).

Curriculum learning is the training strategy that trains a
machine learning model with a curriculum.

In Definition 1, Condition (1) means the diversity and
information of the training set should gradually increase,
i.e., the reweighting of examples in later steps increases the
probability of sampling slightly more difficult examples.
Condition (2) means to gradually add (in binary or soft
manner) more training examples, so the size of the training
set increases. Condition (3) means finally, the reweighting of
all examples is uniform and we train on the target training
set.

Most of the CL methods discussed in this paper (espe-
cially those in Sec. 4.2, 4.3.1, and 4.3.2) meet Definition 1,
illustrated in Fig 1. As shown in the figure, the CL strategy
determines the training data subset of each training step,
such that the size and overall difficulty of the subsets are
gradually increasing throughout the training process.

Since the concept of CL was formally proposed, the
academic community follows and further extends the def-
inition of CL. Within the spirit of “training from easier data
(tasks) to harder data (tasks)”, i.e., fixing Condition (1) in
Definition 1, Condition (2) and (3) can be relaxed to enable
more flexible CL strategies. For example, in [29], [83], [131]
of multi-task setting and most CL for RL settings [19], Con-
dition (2) and (3) are relaxed since at each step the model is
trained on only one task. However, the diversity or difficulty
of the current task/goal gradually increases, which guides
the model to boost the performance on the target task(s).
The CL methods based on One-Pass scheduler [112], [114],
[117] discussed in Sec. 4.2.2 also relaxes Condition (2) and
(3) as they train the model from easier subsets to harder
subsets. Moreover, other works also extend Definition 1 by
adding more conditions of data characteristics for different
application purposes. For instance, Jiang et al. [41] propose
to train “from easy & diverse to hard” to avoid overfitting
to the same sample group in multi-group event detection
tasks. Wang et al. [121] train the model “from easy &
imbalanced to hard & balanced” data to alleviate the severe
class imbalance in human attribute analysis.

At a more abstract level, a curriculum can be seen as a
sequence of (binary) instance selection [80] or (soft) example
reweighting along the training process to achieve faster con-
vergence or better generalization, which is beyond the “easy
to hard” or “starting small” principles. This perspective in-
spires the academic community to bring more connotations
to CL definition with new methodologies, which can be
summarized as follows.

Definition 2: Data-level Generalized Curriculum
Learning. Discarding all the three conditions in Definition 1,
a curriculum is a sequence of reweighting of target training
distribution over T training steps. Curriculum learning is
the strategy that trains a model with such a curriculum.

Most CL methods in Sec. 4.3.3 and Sec. 4.3.4 could learn
to automatically and dynamically select the most suitable
examples or tasks (with adjustable loss weights) for each
current training step and thus meet Definition 2. Interest-
ingly, in some of the works, the best curriculum found by
the algorithm is the opposite of traditional CL, i.e., “hard
to easy” [17], [118] or “starting big” (from full dataset to

informative subset) [118], [119], [140]. There is also a line
of research named hard example mining (HEM) [45], [101]
selecting the most difficult examples in each training batch.
HEM actually falls in Definition 2 and is explored in some
CL literature [39], [145]. A discussion on this seemingly
paradoxical phenomenon will be made in Sec. 5.1.

To even further broaden the scope of CL, some scholars
jump from data level to criteria level, to regard a curriculum
as a sequence of training criteria during the training process.
This further generalizes the CL definition:

Definition 3: Generalized Curriculum Learning. Dis-
carding the definition of Qt (Eq. 1) and its three conditions
in Definition 1, a curriculum is a sequence of training
criteria over T training steps. Each criterion Qt includes the
design for all the elements in training a machine learning
model, e.g., data/tasks, model capacity, learning objective,
etc. Curriculum learning is the strategy that trains a model
with such a curriculum.

Examples for training criteria in Definition 3 include,
but are not limited to, loss function [97], [124], supervision
generation [34], [133], model capacity [46], [75], [104], in-
put scheme [4], and hypothesis space [32]. Note that the
criteria in such a generalized curriculum in Definition 3
usually change progressively, analogous to the gradual cur-
riculum in human education. For example, in Curriculum
Dropout [75], the algorithm gradually reduces the ratio of
active units in dropout operation from 1 to a predefined
θ0 ∈ (0, 1) to achieve adaptive regularization during train-
ing. In Curriculum NAS [32], the algorithm starts from a
small search space and gradually incorporates the learned
knowledge to guide the search in larger spaces, which sig-
nificantly improves the search efficiency and also finds bet-
ter neural architectures. These works broaden the extension
of CL and exploit the potentialities of the human curriculum
idea for machine learning at a higher level, leaving room for
imagination for future work.

3 ANALYSIS ON EFFECTIVENESS OF CL AND
SUITABLE APPLICATION SCENES

Before applying CL to their studies, researchers might be
curious about a fundamental question: why on earth does
this human-curriculum-like training strategy work? To ex-
plain why CL could lead to generalization improvement and
convergence speedup, scholars have provided hypotheses
and proofs from different perspectives. Basically, existing
analyses uncover the essence of CL from the perspectives
of optimization problem and data distribution, based on which
we can further summarize the two main motivations for
applying CL: to guide and to denoise.

3.1 Theoretical Analysis on CL
To begin with, from the perspective of optimization prob-
lem, Bengio et al. [6] initially point out that CL can be seen
as a particular continuation method. Intuitively, continuation
methods [2] are optimization strategies for non-convex crite-
ria which first optimize a smoother (and also easier) version
of the problem to reveal the “global picture”, and then
gradually consider less smoothing versions, until the target
objective of interest. This strategy also shares the same spirit
with simulated annealing. As illustrated in Fig 3, continuation
methods provide a sequence of optimization objectives,

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 4

starting with a heavily smoothed objective for which it
is easy to find a global minimum, and tracking the local
minima throughout the training. In this way, continuation
methods guide the training towards better regions in param-
eter space, i.e., as shown in Fig 3, the local minima learned
from easier objectives have better generalization ability and
are more likely to approximate global minima. Moreover,
from the view of transfer learning, this continuation strategy
can also be regarded as a sequence of unsupervised pre-
training [6]: training on the preceding objectives could act
as a pre-training process which both helps optimization and
provides regularization on succeeding objectives.

Fig. 3. Illustration of the continuation method from [5], which is the
essence of the CL [6]. It starts from optimizing a heavily smoothed
version of the objective, and gradually moves to the target objective.
Tracking the local minima throughout the training guides the model
towards better parameter space and makes it more generalizable.

Additionally, recent studies provide more theoretical
evidence for the convergence speedup in CL from the opti-
mization perspective. Weinshall et al. [123] prove a theorem

On the other hand, researchers also analyze the CL
mechanism from the perspective of data distribution. In
the era of deep learning, large-scale data sources are re-
quired for training, which are collected and annotated by
company users, the web, and crowd-sourcing systems. This
big data collection brings noisy data that is less cogniz-
able or wrongly annotated. In the CL setting, the noisy
data corresponds to harder examples in the datasets while
the cleaner data form the easier part. Since CL strategy
encourages training more on the easier data, an intuitive
hypothesis is that CL learner wastes less time with the
harder and noisy examples to achieve faster training [6].
This hypothesis reveals the denoising efficacy of CL on noisy
data.

To have a closer look at this denoising mechanism,
Gong et al. [27] provide a theory based on the assumption
that there exists deviation between training and testing
distributions caused by noisy/wrongly-annotated training
data. Intuitively, training and target/testing distributions
share a common high-confidence annotated region with
large density, which corresponds to the easier examples
in CL. Therefore, to start training from easier examples
by CL strategy actually simulates learning from this high-
confidence common region (as an approximation to the
target distribution), which guides the learning towards the
expected target while reduces the negative impacts from
low-confidence noisy examples. This data distribution per-
spective of CL is illustrated in Fig 4. The common density
peak (at the center of the x-axis) of training and target
distributions Ptrain(x) and Ptarget(x) in the left part refers
to the common high-confidence area, while the heavy tail

of Ptrain(x) demonstrates the relatively more noisy data in
training distribution. The right part illustrates the sequence
of weight functions in CL, which initially assigns small
values to the noisy tails and much larger values in the
common easy area, and gradually moves to equal weights
for all examples. Based on the above analysis, the authors
formulate Ptarget(x) as the weighted expression of Ptrain(x).
A follow-up theory clarifies that CL essentially minimizes
an upper bound of the expected risk under target distribu-
tion, and this bound shows that we could approach the task
of minimizing the expected risk on Ptarget(x) by taking the
core idea of CL: gradually taking relatively easy examples
according to the curriculum and minimizing the empirical
risk on these examples.

Fig. 4. Illustration of the CL from the data distribution perspective [27].
The left part demonstrates the data distribution shifts from the easy
subset (the solid curve, which is assumed to approximate the testing
distribution Ptarget(x) well) to the full training set Ptrain(x) (the red dashed
curve). The right part shows the corresponding weighting scheme to
enable this distribution shift. The center peak of curves refers to the
high-confidence clean data, while the tails refer to the noisy data in the
distributions. As shown in the left part, Ptarget(x) is cleaner than Ptrain(x).

3.2 Suitable Application Scenes of CL
Based on the above analysis on why CL is effective, we
can categorize the motivations for applying CL into two
groups: to guide, regularizing the training towards better
regions in parameter space (with steeper gradients) as from
the perspective of the optimization problem, and to de-
noise, focusing on high-confidence easier area to alleviate
the interference of noisy data as from the perspective of
data distribution. Not surprisingly, most of the existing
application scenes of CL can be classified into these two
groups, as demonstrated in Table 1.

The application scenes based on the “to guide” motiva-
tion often involve difficult target tasks where direct training
on these tasks results in poor performance or slow conver-
gence. CL strategies are adopted to guide the training from
easier tasks or smoother versions of objectives to the target
tasks. For instance, in sparse-reward RL, direct training
on the final tasks rarely gets any positive rewards, which
hinders agent learning. Therefore, researchers propose to
take the CL strategy and manually [72] or automatically [20]
design a sequence of auxiliary (sub)tasks/goals from easy to
hard to guide the training. In multi-task learning, learning
all the tasks simultaneously or in random order often leads
to unsatisfactory performance. To yield performance gains,
CL strategies are adopted to automatically choose the easier
tasks which are more related to the previous one [83] or
can bring more learning progress to the model training [29],
[72]. Other examples include CL for training GANs [22],
[46], [106] and NAS [32].

Besides, the “to guide” application scenes also include
the tasks where the target distribution is quite different from
the training distribution, and a good curriculum helps to

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 5

TABLE 1
Suitable Application Scenes of CL.

Motivation Effect Scene Examples
To guide make training possible /

better and faster
the target task is hard or has a differ-
ent distribution

sparse reward RL, multi-task learning, GAN training, NAS;
domain adaption, imbalanced classification

To denoise make training faster, more
robust and generalizable

tasks with noisy, uneven quality, het-
erogeneous data (often large-scale,
cheaply collected)

weakly-supervised or unsupervised learning, NLP tasks (neural
machine translation, natural language understanding, etc.)

guide the training for adaption to the target distribution. A
representative scene is domain adaption, which aims at im-
proving prediction performance on unlabeled target domain
data by knowledge transfer from richly annotated source
domain data with a distribution drift. Recent studies [103],
[139] propose to train from more in-domain data (similar to
target domain) to less in-domain data, guiding the model to
adapt to the target domain while adequately exploiting the
source domain data. Note that CL for domain adaption is
also related to the “to denoise” motivation, if we regard the
less in-domain data as a kind of noisy data. Another exam-
ple is imbalanced classification problems, where the training
distribution on different classes is extremely imbalanced.
Different studies adopt various curricula either beginning
from balanced subset to more imbalanced full dataset [39]
or from easy and imbalanced subset to harder and more
balanced subset [121] to improve the generalization capacity
of the classifier.

On the other hand, the application scenes based on the
“to denoise” motivation often have a noisy or heterogeneous
training dataset, and CL strategies could help denoise, mak-
ing the training faster, more robust, and more generaliz-
able. A popular application of CL with this motivation is
neural machine translation (NMT), whose dataset is highly
heterogeneous in quality, difficulty, and noise [53]. This is
because the translation of a sentence could be long and
short with different vocabulary and grammar structures,
and different annotators always provide translations of dif-
ferent qualities Moreover, the training of NMT models (e.g.,
RNNs) is often time-consuming. Therefore, CL is naturally
suitable for NMT tasks to denoise during training and to
achieve both performance boost and faster convergence.
Similarly, CL is also adopted in other NLP tasks with noisy
or heterogeneous data, including natural language under-
standing [126], relation extraction [37], reading comprehen-
sion [112], etc. Moreover, CL is also effective in weakly-
supervised CV tasks [31], [64].

From the perspective of supervision in training, CL
can help supervised, weakly-supervised, and unsupervised
learning by guiding or denoising. Specifically, CL helps
supervised setting mainly by guiding when (i) the task is
hard [20], [83], (ii) parts of the training data are difficult to
learn [6], [41], (iii) the target distribution heavily shifts from
training distribution [103], [121]. Weakly-supervised setting
includes three typical types [147], all of which are enhanced
by CL denoising. (i) For inaccurate supervision, i.e., the
training set is noisy and usually collected from the web, CL
helps to denoise, enabling the model to focus on a cleaner
subset to avoid bad local minimum [31], [64], [86], [103].
(ii) For incomplete supervision, i.e., the semi-supervised
setting where some training data are unlabeled, CL helps to
distinguish the easier (more confident) unlabeled examples
and add them to the training set earlier or with higher

weights, denoising the pseudo labels with low confidence
(harder unlabeled data) [24], [25], [114], [136]. (iii) For inex-
act supervision, i.e., only coarse-grained labels are given, CL
helps to gradually integrate confident fine-grained pseudo
labels into training while denoising the noisy ones, usu-
ally under a multi-instance learning framework [34], [111],
[134], [135]. Finally, CL can also help unsupervised setting,
e.g., clustering [22], [127], feature selection [142], domain
adaption [11], etc. The mechanism in most work is similar
to the semi-supervised setting, i.e., denoising the noisy
pseudo labels [11], [22], [142]. The function to guide is also
explored in [127]. With carefully designed CL, [133] even
learns deep saliency network without human annotation by
progressively synthesizing supervision masks.

4 CL DESIGN: A GENERAL FRAMEWORK

Since we have understood why CL is effective and why
researchers apply CL to different scenes, a natural and
important question should be: how to design an appropriate
curriculum for a specific learning task? In this section, we
provide a general framework of “Difficulty Measurer +
Training Scheduler” (Sec. 4.1), which unifies most of CL
methodologies. Based on this framework, we categorize
the existing CL methods into predefined CL (Sec. 4.2) and
automatic CL (Sec. 4.3) and introduce the representative
designs in each category. Fig. 2 illustrates the typology of
CL methods introduced in this section.

4.1 The General Framework of Difficulty Measurer +
Training Scheduler
Recall that the core definition of CL (Definition 1) lies in
the strategy of “training from easier data to harder data”.
In essence, to design such a curriculum, we need to decide
two things: 1) What kind of training data is supposed to be
easier than other data? 2) When should we present more
harder data for training, and how much more? Issue 1)
can be abstracted to a Difficulty Measurer, which decides
the relative “easiness” of each data example. Issue 2) can
be abstracted to a Training Scheduler, which decides the
sequence of data subsets throughout the training process
based on the judgment from the Difficulty Measurer.

Therefore, a general framework for curriculum design
consists of these two core components: Difficulty Measurer
+ Training Scheduler, which is illustrated in Fig 2(a). To
begin with, all the training examples are sorted by the
Difficulty Measurer from the easiest to the hardest and
passed to the Training Scheduler. Then, at each training
epoch t, the Training Scheduler samples a batch of training
data from the relatively easier examples and sends it to
Model Trainer for training. With the progress of training
epochs, Training Scheduler will decide when to sample from
more harder data, (usually) until uniform sampling from the
whole training set. This schedule sometimes also depends

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 6

on the training loss feedback from the Model Trainer (the
dashed arrow in Fig 2(a)), e.g., Training Scheduler present-
ing more harder data when the current model converges.
Note that in [33], the authors conclude the two core compo-
nents as scoring function and pacing function, which share the
same spirit with Difficulty Measurer and Training Scheduler,
respectively, while the latter names adopted in this paper are
chosen to be more abstract and clearer.

Let us take the experiment in Fig 1 as an instantiation
example for our CL framework. Difficulty Measurer is the
human annotations deciding that some fruit images in the
dataset are easier than other images based on recognizability
and complexity. Training Scheduler can be, for example, a
linear scheduler (see Sec. 4.2.2) that starts with 40% of easiest
examples in each class, and increases this proportion by 5%
each epoch until 100%. In this way, an effective curriculum
is designed by instantiating the general CL framework
according to the specific image classification task.

According to our framework, we could also clarify the
scopes of predefined CL and automatic CL in the next two
sections. Specifically, when both the Difficulty Measurer and
Training Scheduler are designed by human prior knowledge
with no data-driven algorithms involved, we call the CL
method predefined CL. If any (or both) of the two compo-
nents are learned by data-driven models or algorithms, then
we denote the CL method as automatic CL.

4.2 Predefined CL
In this section, we discuss the common types of manually
predefined Difficulty Measurers (Sec. 4.2.1) and Training
Schedulers (Sec. 4.2.2) under our CL framework, and con-
clude the main limitations of predefined CL (Sec. 4.2.3).

4.2.1 Common Types of Predefined Difficulty Measurer
Researchers have manually designed various Difficulty
Measurers mainly based on the data characteristics of spe-
cific tasks. We summarize common types of Difficulty Mea-
surers in Table 2. Most of the predefined Difficulty Measur-
ers are designed for image and text data in various CV and
NLP scenarios, while other data types include audio data,
programs, tabular data, etc. Interestingly, we find that except
for some domain knowledge-based measurement (marked
as “Domain”), most of the predefined Difficulty Measurers
are designed from the angles of complexity, diversity, and
noise estimation, which are separate but also correlated.

Firstly, complexity stands for the structural complexity of
a particular data example, such that examples with higher
complexity have more dimensions and are thus harder
to be captured by models. For instance, sentence length,
the most popular Difficulty Measurer in NLP tasks [86],
[107], [112], intuitively expresses the complexity of a sen-
tence/paragraph. Therefore, longer sentences are often sup-
posed as harder training data. Other examples include
the number of objects in images in the task of semantic
segmentation [122]; the number of coordinating conjunc-
tions (e.g., “and”, “or”) [50] or phrases (e.g., prepositional
phrases) [113]; the parse tree depth [113] that measures
the sentence complexity in the view of grammar; and the
nesting of operations in program text [131] that measures
the complexity of the instruction set in program execution
tasks.

TABLE 2
Common types of predefined Difficulty Measurer. The “+” in ∝Easy
means the higher the measured value, the easier the data example,

and the “-” has the opposite meaning.

Difficulty Measurer* Angle Data Type ∝Easy
Sentence length [86], [107] Complexity Text -
Number of objects [122] Complexity Images -
conj. [50], #phrases [113] Complexity Text -
Parse tree depth [113] Complexity Text -
Nesting of operations [131] Complexity Programs -
Shape variability [6] Diversity Images -
Word rarity [50], [86] Diversity Text -
POS entropy [113] Diversity Text -
Mahalanobis distance [14] Diversity Tabular -
Cluster density [11], [31] Noise Images +
Data source [10] Noise Images /
SNR / SND [7], [89] Noise Audio -
Grammaticality [66] Domain Text +
Prototypicality [113] Domain Text +
Medical based [44] Domain X-ray film /
Retrieval based [18], [82] Domain Retrieval /
Intensity [30] / Severity [111] Intensity Images +
Image difficulty score [106], [114] Annotation Images -
Norm of word vector [68] Multiple Text -
* Abbreviations: POS = Part Of Speech, SNR = Signal to Noise Ratio,

SND = Signal to Noise Distortion, Domain = Domain knowledge, #
conj. = number of coordinating conjunctions.

Secondly, the angle of diversity here stands for the distri-
butional diversity of a group of data (e.g., regular or irregu-
lar shapes [6]) or the elements (e.g., words) of a data point
(e.g., sentence). A larger value of diversity means the data is
more various, including more (rare) types/styles of data or
elements, and is thus more difficult for model learning. For
example, a sentence with more rare words is usually consid-
ered harder to learning [86]. A popular measure of diversity
is information entropy, which is exploited both in text data
as the Part-Of-Speech (POS) entropy [113] and in tabular
data as the Mahalanobis distance of feature vectors [14].
Intuitively, both high complexity and high diversity bring
more degrees of freedom to the data, which needs a model
with larger capacity and bigger effort of training.

Larger diversity sometimes also makes the data noisier.
Therefore, another angle is noise estimation, which estimates
the noise level of data examples and defines cleaner data as
easier. A quite intuitive method is taken in [10] to judge the
noise level by the source of image data on the web: images
retrieved by a search engine like Google are supposed to be
cleaner, and images posted on photo-sharing website like
Flickr are more realistic and noisier. In [31], the authors
map images to vectors by CNNs and suppose that cleaner
images often appear similar, and thus have larger values of
local density. Therefore, examples with lower local density
are supposed to be noisier and harder to predict. Moreover,
the Signal to Noise Ratio/Distortion (SNR/SND) [7], [89] is
widely adopted to estimate the noise in audio data.

Other interesting Difficulty Measurers include signal
intensity [30], [111] and human-annotation-based Image
Difficulty Scores [106], [114], both designed for image data.
Signal intensity can be regarded as a measurement for the
informativeness of data features. For example, in the task of
facial expression recognition [30], more intense/exaggerated
faces are supposed to be easier data than poker faces. In the
task of thoracic disease diagnosis [111], more severe symp-
toms provide more information and are easier to recognize.
Moreover, Image Difficulty Score [114] is proposed to mea-
sure the difficulty of an image by collecting the response

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 7

times of human annotators in the following protocol: (i) ask
the annotator “Is there an {object class} (e.g., elephant) in
the next image?” and (ii) record the time spent by the anno-
tator to answer “Yes” or “No” and use this response time to
estimate Image Difficulty Score: intuitively, longer response
time corresponds to harder image example. After collecting
the annotation, the authors train a regression model to map
the CNN features of new images to the difficulty score.

4.2.2 Common Types of Predefined Training Scheduler

While predefined Difficulty Measurers vary among differ-
ent data types and tasks, the existing predefined Training
Schedulers are usually data/task agnostic, i.e., the majority
of CL literature in various scenarios leverages similar types
of Training Schedulers. Generally, Training Schedulers can
be divided into discrete and continuous schedulers. The dif-
ference is: discrete schedulers adjust the training data subset
after every fixed number (> 1) of epochs or convergence on
the current data subset, while continuous schedulers adjust
the training data subset at every epoch.

Discrete schedulers are widely adopted owing to their sim-
plicity and effectiveness. The most popular discrete sched-
uler is named as Baby Step [6], [107] (Algorithm 1), which
first distributes the sorted data into buckets (or shards/bins)
from easy to hard and starts training with the easiest bucket.
After a fixed number of training epochs or convergence, the
next bucket is merged into the training subset. Finally, after
all the buckets are merged and used, the whole training pro-
cess either stops or further continues several extra epochs.
Note that at each epoch, the scheduler usually shuffles both
the current buckets and the data in each bucket and then
sample mini-batches for training (instead of using all data
at once).

Algorithm 1 The Baby Step Training Scheduler [12].

Input: D: training dataset; C: the Difficulty Measurer;
Output: M∗: the optimal model.
1: D′ = sort(D, C);
2: {D1,D2, · · · ,Dk} = D′ where C(da) < C(db), da ∈ Di, db ∈
Dj , ∀i < j;

3: Dtrain = ∅;
4: for s = 1 · · · k do
5: Dtrain = Dtrain ∪ Ds;
6: while not converged for p epochs do
7: train(M,Dtrain);
8: end while
9: end for

Another discrete scheduler called One-Pass [6] takes a
similar strategy of data bucketing from easy to hard and
starting training from the easiest bucket. However, when
updating, One-Pass scheduler discards the current bucket
and switches to the next harder bucket. One-Pass is less
used than Baby Step in CL literature (see [112], [114], [117],
[131] for One-Pass examples), probably due to the lower
performance in many tasks. Intuitive reasons might include:
1) The complexity/diversity of the training data is gradually
increasing in Baby Step scheduler, which helps improve
generalization capacity; 2) The One-Pass scheduler is like
training on a sequence of independent tasks as in contin-
ual learning [13], which faces the problem of catastrophic
forgetting even though the early tasks are easier. The two
schedulers are compared on LSTMs in [12].

Other discrete schedulers are also based on data buck-
eting but take different sampling strategies. For example,
in [50], the authors modify the Baby Step to unevenly divide
the examples into buckets such that easier buckets have
more data examples, which is natural to reach in the case
of machine translation corpora. Then they sample examples
without replacement from the easiest bucket only until there
remain the same number of examples as in the second most
easy bucket. Afterward, they uniformly sample from the
first two buckets until the size is the same as that of the third
bucket. In an empirical study of CL on NMT tasks [138], the
authors also test other extensions of Baby Step, including
1) “boost”: to copy the hardest bucket for further training;
2) “reduce and add-back”: to gradually remove one easiest
bucket from training set once all buckets have been used,
and then add them back and repeat the removing until
convergence; 3) “no-shuffle”: to discard inter-bucket shuf-
fling and always present from easier to harder buckets to
the model. A conclusion is, including Baby Step, no single
scheduler consistently outperforms others.

Continuous schedulers, on the other hand, can be mostly
regarded as a function λ(t) to map training epoch number
t to a scalar λ ∈ (0, 1], which means λ proportion of easiest
training examples are available at the t-th epoch. According
to the Definition 1 in Sec. 2, this function λ(t) must be
monotone and non-decreasing, starting at λ(0) > 0 and
ending at λ(T) = 1 This function is also called pacing
function [33] or competence function [86] in literature.

Existing λ(t) functions are various, while researchers
could design new functions for their specific tasks. The most
intuitive function is the linear function, where λ0 is the initial
proportion of available easiest examples, and Tgrow denotes
the epoch when the function reaches 1 for the first time.

λlinear(t) = min

(
1, λ0 +

1− λ0

Tgrow
· t
)

(2)

Root function is later proposed in [86] according to the
observation that in linear function, the newly added exam-
ples are less likely to be sampled as the training data subset
grows in size. Therefore, to give the model sufficient time
to learn the newly added examples, the authors reduce the
number of newly added examples as training progresses by
defining the rate of adding examples to be inversely propor-
tional to the size of the current training subset: dλ(t)

dt = P
dλ(t) ,

where P ≥ 0 is a constant. Then we get:

λroot(t) = min

(
1,

√
1− λ2

0

Tgrow
· t+ λ2

0

)
. (3)

To make the curve even sharper, a more general form
root-p function is also considered as follows, where p ≥ 1:

λroot-p(t) = min

(
1,

√
1− λp0
Tgrow

· t+ λp0

)
. (4)

Interestingly, in [82] the authors oppositely propose to give
easier examples more training time, by taking the following
geometric progression function:

λgeom(t) = min

(
1, 2

(
log2 1−log2 λ0

Tgrow
·t+log2 λ0

))
. (5)

The above continuous scheduler functions are illustrated
in Figure 5. Note that training without CL (“baseline”) and

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 8

Baby Step are also regarded as special cases of continuous
schedulers. The experiments in [86] and [82] on NLP tasks
show that the root-p function (p ≥ 2) is the most beneficial
predefined Training Scheduler for CL, though the relative
improvement to other schedulers is not drastic.

0 200 400 600 800 1000
epoch number (t)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fra
cti

on
 of

 tr
ain

ing
 d

at
a (

λ)

Functions of continuous schedulers

baseline
Baby_Step
linear
root
root-3
root-5
geom

Fig. 5. Visualization of common continuous schedulers. The horizontal
axis t stands for the training epoch number, and the vertical axis λ is
the corresponding proportion of the easiest training data subset. Base-
line is without curriculum and involves the whole training set from the
beginning. The Baby Step scheduler is also visualized for comparison.

Moreover, there is also a special group of continuous
schedulers which do not follow the original definition of CL
but perform as a sequence of data selection as in Definition
2. We name these schedulers as distribution shift, which start
training on an initial distribution and gradually move to a
target distribution. For example, in [66], all the examples
are divided into 2 groups: Common (lower quality and
simpler) and Target (higher quality and more complex). The
sampling weights are initially distributed on the Common
and gradually shifted to the Target. In [39], to alleviate ex-
treme data imbalance in the lung nodule detection task, the
scheduler starts sampling purely from images with nodules
to learn to represent nodules, and then gradually decreases
the proportion of examples with nodules until the extremely
imbalanced data distribution (rare nodule).

4.2.3 Limitations of predefined CL

Despite the simplicity and effectiveness of the predefined
CL, there are some essential limitations as follows. (i) It
is difficult to find the most suitable combination of Diffi-
culty Measurer and Training Scheduler for a specific task
and its dataset. There are no existing methodologies for
selecting Difficulty Measurer and Training Scheduler other
than exhaustive trials. (ii) Both the predefined Difficulty
Measurers and Training Schedulers stay fixed during the
training process, which is not flexible enough and to some
extent ignores the feedback of the current model. (iii) Ex-
pert domain knowledge is often necessary for designing a
predefined Difficulty Measurer. Moreover, when the dimen-
sion of example features is large, it is hard to predefine a
computable Difficulty Measurer even by an expert. (iv) Easy
examples for humans are not always easy for models, since
the decision boundaries of models and humans are basically
different [130]. (v) The best hyperparameters1 of Training
Scheduler are hard to find. Additionally, a basic problem
in Baby Step scheduler is to decide the number of buckets

1. The hyperparameters include λ0, Tgrow and p (in root-p function) in
continuous schedulers, and the number of steps, the number of epochs
in each step in Baby Step based schedulers.

and how to divide the buckets2. (vi) The performance of
various predefined Training Schedulers is sensitive to the
initial learning rate (in NMT task) [138].

These limitations of predefined CL have prevented CL
from being explored in more various applications. A natural
and critical question is: how can we design more automatic
Difficulty Measurers and Training Schedulers, which are
more data- and model-driven instead of human-driven,
more dynamically adaptive to the current training, and need
fewer or even no hyperparameters to fine-tune?

4.3 Automatic CL

In this section, we take a further step on the curriculum
design by introducing automatic CL methods to break
through the limits of predefined CL. A general comparison
of predefined CL and automatic CL is presented in Table 3.

TABLE 3
Predefined CL v.s. automatic CL.

Issues Predefined CL Automatic CL
Applicability Need expert domain

knowledge
General, domain agnostic

Difficulty
Measurer

Human defined, fixed Model decided, dynamic

Training
Scheduler

Ignore model feed-
back, fixed

Consider model feedback,
dynamic

We summarize the four major methodologies for au-
tomatic CL. In predefined CL, the teacher designing the
curriculum is a human expert, and the student getting
trained by the curriculum is the machine learning model.
To reduce the need for human teachers, the four method-
ologies take different ideas, which can be intuitively sum-
marized as follows. (i) Self-Paced Learning (SPL) methods
let the student himself act as the teacher and measure the
difficulty of training examples according to its losses on
them. This strategy is analogous to the self-study of human
students: one decides his/her own learning pace based on
his/her current status. (ii) Transfer Teacher methods invite
a strong teacher model to act as the teacher and measure
the difficulty of training examples according to the teacher’s
performance on them. The teacher model is pretrained and
transfers its knowledge to measure example difficulty for
student model training. (iii) RL Teacher methods adopt
reinforcement learning (RL) models as the teacher to play
dynamic data selection according to the feedback from the
student. This strategy is the most ideal scene in human
education, where the teacher and student improve together
through benign interactions: the student makes the biggest
progress based on the tailored learning materials selected
by the teacher, while the teacher also effectively adjusts her
teaching strategy to teach better. (iv) Other Automatic CL
methods include various automatic CL strategies except for
the above-mentioned. The works take different optimiza-
tion techniques to automatically find the best curriculum
for model training, including Bayesian Optimization, meta-
learning, hypernetworks, etc. Taking Definition 2 or 3, the

2. Division by thresholds on difficulty scores makes it hard to assign
each bucket with roughly the same number of examples, while division
by size may result in fluctuations in difficulty within a bucket or not
enough difference between different buckets [138]. An alternative is the
Jenks Natural Breaks classification algorithm, as adopted in [138].

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 9

curriculum in these methods often refers to a sequence of
loss weights or even loss functions on data batches.

The comparison of these automatic CL methodologies is
in Table 4. Automatic CL is also broadly applied to Deep RL
tasks, and we refer readers to the recent surveys [76], [87] for
further reading. The automatic CL methods discussed in this
section are mostly designed for (weakly- or un-) supervised
learning settings, though some of them are also shown to be
effective for RL tasks [48], [72].

4.3.1 Self-Paced Learning
Self-paced Learning (SPL) is a primary branch of CL that
automates the Difficulty Measurer by taking the example-
wise training loss of the current model as criteria. The
concept of “self-paced learning” originates from human
education, where the student can control the learning cur-
riculum, including what to study, how to study, when to
study, and how long to study [115]. Under machine learn-
ing settings, SPL refers in particular to a training strategy
initially proposed by Kumar et al. [54], which trains the
model at each iteration with the proportion of data with the
lowest training losses. This proportion of easiest examples
gradually grows to the whole training set, which essentially
takes a predefined Training Scheduler in Sec. 4.2.2. Note that
in the literature of SPL, CL and SPL are usually mentioned
as two different strategies, where the CL actually refers to
the predefined CL in Sec. 4.2. However, in this paper, SPL
is regarded as a branch of automatic CL, since it shares
the same spirit with CL and fits perfectly with our general
CL framework, as shown in Fig 2(b). The most valuable
advantages of SPL over predefined CL are mainly two-fold:
1) SPL is semi-automatic CL with a loss-based automatic
Difficulty Measurer and dynamic curriculum, which makes
it more flexible and adaptive for various tasks and data
distributions. 2) SPL embeds the curriculum design into the
learning objective of the original machine learning tasks,
which makes it widely applicable as a plug-in tool.

a) The Original Version of SPL. The original SPL
algorithm [54] is formally defined as follows. Let D =
{xi, yi}Ni=1 denotes the training set, where xi and yi is the
feature and label of example i, respectively. The model fw
with parameters w maps each xi to the model prediction
fw(xi), and gets a loss li = L(fw(xi), yi), where L is the
learning objective. The original goal is then to minimize the
empirical loss on the whole training set:

min
w

E(w;λ)

N∑
i=1

li +R(w), (6)

where R(w) is a regularizer to encode prior knowledge
on w to avoid overfitting3. SPL introduces example weight
vi into the above learning objective with an SP-regularizer
g(v;λ), where v = [v1, v2, ..., vN]> ∈ [0, 1]N is a vector of
weights, and λ is the age parameter, a hyperparameter which
controls the learning pace (i.e., as Training Scheduler) and
determines the proportion of the easiest selected examples
at each training epoch. The new learning objective becomes:

min
w;v∈[0,1]N

E(w,v;λ)

N∑
i=1

vili + g(v;λ). (7)

In the original SPL, g(v;λ) is a negative l1-norm:

3. For brevity, we ignore R(w) in the following discussion.

g(v;λ) = −λ
N∑
i=1

vi. (8)

The above learning objective is often optimized with the
Alternative Optimization Strategy (AOS)4. Concretely, we
alternatively optimize w and v while fix the other. With the
fixed w∗, we calculate the global optimum v∗ by solving:

v∗i = arg min
vi∈[0,1]

vili + g(vi;λ), i = 1, 2, · · · , n (9)

Then, with fixed v∗, we learn the global optimum w∗:

w∗ = arg min
w

N∑
i=1

v∗i li. (10)

The two optimization steps are iteratively conducted, while
the value of λ is gradually increased to add more harder
examples. The overall algorithm is in Algorithm 2.

Algorithm 2 Self-Paced Learning

Input: D = {xi, yi}Ni=1: training dataset; f : the machine learning
model; T : the maximum number of iterations;

Output: w: the optimal parameters of f .
1: Initialize w, v, λ = λ0, t = 0.
2: while t 6= T do
3: t = t+ 1;
4: Update v∗ by Eq. 9;
5: Update w∗ by Eq. 10;
6: Update λ to a larger value; // to include harder data
7: end while

While the solution for Eq. 10 is provided by machine
learning algorithms (e.g., gradient descent) for the original
task, the solution for Eq. 9 is simple. In fact, since g(v;λ) in
Eq. 8 is a convex function of v, the global minimum can be
easily derived by setting the partial derivative of E(w,v;λ)
to vi as zero. Considering vi ∈ [0, 1], we get the close-formed
optimal solution for v∗ with the fixed w∗:

v∗i =

{
1, li < λ

0, otherwise
(11)

This solution can be intuitively explained: if an example
has a training loss li less than the threshold λ, then it is
regarded as an easy example for the current model, and
should be selected at the current training epoch (i.e., v∗i = 1).
Otherwise, it is hard and should not be selected (i.e., v∗i = 0).
When the model becomes more mature, λ gets increased and
more harder examples get involved in training.

Another remaining issue is how to adjust the threshold
λ throughout the training. Initially, λ should be set as λ0

to ensure that a small proportion of easy examples are
selected. Later on, a simple method is to multiply or add
a constant at each epoch, i.e., λt+1 = η · λt (η > 1) or
λt+1 = λt + µ (µ > 0), to gradually increase λ. Finally, λ
becomes large enough so that all the examples are selected
(i.e., v∗i = 1 ∀i). This strategy of adjusting λ is analogous
to predefined continuous Training Scheduler. More methods
for adjusting λ will be discussed in (e).

b) Theories for SPL. Before we discuss variant SPL
versions enhanced from different aspects, we briefly sum-
marize existing theories on SPL. In short, sound theories
have been established for the convergence, robustness, and
essence of SPL to support its wide applications.

4. AOS is also called ASS (Alternative Search Strategy), ACS (Alter-
native Convex Search) [42], or CCM (Cyclic Coordinate Method) [40] in
SPL literature.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 10

TABLE 4
Comparison of the automatic CL methodologies, except “Other Automatic CL”.

Issues Self-Paced Learning Transfer Teacher RL Teacher
Characteristic Student-driven difficulty Teacher-driven difficulty Teacher select data according to student feedback
Difficulty Measurer Automatic Automatic Automatic
Training Scheduler Predefined Predefined Automatic
Strength Efficient, robust Reliable difficulty Flexible
Weakness Fixed strategy Extra pretraining Costly (Deep RL)
CL Definition Definition 1 Definition 1 Definition 2

To begin with, the new learning objective Eq. 7 in SPL is
equivalent to the following latent objective function:

N∑
i=1

Fλ(li) =

N∑
i=1

∫ li

0
v∗i (τ, λ)dτ (12)

where v∗i is the solution in Eq. 9. Meng et al. [73] first prove
that the AOS strategy in SPL intrinsically accords with the
majorization minimization (MM) algorithm [56] on a mini-
mization problem of the above latent SPL objective. There-
fore, one could leverage theories of MM to provide analyses
of the properties of SPL (e.g., convergence). Additionally,
they find that this latent objective

∑N
i=1 Fλ(li) is also closely

related to the non-convex regularized penalty (NCRP), a
well-known machine learning methodology with attractive
properties in sparse estimation and robust learning, which
provides evidence on the robustness of SPL. Based on this
work, the authors further prove that the optimization of∑N
i=1 Fλ(li) converges to critical points of the original SPL

problem under mild conditions [71].
Moreover, Liu et al. [67] establish a systematic frame-

work for SPL under concave conjugacy theory, which com-
pletely tallies with the requirements of SPL models. Based
on this framework, they provide a proof for the derived re-
lationship among the SP-regularizer g(v;λ), latent objective∑N
i=1 Fλ(li), and the example weights v. This result also

inspires two general approaches for SPL designs.
c) Soft SP-regularizers. As a weighting strategy on

the learning objective, the core design of SPL is the SP-
regularizer g(v;λ), which directly determines the optimal
weights v∗ at each training epoch. Therefore, most of the
existing improvements on SPL have been focused on SP-
regularizers. Recall that in the original version of SPL,
g(v;λ) leads to a hard/binary weighting on the examples
(Eq. 11), assigning 1 to easy examples and 0 to hard exam-
ples. However, this style of hard weights tends to lose flexibil-
ity, since any two “easy” (or “hard”) examples are unlikely
to be strictly equally important and learnable [141]. There-
fore, an intuitive choice is to design new SP-regularizers
to result in soft weights v∗. We call such a group of SP-
regularizers soft regularizers.

A list of existing SP-regularizers g(v;λ) and the corre-
sponding close-formed solutions of v∗ is shown in Table 5.
In addition, the l-v∗ functions (i.e., the function of example
weight v∗i w.r.t. losses li) of these solutions are visualized
in Fig 6. As in Fig 6, compared to the hard regularizer, the
solutions of various soft regularizers assign soft weights to
reflect example importance in finer granularity, which helps
soft regularizers achieve better performance in various ap-
plications. However, one needs to choose suitable soft regu-
larizers for specific scenarios. For example, the logarithmic is
more prudent than the linear, while the mixture regularizers
tolerate small losses, compared with other regularizers [40].
The polynomial regularizer extends the linear to arbitrary

TABLE 5
Common types of SP-regularizers g(v;λ) and the corresponding

close-formed solutions v∗(l;λ).

Regularizers g(v;λ) v∗i (li;λ)

Hard [54] −λ
∑N
i=1 vi

{
1, li < λ

0, otherwise

Linear [40] 1
2λ
∑N
i=1(v2i − 2vi)

{
1− li/λ, li < λ

0, otherwise

Logarithmic [40]
∑N
i=1

(
ζvi − ζvi

log ζ

)
ζ = 1− λ, 0 < λ < 1

log(li + ζ)

log ζ
, li < λ

0, otherwise

Mixture [40] −ζ
∑N
i=1 log

(
vi + ζ

λ1

)
ζ =

λ1λ2
λ1−λ2

,

λ1 > λ2 > 0

1, li ≤ λ2

0, li ≥ λ1

ζ

(
1

li
−

1

λ1

)
, otherwise

Mixture2 [141] γ2

vi+
γ
λ
, γ > 0

1, li ≤

(
λγ

λ+ γ

)2

0, li ≥ λ2

γ

(
1
√
li
−

1

λ

)
, otherwise

Logistic [127]

∑N
i=1 ln(µi)

µi

+ln(vi)
vi − λvi, λ > 0,

µi = 1 + e−λ − vi

1+e−λ

1+eli−λ

Polynomial [26] λ
(

1
t

∑N
i=1

∑N
i=1 vi

)
λ > 0, t ∈ N+

(

1−
li

λ

) 1
t−1

, li < λ

0, otherwise

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
sample loss

0.0

0.2

0.4

0.6

0.8

1.0

sa
m

ple
 w

eig
ht

Solution for SP regularizers

hard
linear
log
mixture
mixture2
logistic
poly_t=1.3
poly_t=1.5
poly_t=3
poly_t=4
Huber
Cauchy
L1-L2
Welsch

Fig. 6. Visualization of functions of best example weight v∗i w.r.t. losses
li (the l-v∗ functions) of the SP-regularizers in Table 5. The age param-
eter λ (the threshold for non-zero weights) for many of the functions are
set as 0.8. The Huber, Cauchy, L1-L2, and Welsch belong to the implicit
SP-regularizers in [16], which are not presented in the table.

orders (when t = 2, it is identical to linear), and Li et al. [60]
further propose to dynamically adjust the order t during
training to improve flexibility.

To allow more possibility on SP-regularizer designs, a
general and formal definition is taken as follows [40], [141]:

Definition 4: SP-regularizer. Suppose that v is a weight
variable, l is the loss, and λ is the age parameter. g(v;λ) is
called a self-paced regularizer, if:

1. g(v;λ) is convex w.r.t. v ∈ [0, 1];
2. v∗(l;λ) is monotonically decreasing w.r.t. l, and

lim
l→0

v∗(l, λ) = 1, lim
l→∞

v∗(l, λ) = 0;

3. v∗(l;λ) is monotonically increasing w.r.t. λ, and

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 11

lim
λ→∞

v∗(l, λ) ≤ 1, lim
λ→0

v∗(l, λ) = 0;

where v∗(l;λ) is defined in Eq. 9.
It is not difficult to verify that all the regularizers in

Table 5 conform to Definition 4. Based on this definition,
Li et al. [58] propose a general framework for designing
SP-regularizers, demonstrating that we can derive from
any S-shaped v∗(l;λ) which meets Conditions 2 and 3 to
create new SP-regularizers. Essentially, this framework is
equivalent to the theorem in [67].

While the SP-regularizers defined by Definition 4 have
explicit form, Fan et al. [16] further introduce implicit regu-
larizers into SPL (denoted as SPL-IR). Based on the convex
conjugacy theory, a group of implicit SP-regularizers, whose
analytic form can be even unknown, are deduced from some
well-studied robust loss functions (e.g., Huber loss func-
tion), and the corresponding best weights v∗(l;λ) can be
directly derived from these loss functions. The weights thus
inherit the good robustness properties, which helps SPL-IR
to outperform explicit SP-regularizers. The l-v∗ functions
of implicit regularizers derived from four types of robust
loss functions, i.e., Huber, Cauchy, L1-L2, and Welsch loss
functions, are visualized in Fig 6. 5

d) Prior-embedded SPL. In SPL methods, given fixed
SP-regularizers g(v;λ), the example weights v∗ are entirely
determined by the example-wise losses and the age param-
eter λ. However, in some cases, we hope to introduce some
loss prior knowledge into this learning scheme. For example,
we may want to compulsively assign outliers with vi = 0
to improve robustness, or assign pre-known high-quality
examples with vi = 1. Such prior knowledge is closely
related to the predefined Difficulty Measurer in Sec. 4.2.1.

Fortunately, the AOS algorithm naturally decomposes
SPL into two problems of optimizingw and v, which makes
it feasible to embed the loss prior knowledge into SPL
by encoding it as a part of SP-regularizer or a constraint
on v. Four typical types of priors are summarized in [73]
as follows: i) Outlier prior: Some outliers in the datasets
show extremely large losses. ii) Spatial/temporal smoothness
prior: Spatially or temporally adjacent examples tend to
have similar losses. iii) Sample importance order prior: Some
examples are pre-known to be more important than others.
iv) Diversity prior: Important examples should be scattered
across the data range to help learn global data knowledge.

A famous representative of Prior (iv) is SPL with diver-
sity (SPLD) [41], which incorporates a negative l2,1-norm
into the hard SP-regularizer to avoid overfitting to a data
subset while ignoring easy examples in other groups:

g(v;λ, γ) = −λ
N∑
i=1

vi − γ
b∑
j=1

‖v(j)‖2 (13)

where γ > 0 is a balance factor between easiness and
diversity, b is the number of groups (e.g., themes in the video
event detection task) in the training set, and v(j) is a vector
of corresponding example weights vi in group j. Since the
l2,1-norm is well-known to lead to group-wise sparse repre-
sentation, its opposite term should then encourage diversity
of non-zero vi across groups. Alternatively, we can also

5. For clearer comparison with other explicit l-v∗ functions, we divide
the weights v∗ by 2 in Cauchy and Welsch. This linear scaling does not
influence training if we accordingly amplify the learning rates in SGD.

adopt−l0.5,1-norm [135], i.e.,−
∑b
j=1

√∑nj
i=1v

(j)
i , where nj

is the size of group j. This diversity term makes the whole
g(v;λ, γ) conform with Definition 4. While both −l2,1-norm
and −l0.5,1-norm are based on the Group LASSO [129],
Exclusive LASSO [51] can be also adopted [22], [35] by
taking −l1,2-norm to select confident samples from diverse
groups or clusters.

For Prior (iii), a representative work is self-paced cur-
riculum learning (SPCL) [42], which introduces a curriculum
region Ψ with formal definition as a convex feasible region
constraint on v. SPCL combines the power of SPL and
predefined CL, whose objective is as follows:

min
w;v∈[0,1]N

E(w,v;λ,Ψ)

N∑
i=1

vili + g(v;λ). s.t.v ∈ Ψ (14)

An example of Ψ is {v|a>v ≤ c}, where c is a con-
stant and a is a N -dimensional vector derived from the
total order relationship among the N examples6. Theoretical
analysis on SPCL is provided in [67].

Another method for Prior (iii) is proposed in [134], which
is helpful when the precise total order knowledge is hard to
obtain. Similar to the −l2,1-norm for Prior (iv), this method
encodes the prior knowledge about image difficulty by
adding a regularization term h(v; η,p) = −η

∑N
i=1 pivi to

the objective, where pi indicates the priority values of each
image. A larger pi means the example i is easier and should
be assigned larger weight vi. To generate such pi, all the
Difficulty Measurers discussed in Sec. 4.2.1 can be adopted.
Moreover, SPFTN [137] also jointly embeds prior (iii) and
(iv) by the weighted sum of terms in [134] and [135].

Note that when the above kinds of convex constraint
on v is applied, we could no longer use the close-formed
solutions of v∗ in Table 5. Instead, we can calculate v∗ by
applying gradient-based methods [42] or other off-the-shelf
techniques like CVX toolbox [134] due to the convexity.

e) Other enhancements of SPL. Besides the various
enhanced versions of SP-regularizers, there remain some
other aspects to be carefully considered in SPL. A key
element in SPL is the age parameter λ. As aforementioned,
traditional SPL takes a naive strategy to add/multiply λ
with a constant at each epoch. However, with the model
making progress, the losses on all the examples are expected
to become smaller and smaller, and thus an monotonic in-
creasing threshold λ may add much more hard examples in
the early epochs. For some SP-regularizers it would be more
effective to gradually decrease the value of λ [16]. To design
a better update strategy for λ, some works [60], [92] adopt a
strategy analogous to Baby Step scheduler in Sec. 4.2.2. They
predefine a sequence N = {N1, N2, · · · , NT } (Ns < Nt for
all s < t, NT = N), where Nt is the number of selected
examples in the t-th epoch. Then, the threshold of λ is
dynamically updated to ensure exactly Nt examples are
assigned with non-zero weights vi in the t-th epoch. Lin
et al. [65] also propose to adjust λ as follows:

λt =

λ0, t = 0

λt−1 + α · ηt, 1 ≤ t ≤ τ
λt−1, t > τ,

(15)

6. ai < aj for all example pairs (i, j) where example i should be
learned earlier than example j.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 12

TABLE 6
Representatives of Transfer Teacher. Diff. = different.

Representatives Teacher model Teacher pretraining dataset Difficulty
Transfer learning [123] Diff. structure with student ImageNet Loss
Bootstrapping [33] Same structure as student The training dataset Loss
Cross Review [126] Same structure as student N training subset Loss
Uncertainty [138], [146] Language model The training dataset Cross entropy
Domain score [118], [139] Language model General- and in-domain datasets Cross entropy difference
Noise score [118] Same NMT models as student Noisy and clean datasets Cross entropy difference

where ηt is the model performance (e.g., accuracy) in the
t-th epoch. When ηt is high, then λ will increase by a bigger
step to add more harder examples, and vice versa. Recently,
Shu et al. [102] further propose to leverage meta-learning
paradigm to optimize λ based on a small and high-quality
valid set, which entirely automates the update of λ.

In addition to λ, other hyperparameters, including ini-
tialization and stopping criteria, are also very difficult to
determine and heavily influencing the SPL performance.
What is more, each configuration of hyperparameters could
only lead to a single solution, losing view for the entire
solution spectrum [61]. To address these issues, Li et al. [26],
[61] propose to discard the traditional AOS algorithm and
reformulate the SPL problem as a multi-objective issue,
which can obtain a set of solutions with different stopping
criteria in a single run and improve the robustness of SPL
even under bad initialization.

f) Applications of SPL. SPL has been widely ap-
plied to many practical problems, including CV tasks of
visual category discovery [57], segmentation learning [55],
[137], image classification [109], object detection [108], [134],
reranking in multimedia retrieval [40], person ReID [143]
etc., and traditional machine learning tasks of matrix fac-
torization [141], feature selection [142], cross-modal match-
ing [63], co-training [70], clustering [22], [127], [128], etc.
As a primary branch of CL, SPL has the same application
motivations as CL, i.e., to guide and to denoise (see Sec. 3.2).
Besides, SPL is also effective for a group of applications
where the algorithm needs to assign pseudo-labels by mod-
els, including reranking [40], co-saliency detection [135],
and other weakly [34] or unsupervised learning tasks [22].
Additionally, some works also extend SPL by introducing
group-wise weights to improve the performance on mul-
tiple data groups, e.g., multi-modal [24], multi-view [127],
multi-instance [135], multi-label [58], multi-class [92], multi-
task [59], etc. Finally, SPL is also combined with comple-
mentary data-selection-based training strategies like boost-
ing [85] and active learning [65], [110] to benefit both
schemes. Beyond the scope of SPL, the idea of “deciding
learning materials by student” has also inspired self-paced-
like designs in broader contexts, e.g., contextual RL [49],
knowledge distillation [125], etc.

4.3.2 Transfer Teacher
SPL takes the current student model as an automatic Diffi-
culty Measurer. However, this strategy has a risk of uncer-
tainty at the beginning of training, when the student model
is not mature enough (i.e., not sufficiently trained). This is
analogous to human education: if a student understands
little about the learning materials, it would be hard for
him/her to measure the difficulty of the materials and
find out the easy ones. Thus, a natural idea is to invite
a mature teacher to help the student assess the materials

and form an easy-to-hard curriculum. This idea leads to
the CL approaches that we denote as Transfer Teacher. As
illustrated in Fig 2(c), it is a semi-automatic CL method.
Particularly, this method first pretrains a teacher model on
the training dataset or an external dataset (e.g., ImageNet),
and then transfers its knowledge to calculate the example-
wise difficulty, based on which a predefined Training Sched-
uler can be applied to finish the CL design. Transfer Teacher
reduces the burden of artificial Difficulty Measurer designs
and thus could be helpful to the tasks where the example-
wise easiness is hard to measure.

Some representatives of Transfer Teacher are presented
in Table 6. The most general Transfer Teachers are the loss-
based methods (the first three rows), which do not need
any domain knowledge and are closely related to SPL.
Concretely, these methods take the example-wise losses
calculated by a teacher model as the example difficulty
and assume that the lower the loss, the easier the exam-
ple. The teacher model can either be different from the
student model and have the greater model capacity (i.e.,
more complex) [123], or share the same structure with the
student model [33], [126]. For instance, in [123], a strong
teacher classifier pretrained on ImageNet is taken to transfer
its knowledge to calculate the example-wise losses on the
training dataset. The authors in [33] adopts a bootstrapping
strategy, which uses a teacher classifier with the same net-
work structure as the student classifier, and pretrains it on
the training dataset. This pretrained teacher can be regarded
as a mature version of the student to calculate loss-based
difficulty. Note that the difference between bootstrapping
and SPL is that the former’s Difficulty Measurer is mature
and fixed, while the latter’s is the current student model
which gradually grows up. Another example of loss-based
Transfer Teacher is the Cross Review strategy [126], which
alleviates the fluctuation of the difficulty measurement.
Concretely, the authors uniformly divide the trainset into
N shares and train one teacher on each share. Then for each
example in the i-th share, they take the other N −1 teachers
to calculate a loss-based difficulty score.

Moreover, in NLP literature, there exist some typical
methods adopting a “teacher” model to measure example-
wise difficulty for training data selection, which can be natu-
rally incorporated into CL as Transfer Teacher. For example,
some works [138], [146] leverage the following model-based
data uncertainty udata(s) = − 1

|s|
∑|s|
i=1 logP (si|s<i) to mea-

sure sentence-wise difficulty in NMT tasks, where P (si|s<i)
is the confidence of the pretrained language model (LM)
for its prediction about the i-th word in sentence s, and |s|
is the length of s. The lower of this uncertainty score, the
easier the sentence according to the teacher LM. Besides,
Moore et al. [74] propose to use two LMs to measure how
much a sentence s is related to a specific domain (e.g.,

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 13

TABLE 7
Representatives of RL Teacher. Acc. = accuracy, thres. = threshold.

Representatives RL Algorithm Reward/Student Feedback Main Goal
AutoCL [29] Multi-armed bandit Loss/Complexity-driven learning progress Efficiency
TSCL [72] Non-stationary bandit Absolute value of slope of learning curve Efficiency
L2T [17] REINFORCE How fast the student achieve valid acc. thres. Efficiency
RL-based CL [53] Q-Learning Log-likelihood on valid set Performance
RCL [140] Discriministic Actor-Critic Perplexity difference on valid set Performance

news, talks, patents, etc.) and select domain sentences. This
measurement of domain score is leveraged in [118], [139]
as Transfer Teacher according to the specific scenarios (e.g.,
in-domain data can be seen as easier for domain adaption).
Moreover, Wang et al. [118] also use two NMT models to
measure the noise level of a sentence pair {x, y}. A lower
noise level refers to cleaner and also easier data.

4.3.3 RL Teacher
The SPL and Transfer Teacher only automate the Difficulty
Measurer and still use predefined Training Scheduler, and
they only consider one side of the “curriculum” or teaching
scenario: SPL takes the student feedback (i.e., losses) to
adjust the curriculum, while Transfer Teacher leverages the
teacher’s knowledge to determine the order of presenting
learning materials. A common sense in human education
is that an ideal teaching strategy should involve both the
teacher and the student, where the student could interac-
tively provide feedback to the teacher, and the teacher could
then adjust the teaching action accordingly. In this way, both
the teacher and student will make progress together.

To this end, RL Teacher methods are proposed, which
involve a student model and a reinforcement-learning-based
teacher model. At each training epoch, the RL teacher will
dynamically select examples/tasks for training according to
the student feedback. Concretely, the data selection is taken
as the action in the RL schemes, and the student feedback
is taken as the state and reward. From the view of the
general CL framework in Sec. 4.1, the RL Teacher sets the
teacher model as both the Difficulty Measurer and Training
Scheduler by dynamically considering the student feedback.
The illustration of RL Teacher is shown in Fig 2(d). It is clear
to see that, with this teacher-student interactive strategy, RL
Teacher achieves the fully-automated CL design.

Some representatives of the RL Teacher are listed in Ta-
ble 7. Both traditional RL and deep RL models are leveraged
in these designs, where the deep RL models are stronger
in performance but more time-consuming and harder to
train. It is worth mentioning that RL Teacher methods make
it possible to set different student feedback according to
different goals, e.g., training efficiency or generalization
performance, which brings great flexibility and applicability
to various scenarios. Additionally, RL Teacher is typically
suitable for multi-task learning, where the teacher model
selects the most valuable tasks for the student training.

AutoCL [29] and TSCL [72] are two RL Teacher methods
designed for multi-task settings, where the goal is to learn
a student model that achieves high performance on all the
tasks. In both works, bandit-based RL models are adopted
as the teacher model, whose job is to receive the reward
signals from the student model and select one training task
for student learning in the next epoch. Specifically, the RL
teachers learn the mapping from history reward sequences

r = {ri}Ni=1 (of different tasks) to the probability vector
π of sampling the N training tasks. As both the works
aim to design a CL algorithm to improve the training
efficiency, various reward measurements are proposed. In
AutoCL [29], the authors define a group of learning progress
as the reward, which includes loss-driven and complexity-
driven measurements. The intuition is, if a decrease in some
loss or an increase in the student model’s complexity is ob-
served after training on the i-th task, then this task is helpful
to the student model for making big progress and should be
assigned larger sampling probability. On the other hand, in
TSCL [72], the authors set the reward as the absolute value
of the slope of the learning curve (the absolute difference
between the performance scores of two successive epochs)
on a specific task. This is an elegant design: when the slope
is a large positive value, it means the student is making
progress on this task; and when the slope is a large negative
value, it implies that the student is forgetting this task. Both
conditions should lead to a larger sampling probability on
this task to achieve faster and more generalizable student
training.

L2T (Learning to Teach) [17] adopts the REINFORCE
algorithm as the RL teacher. Given a random mini-batch Dt

in the t-th supervised training epoch, the goal of the teacher
model is to dynamically determine which data examples
are used and which are abandoned. To this end, the action
at = {a(m)

t }Mm=1 ∈ {0, 1}M is a hard selection on each of
the M examples in this mini-batch. The state st = (Dt, ft)
is defined as the concatenation of various features of the
current mini-batchDt and the current state of student model
ft

7. This design of state/observation is quite general and
applicable to most learning scenarios. Moreover, aiming at
fast convergence, the reward rt is set as a terminal reward
(i.e., rt = 0,∀t < T) to be related with how fast the student
model learns. In particular, rT = − log(iτ/T

′), where iτ
is the iteration number for the student model achieving an
accuracy threshold τ ∈ [0, 1] on the valid set, and T ′ is a
predefined maximum iteration number. With all the defini-
tion above, L2T trains the teacher model by maximizing the
expected reward J(θ) = Eφθ(a|s)[R(s, a)], where R(s, a) is
a state-action value function to estimate the reward, and φθ
is the data selection policy parameterized by θ, which can
be any binary classification model. Through this dynamic
data selection by the teacher model, the student model is
expected to converge faster to a better optima.

Beyond traditional RL algorithms, recent works also
leverage deep RL models, e.g., Q-learning [53] and Deter-
ministic Actor-Critic [140], to design RL Teacher methods
for automatic data selection, sharing the same spirit with

7. For example, data features include the predefined Difficulty Mea-
surer features in Table 2, and model features include iteration number,
average historical training loss / validation accuracy, etc.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 14

TABLE 8
Representatives of “Other Automatic CL” automatic CL methods.

Papers What to Optimize How to Optimize
Learning CL with BO [113] Weights for difficulty dimensions Bayesian Optimization
MentorNet [43], ScreenerNet [48] Loss weights SGD
APL [136] Loss weights Adversarial learning
Learning to reweight [91] Loss weights Meta-learning
L2T with dynamic loss function [124] Loss function (as a linear model) Hypernetwork
Data Parameters [97] Class/Instance-wise loss function Data Parameters

L2T. Both the two works focus on the NMT task, a typical
application for CL discussed in Sec. 3.2. RL-based CL [53]
first sorts the examples according to a predefined measure-
ment and divide them into M bins of equal sizes, and then
defines the action as selecting one bin for NMT training.
The reward and state are related to the log-likelihood on
the valid set and a prototype batch sampled from all bins,
respectively. Moreover, in RCL [140], the state s is similarly
defined as L2T, including feature embeddings from data and
the student model. Given s, the actor network µ is optimized
to select examples from a mini-batch (i.e. action a = µ(s)) to
form the training set at each epoch, such that the estimated
reward Q(s, a) by critic network Q is maximized. The critic
network, on the other hand, is optimized to estimate the
reward r more accurately, where r is defined as the perfor-
mance improvement of the student model on the valid set
after trained. Compared with traditional RL methods like
REINFORCE, Actor-Critic is supposed to help reduce the
update variance and accelerate convergence.

4.3.4 Other Automatic CL
Besides RL Teacher, there exist some other fully-automatic
CL designs. Intuitively, these designs should require the
generation of the curriculum to rely only on the dataset,
the student model, and the goal of the task. According to
the CL definition in Sec. 2, we can regard this curriculum
as a sequence of training criteria or objectives. Thus, from
the optimization perspective, at each training epoch, we
hope to optimize the following mapping to improve perfor-
mance: {data, current state of student model, task goal} 7→
training objective. To this end, RL Teacher methods typically
adopt an RL framework to learn the policy for training
data selection. Additionally, more optimization methods,
such as Bayesian Optimization (BO), Stochastic Gradient
Descent (SGD), Meta-learning, and Hypernetwork, are also
demonstrated to have great potential to learn this mapping.
Note that these methods can also be regarded as a “teacher”
searching for the best curriculum according to the student
state/feedback. Since the methodologies and focuses of
optimization are diverse in these works, we conclude them
in this subsubsection as “Other Automatic CL” (Table 8).

Tsvetkov et al. [113] make one of the earliest attempts on
automatic CL by leveraging BO to learn the best curricula
for word representation learning. The curriculum here is
determined by the scalar product of a learned weight vector
w and an example-wise difficulty feature vector x, accord-
ing to which the examples are scored and sorted for later
representation learning. While x is manually engineered,
the weight vector w learned by BO provides the possibility
for different curriculum according to different downstream
tasks. Specifically, BO in this work is a sequential approach
to performing a regression from w to the performance on

the downstream task. At the t-th iteration, the algorithm first
sort the examples by the wt · x, learn word representations
Vt (i.e., student model) with this curriculum, and then train
extrinsic models on downstream task and evaluate the per-
formance evalt. Finally, evalt is collected by BO algorithm
to generate the wt+1. Through this process, BO learns to
predict a better w and thus a better curriculum.

While SPL methods in Sec. 4.3.1 optimize the example-
wise loss weights v by solving the new objective with
manually designed SP-regularizers, existing works have
made further effort to optimize v throughout training by
different approaches. One idea is to predict the loss weight
vi of example {xi, yi} by a teacher model, which is adopted
in MentorNet [43] and ScreenerNet [48]. The MentorNet
h is a teacher model with parameters Θ which maps the
example-wise feature zi = φ(xi, yi,w) to the corresponding
loss weight vi. Here, zi includes the loss, loss difference to
the moving average, label, and epoch percentage, and w
denotes the parameters of the student model. Given fixed
w, the MentorNet is trained on a trusted small dataset Dval
by SGD:

Θ∗ = arg min
Θ

∑
i∈Dval

CE(h(zi; Θ), v∗i), (16)

where v∗i is manually annotated as 1 iff yi is a correct label
and 0 otherwise, and CE stands for cross-entropy. During
the mini-batch training of the student model, the MentorNet
is only updated a fixed number of times (with student fixed).
Besides the data-driven curriculum learned on Dval, we
could also train the MentorNet to approximate a predefined
curriculum, e.g., by setting v∗i as the loss weights derived
from some SPL objectives. The convergence and robustness
of student learning are also theoretically proved.

Apart from teacher model, APL [136] also predicts the
loss weights v in SPL by generative adversarial learning.
Concretely, under semi-supervised setting, a pace-generator
P outputting v is trained to discriminate annotated (vi = 1)
and predicted (vi = 0) labels, and a task-predictor T
predicting labels is alternatively trained with P to produce
high-quality predictions. After the initial training on labeled
data, the unlabeled data is then added to the training set
with loss weights (or “pace”) v given by P in each iteration.
This APL paradigm is proven significantly more effective
than SPL methods on the task of salient object detection
with few labeled data. An analogous idea is adopted in [38]
by assigning binary selection on unlabeled data based on
pretrained discriminator on labeled data in semi-supervised
semantic segmentation task.

Ren et al. [91] further propose a meta-learning [36] per-
spective for optimizing loss weights v. Akin to MentorNet,
a clean unbiased valid set is adopted to guide the meta-
learning. Specifically, at the t-th epoch, they first locally
update the student model (with parameters wt) by one

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 15

gradient step on a training mini-batch Dtrain, where the
example weights vi are perturbed by εi:

ŵt+1(ε) = wt − α∇
∑

i∈Dtrain

εili(wt), (17)

where li(w) is the loss and α is the local learning rate. To
estimate the best loss weights v according to the clean valid
set, they take a meta-gradient step on a validation mini-
batch Dval w.r.t. ε, and force the weights to be non-negative:

ṽi,t = max

0,−η
∂

∂εj

1

|Dval|
∑

j∈Dval

ŵt+1(ε)

 , (18)

where η is the meta learning rate. The ṽt is then normalized
to obtain the final new weights vt. Finally, they meta up-
date the model parameters to wt+1 with the new objective
weighted by vt, i.e.,

∑
i∈Dtrain vi,tli(wt). This meta-learning

mechanism would lead the student model to converge to an
appropriate distribution favored by the clean and balanced
valid set and thus become more generalizable and robust.

Beyond loss weights, some other works [97], [124] also
focus on learning dynamic loss function as a whole, which
complies with the most general definition of CL in Sec. 2.
As argued in L2T [17], while data selection is analogous to
human teacher selecting teaching materials, designing good
loss function corresponds to human teacher determining the
examination criteria, which is another significant issue in
a “curriculum”. In [124], the scholars propose to leverage
a two-layer perceptron as the teacher hypernetwork µΘ to
predict the parameters of the loss function lΦ(ŷ, y). In other
words, the loss function is assumed to be itself a neural net-
work with coefficients Φ, and at the t-th epoch, Φt = µΘ(st),
where st is the state vector of the student model fw. Akin to
MentorNet, the goal of the teacher model is to maximize the
performance of induced student model on a valid set Dval:
Θ∗ = max

Θ
M(fw∗ ,Dval), where fw∗ = F(Dval, µΘ) stands

for the student model trained on the training set with the
loss function predicted by µΘ, and M is the performance
measurement on Dval. Novel algorithms are also proposed
to make this optimization of teacher hypernetwork possible.

4.4 How to Choose A Proper CL Method
Although we have reviewed the major ideas of different
CL methodologies, how to choose them in real-world ap-
plications remains an important problem, which is rarely
discussed in existing CL literature and there is no systematic
conclusion. In this subsection, we make effort to summarize
some empirical evidence and ideas on this topic.

Conclusions from empirical studies. Although such
work is scarce, different CL methods are still compared
and analyzed in a small number of works. Cirik et al. [12]
compare different predefined schedulers on two sequence
prediction tasks with LSTM models, showing that prede-
fined CL benefits more when smaller models are applied
and the size of the training set is limited. Zhang et al. [138]
experiment on the combinations of various predefined Dif-
ficulty Measurer and various predefined Training Scheduler
on neural machine translation task, reaching the result that
predefined CL is highly sensitive to the choices of Difficulty
Measurer and hyperparameters (i.e., learning rates). Haco-
hen et al. [33] compare SPL, anti-curriculum, and different
Transfer Teacher methods with various Training Schedulers

on image classification, demonstrating Transfer Teacher is
the most robust, and the advantage of CL is more effective
when the task is difficult.

Within each CL category, several empirical conclusions
can be summarized as follows (> means more effective),
although most of them are not universal. (i) Predefined CL:
for Training Scheduler, the continuous root-p function >
discrete Baby Step > discrete One-Pass (see Fig. 5) [12],
[82], [86]. (ii) SPL: for SP regularizers without embedded
prior, implicit regularizers > soft regularizers (e.g., mixture,
logarithmic) > hard regularizers (see Fig. 6) [16], [40]. (iii)
SPL: if reliable prior knowledge or assumption is available,
embedding it into the SPL objective always help [22], [41],
[42], [134]. (iv) Fully Automatic CL (Sec. 4.3.3, 4.3.4): Many
fully automatic CL methods are shown to be significantly
more effective than SPL methods on weakly-supervised CV
and NLP tasks [43], [91], [97], [120], [136], while Mentor-
Net [43] is often selected as a baseline in these papers.

The best selection among different CL categories needs
further empirical studies. However, qualitative comparison
of different methodologies is provided in Table 3 and 4. A
principle for selecting a proper CL category is to consider
how much prior knowledge you know about your dataset
and task goal. If sufficient expert domain knowledge is
available, then predefined CL methods are more preferable
to design a knowledge-driven curriculum specifically suitable
to the exact scenario. On the other hand, if we have no prior
assumptions on the data, then automatic CL methods are
more preferable to learn a data-driven curriculum adaptive
to the underlying dataset and task goal.

Hybrid CL. A further consideration of designing a CL
framework is to adopt different CL methods jointly, making
them complement each other. Generally, this hybrid CL can
be designed by applying different CL methods on different
evidence for curriculum or different levels of data. A typical
example is the SPCL-like methods [42], [132], [134], [137]
in Sec. 4.3.1 that embed the predefined sample-importance-
order prior into the SPL objectives or SPL-like regimes,
taking the advantages of both knowledge-driven predefined
CL and data-driven SPL to enrich the curriculum from both
sources of evidence, i.e., human and machine. Following
this paradigm, an interesting idea for future researchers
might be to embed human prior on sample importance into
the fully data-driven CL methods in Sec. 4.3.3 and 4.3.4,
which is being explored by frontier researchers [120]. On
the other hand, we can also apply different CL to different
levels of training data. For example, LFME [125] jointly
adopts an SPL-like mechanism for expert selection (each
expert is trained on a subset of training data) in knowledge
distillation and a Transfer Teacher for instance selection in
each subset.

Extra computational cost of CL. It is worth mention-
ing another concern of great practical significance: though
seemingly effective and easy-to-use, how much does it cost
to apply these CL methods, i.e., the extra computational cost
to the training? Before the analysis on the time complexity
of CL, we remind readers that convergence speedup is one
of the main advantages and motivations of CL, and many
CL methods in different categories (e.g., [17], [41], [86])
can actually accelerate training. By reducing the number
of iterations to convergence, the total cost of training is

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 16

reduced despite additional computations for CL.
As additional computational complexity of CL is hardly

discussed in the literature, we generally analyze it according
to the taxonomy in Sec. 4. We assume there are n training
examples to train M iterations. (i) Predefined CL methods
in Sec. 4.2 calculate and then fix the curriculum before
the training process starts. It often costs O(n) (or O(1) if
human annotation is available) to calculate the difficulty
of each sample and O(n log n) to sort the samples from
easy to hard. During training, the scheduler calculates the
difficulty threshold for batch sampling at each iteration,
which costs O(1) (for discrete schedulers) or O(M) (for
continuous schedulers, see Sec. 4.2.2). Thus, the overall
complexity is O(n log n+M), which is the cheapest among
all CL methods. (ii) SPL methods in Sec. 4.3.1 dynamically
updates the sample weights v = {vi}n1 at each iteration,
and thus the extra complexity is O(Mn) or O(Mnx) if
close-formed solutions of v∗ exists or not, where x is the
computations of CVX toolbox for convex optimization on
vi. (iii) Transfer Teacher methods in Sec. 4.3.2 pretrain a
teacher difficulty measurer before training, then it calculates
a curriculum like predefined CL. So the overall complexity
is O(T +n log n+M), where T is the cost of pretraining the
teacher. (iv) RL Teacher methods in Sec. 4.3.3 dynamically
learn the data weighting policy of the teacher and learn the
student model at each iteration. The overall complexity is
O(RM + xMn), if R is the computations for one updating
step of teacher, and x for predicting the weight for one
example. R can be both small (bandit) and large (Deep RL).

In summary, from the theoretical perspective of time
complexity, most CL methods in (i) to (iv) induce little or
acceptable additional cost w.r.t. the cost of main training
and are thus worth adoption according to their advantages.
We have to admit that CL can also be expensive, e.g.,
Deep RL Teacher [53], [140]. Generating a task curriculum
in RL setting often costs greater time than learning the
tasks [76]. However, it is a trade-off between performance
and efficiency, e.g., RL agents may fail to solve the target
tasks without the expensive curriculum [20].

5 DISCUSSIONS
5.1 Easier First v.s. Harder First

A fundamental question for the CL strategy (in Definition
1) is: does this “easy to hard” training strategy always help,
given all of these works and theories? In some literature
of CL, the answer to this question is “No”. For example,
Avramova [3] finds that convolutional neural networks de-
rive most learning values from the hardest examples, and
the damage of excluding those easiest examples is minor.
Zhang et al. [138] also test a reverse version of CL (i.e., a
copy of baseline CL reversing the difficulty ranking to “hard
to easy”, also called anti-curriculum), on NMT tasks, which
shows that in some cases, anti-curriculum may even achieve
the best performance among various Training Scheduler
designs. Besides, Hacohen et al. [33] demonstrate that SPL
will hurt the performance and significantly delay learning
in their experiments. Other works [118], [144] also design
“harder examples first” curricula.

Besides CL literature, hard example mining (HEM) [101]
serves as another well-studied and popular data selection

strategy, which is opposite to CL. Concretely, in each train-
ing batch, HEM selects the hardest examples for training
(or assign them with higher weights), assuming that the
harder examples are more informative. The difficulty in
HEM is often defined according to the current model losses
on examples [69], [101] or the gradient magnitude [1],
[28]. Akin to CL, HEM also has various applications, and
the famous boosting algorithm [21] in ensemble learning
also takes the same strategy by upweighting the wrongly-
classified examples.

So which strategy should we apply to our own scenario,
“easier first” as CL or “harder first” as HEM? It remains an
unsolved problem to be carefully considered. Theoretically,
under different settings, both CL and HEM strategies can
benefit the learning as long as the “curriculum” is posi-
tively correlated with the optimal utility8 [33]. However, this
criterion is very hard to verify. More intuitively, Chang et
al. [8] point out that CL is more suitable for the scenarios
with more noisy labels or outliers to improve the model
robustness and convergence rate, while HEM is more bene-
ficial for cleaner datasets and leads to faster and more stable
SGD. One should also note that if the target task is very
difficult, CL will be more preferable to HEM, since CL is
able to result in a more effective training process through
the easier/smoother versions.

An alternative is to combine the two strategies together
with a trade-off policy. For example, Pi et al. [85] embed
the self-paced regularizers into the objective of boosting
algorithm, which simultaneously enhances the learning
effectiveness (by boosting) and robustness (by SPL). Be-
sides, Chang et al. [8] propose to select the most uncer-
tain examples according to the prediction history, which is
consistent with the variance reduction strategies in active
learning [100]. The uncertain examples are predicted both
incorrectly and correctly in history and are thus neither too
easy (always correct) nor too difficult (always incorrect). It is
worth mentioning that the fully automatic CL methods (e.g.,
RL Teacher in Sec. 4.3.3) would also be an ideal choice when
it is hard to choose between “easier first” CL and “harder
first” HEM.

From a higher perspective, both the original CL (Def-
inition 1) and HEM belong to the instance selection or
example reweighting, defined as data-level generalized CL
(Definition 2) in Sec. 2. As argued in [91], one crucial advan-
tage of reweighting examples is robustness against training
set biases. The biases include class imbalance and label
noise, both of which have been studied as typical problems
of machine learning with various practical methods (e.g.,
[9], [47] for the former and [23], [62], [78], [90] for the
latter). By reweighting examples, HEM prioritizes higher-
loss examples which more likely belong to minority classes,
and thus alleviates class imbalance bias. On the other hand,
CL favors lower-loss examples which are more likely to be
clean data, and thus reduces the label noise bias. When
assumptions on the training set biases are uncertain, many
fully automatic CL methods are designed to reweight the
examples to achieve a certain goal of learning, e.g., training

8. The optimal utility is
∑
i∈D e

−li(θ∗), where D is the training
dataset, li(θ∗) is the loss on the i-th example calculated by the optimal
model θ∗.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 17

Learner

𝑇

𝑇

Training

Testing

𝑇

𝑇(1) 𝑇(2) 𝑇(𝑀)

…

𝐿(1) 𝐿(2) 𝐿(𝑀)…

𝑇

Curriculum

Traditional Machine Learning

Curriculum Learning

Learner

Multi-task Learning

𝑇1 𝑇2 𝑇𝑛

…

𝑇1 𝑇2 𝑇𝑛

…

Learner

𝑇𝑛+1

Transfer Learning

𝑇1 𝑇2 𝑇𝑛

…

Meta-Learner

Meta-Learning

𝑇1 𝑇2 𝑇𝑛

…

𝑇𝑛+1 𝑇𝑛+2 𝑇𝑛+𝑚

…

𝐿𝑛+1 𝐿𝑛+2 𝐿𝑛+𝑚…

𝑇1 𝑇2 𝑇𝑛

…

𝐿(1) 𝐿(2) 𝐿(𝑛)…

Continual Learning

𝑇1 𝑇2 𝑇𝑛

…

Learner

𝑇(1) 𝑇(2) 𝑇(𝑀)

…

𝐿(1) 𝐿(2) 𝐿(𝑀)…

𝑇

Expert

Annotator

𝑇

Active Learning

Training

Testing

Model update / Finetune

Annotation path in AL

Training / Testing data

Unlabeled training data

Sequence (seq.) of tasks
𝑇𝑛+1

𝑇𝑛+1 𝑇𝑛+2 … 𝑇𝑛+𝑚

𝐿(𝑖) Learner at step 𝑖 in seq.

𝐿𝑗 Specific learner for task 𝑗

Fig. 7. Illustration of different machine learning paradigms from the perspective of data distribution. Different paradigms aim to solve different
distribution discrepancies among training and testing data, while we see similar mechanisms among some of them, which help us understand their
connections and may potentially inspire new methodologies. For curriculum learning, we illustrate Definition 2, and the curriculum can be both
predefined and automatically learned. Note that Tj stands for different tasks, while T (i) is the modified distribution at the i-th step in training.

efficiency [29], [72], valid set accuracy [53], [91], [120], etc.

5.2 Relationship between CL and Other Concepts
From the perspective of data distribution, different ma-
chine learning paradigms focus on different settings on
data distribution discrepancy, which is illustrated in Fig. 7.
For example, transfer learning [81] aims at alleviating the
discrepancy between source tasks {Ti}ni=1 and target task by
transferring through model parameters of the learner. Meta-
learning [36] mitigates the discrepancy between multiple
source tasks {Ti}ni=1 and target tasks {Ti}n+m

i=n+1 by learning
common meta-knowledge on learning algorithms across
tasks. Continual learning [13] eases the discrepancy among
an online sequence of tasks by updating one learner to
defy forgetting. From this view, Data-level Generalized Cur-
riculum Learning (Definition 2) smooths the discrepancy
between the testing distribution and training distribution
by a sequence of reweighting, which results in a gradual
optimization process towards the target.

With Fig. 7, we can see the differences and connections
between CL and other concepts, which may inspire new
ideas. (i) CL v.s. Transfer Learning (TL): as pointed out by
Bengio et al. [6], CL can be seen as a special form of TL
where the initial tasks are used to guide the learner so that
it will perform better on the final task. Thus, CL is naturally
suitable for TL settings like domain adaption [103], [139].
The green arrows also show that CL is a sequence of TL
throughout the curriculum. (ii) CL v.s. Multi-task Learning
(MTL): we can regard the T in CL as a distribution of tasks
and the n tasks in MTL are sampled from this distribu-
tion. CL then provides a sequence of task distributions to
guide MTL, which is empirically proven helpful [29], [59],
[83], [96]. (iii) CL v.s. Meta-Learning (ML): although ML
and CL seem quite different in Fig. 7, we argue that ML

is highly related to automatic CL (AutoCL). In fact, the
teaching policy (i.e., curriculum) in AutoCL can be regarded
as the meta-knowledge in ML to optimize the student’s
progress [36], from which view AutoCL is a specific form
of CL. In essence, ML is about learning to learn and AutoCL
is about learning to teach [17], i.e., they both aim to optimize
the hyperparameters of algorithms from different views of
students and teachers. Therefore, it is no wonder that ML
is shown effective for AutoCL designs [91], [102], [120],
and shall inspire more AutoCL ideas. We also advocate the
integration of ML and AutoCL to enable fully automatic ma-
chine learning and teaching. (iv) CL v.s. Continual Learning
(ContL): although both of them involve a sequence of tasks,
the settings are quite different. Specifically, with a different
distribution, the tasks {Ti}ni=1 in ContL are predefined and
fixed. While in CL, derived from the same distribution T , the
distributions {T (i)}Mi=1 in M steps can be flexibly adjusted
by the curriculum. However, we argue that within each task
in ContL, CL methods may help to improve robustness and
defy forgetting by the transfer between preceding tasks and
the current task. (v) CL v.s. Active Learning (AL): AL [100]
is the most analogous paradigm to CL in Fig. 7, both of
which involves dynamic data selection. In AL, an active
learner achieves great performance with fewer labeled data
via generating queries to ask an expert to annotate several
unlabeled instances for further training. The goals of CL
and AL are different: the former improves performance and
accelerates convergence in supervised, weakly-supervised,
and unsupervised settings, while the latter is designed for
label-saving training in the semi-supervised setting. How-
ever, the criteria for data selection can somehow be shared
among CL and AL, and recent works [65], [110] have made
efforts to combine SPL with AL to utilize the complemen-
tariness between the criteria.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 18

6 FUTURE DIRECTIONS OF CL

We conclude this paper with some ongoing or future direc-
tions of CL, which are worthy of discussion:

Evaluation benchmarks. Although various CL methods
have been proposed and demonstrated effective, few works
have made efforts on evaluating them with general bench-
marks. In existing literature, the datasets and metrics are
diverse in different applications. For instance, the CIFAR
datasets with different label corruption settings are widely
used to evaluate CL methods on image classification with
accuracy metric [43], [97], [120] , and the WMT datasets are
widely chosen to evaluate CL methods for neural machine
translation with BLEU metric [53], [68], [86]. However, it
is challenging to design a unified dataset with unified
metrics to evaluate and compare the CL algorithms. Such
a benchmark may incorporate datasets for different appli-
cations (e.g., CV, NLP, recommendation, etc.) with different
noise levels (e.g., clean, weakly-supervised, etc.). Accord-
ingly, evaluation metrics on the relative performance boost,
convergence speedup, additional computational cost, etc.,
should also be carefully designed. The challenges are three-
fold: (i) Dataset construction: the data of different applica-
tions have different levels of sparsity, heterogeneity, noisi-
ness, etc. (ii) Metric design: different applications naturally
need different metrics, and their urgency of requirements
for convergence speed is also different. (iii) Ground-truth
curriculum: most CL literature does not provide an oracle
curriculum to evaluate whether the algorithm-based cur-
riculum is reasonable. Therefore, it would be interesting
to design such an ideal curriculum in the benchmark to
compare CL methods more intuitively.

More advanced theories. Existing theoretical analyses
in Sec. 3.1 provide different angles for understanding CL.
Nevertheless, more theories are still required to help us
reveal why typical CL (Definition 2 in Sec. 2) is effective.
For example, if the dataset has no noise, are there any
bounds for the effectiveness of CL? What is the actual effect
of each condition in Definition 2, i.e., increasing dataset
size/variance and increasing difficulty? Besides, the fully
automatic CL methods in Sec. 4.3.3 and 4.3.4 also need more
theoretical guarantees on their effectiveness. Moreover, a
remaining fundamental question is to theoretically reveal
the relations between the data distribution, task objective,
and the best training strategy among “easier first” (CL),
“harder first” (HEM), and other strategies. Theories on this
topic shall provide the basis for the application of CL in a
specific task.

More CL algorithms and various applications. Auto-
matic CL (Sec. 4.3) provides the potential application values
for CL in wider research areas and has become a cutting-
edge direction. Therefore, one promising direction is to
design more automatic CL methodologies with different op-
timizations (e.g., bandit algorithms, meta-learning, hyper-
parameter optimization, etc.) and different objectives (e.g.,
data selection/reweighting, finding the best loss function or
hypothesis space, etc.). Moreover, as shown in [65], [85],
[110], CL methods can be incorporated with other strategies
like boosting and AL to achieve improvement. In addition
to methodologies, more efforts should be made to explore
the power of CL in more various applications, including

both cutting-edge research areas (e.g., meta-learning, con-
tinual learning, NAS, graph neural network, self-supervised
learning, etc.) and traditional machine learning topics (e.g.,
clustering, regression, etc.). Although the directions men-
tioned above may adopt Definition 3 of CL as a sequence of
training criteria in Sec. 2, the spirit of imitating the human
curriculum shall drive more breakthroughs in the machine
learning community.

REFERENCES

[1] G. Alain, et al. Variance reduction in sgd by distributed importance
sampling. arXiv preprint, 2015.

[2] E. L Allgower, et al. Numerical continuation methods: an introduction,
volume 13. Springer Science & Business Media, 2012.

[3] V. Avramova. Curriculum learning with deep convolutional neu-
ral networks, 2015.

[4] S. Bengio, et al. Scheduled sampling for sequence prediction with
recurrent neural networks. In NeurIPS, 1171–1179, 2015.

[5] Y. Bengio. Evolving culture versus local minima. In Growing
Adaptive Machines, 109–138. Springer, 2014.

[6] Y. Bengio, et al. Curriculum learning. In ICML, 41–48, 2009.
[7] S. Braun, et al. A curriculum learning method for improved noise

robustness in automatic speech recognition. In EUSIPCO, 548–552.
IEEE, 2017.

[8] H. Chang, et al. Active bias: Training more accurate neural
networks by emphasizing high variance samples. In NeurIPS,
1002–1012, 2017.

[9] N. Chawla, et al. Smote: synthetic minority over-sampling tech-
nique. JAIR, 16:321–357, 2002.

[10] X. Chen, et al. Webly supervised learning of convolutional net-
works. In ICCV, 1431–1439, 2015.

[11] J. Choi, et al. Pseudo-labeling curriculum for unsupervised domain
adaptation. arXiv preprint, 2019.

[12] V. Cirik, et al. Visualizing and understanding curriculum learning
for long short-term memory networks. arXiv preprint, 2016.

[13] M. Delange, et al. A continual learning survey: Defying forgetting
in classification tasks. TPAMI, 2021.

[14] R. El-Bouri, et al. Student-teacher curriculum learning via rein-
forcement learning: Predicting hospital inpatient admission loca-
tion. arXiv preprint, 2020.

[15] J. L Elman. Learning and development in neural networks: The
importance of starting small. Cognition, 48(1):71–99, 1993.

[16] Y. Fan, et al. Self-paced learning: an implicit regularization per-
spective. arXiv preprint, 2016.

[17] Y. Fan, et al. Learning to teach. ICLR, 2018.
[18] N. Ferro, et al. Continuation methods and curriculum learning for

learning to rank. In CIKM, 1523–1526, 2018.
[19] C. Florensa, et al. Automatic goal generation for reinforcement

learning agents. In ICML, 1515–1528, 2018.
[20] C. Florensa, et al. Reverse curriculum generation for reinforcement

learning. In CoRL, 2017.
[21] Y. Freund, et al. Experiments with a new boosting algorithm. In

ICML, volume 96, 148–156. Citeseer, 1996.
[22] K. Ghasedi, et al. Balanced self-paced learning for generative

adversarial clustering network. In CVPR, 4391–4400, 2019.
[23] J. Goldberger, et al. Training deep neural-networks using a noise

adaptation layer. 2016.
[24] C. Gong, et al. Multi-modal curriculum learning for semi-

supervised image classification. TIP, 25(7):3249–3260, 2016.
[25] C. Gong, et al. Multi-modal curriculum learning over graphs. TIST,

10:1 – 25, 2019.
[26] M. Gong, et al. Decomposition-based evolutionary multiobjective

optimization to self-paced learning. TEVC, 23(2):288–302, 2018.
[27] T. Gong, et al. Why curriculum learning & self-paced learning

work in big/noisy data: A theoretical perspective. Big Data &
Information Analytics, 1(1):111, 2016.

[28] S. Gopal. Adaptive sampling for sgd by exploiting side informa-
tion. In ICML, 364–372, 2016.

[29] A. Graves, et al. Automated curriculum learning for neural
networks. ICML, 2017.

[30] L. Gui, et al. Curriculum learning for facial expression recognition.
In FG 2017, 505–511. IEEE, 2017.

[31] S. Guo, et al. Curriculumnet: Weakly supervised learning from
large-scale web images. In ECCV, 135–150, 2018.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 19

[32] Y. Guo, et al. Breaking the curse of space explosion: Towards
efficient nas with curriculum search. In ICML, 2020.

[33] G. Hacohen, et al. On the power of curriculum learning in training
deep networks. ICML, 2019.

[34] J. Han, et al. Weakly-supervised learning of category-specific 3d
object shapes. TPAMI, 2019.

[35] L. Han, et al. Self-paced mixture of regressions. In IJCAI, 2017.
[36] T. Hospedales, et al. Meta-learning in neural networks: A survey.

arXiv preprint, 2020.
[37] Y. Huang, et al. Self-attention enhanced cnns and collaborative

curriculum learning for distantly supervised relation extraction.
In EMNLP-IJCNLP, 389–398, 2019.

[38] W. Hung, et al. Adversarial learning for semi-supervised semantic
segmentation. In BMVC, 2018.

[39] A. Jesson, et al. Cased: curriculum adaptive sampling for extreme
data imbalance. In MICCAI, 639–646. Springer, 2017.

[40] L Jiang, et al. Easy samples first: Self-paced reranking for zero-
example multimedia search. In MM, 547–556, 2014.

[41] L Jiang, et al. Self-paced learning with diversity. In NeurIPS, 2078–
2086, 2014.

[42] L Jiang, et al. Self-paced curriculum learning. In AAAI, volume 2,
page 6, 2015.

[43] L Jiang, et al. Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. In ICML, 2304–2313,
2018.

[44] A. Jiménez-Sánchez, et al. Medical-based deep curriculum learning
for improved fracture classification. In MICCAI, 694–702. Springer,
2019.

[45] S. Jin, et al. Unsupervised hard example mining from videos for
improved object detection. In ECCV, 307–324, 2018.

[46] T. Karras, et al. Progressive growing of gans for improved quality,
stability, and variation. ICLR, 2017.

[47] S. Khan, et al. Cost-sensitive learning of deep feature representa-
tions from imbalanced data. TNNLS, 29(8):3573–3587, 2017.

[48] T. Kim, et al. Screenernet: Learning self-paced curriculum for deep
neural networks. arXiv preprint, 2018.

[49] P. Klink, et al. Self-paced contextual reinforcement learning. In
CoRL, 2019.

[50] T. Kocmi, et al. Curriculum learning and minibatch bucketing in
neural machine translation. In RANLP, 2017.

[51] D. Kong, et al. Exclusive feature learning on arbitrary structures
via l 1,2-norm. In NeurIPS, 1655–1663, 2014.

[52] K. A Krueger, et al. Flexible shaping: How learning in small steps
helps. Cognition, 110(3):380–394, 2009.

[53] G. Kumar, et al. Reinforcement learning based curriculum opti-
mization for neural machine translation. In NAACL-HLT, 2019.

[54] M. Kumar, et al. Self-paced learning for latent variable models. In
NeurIPS, 1189–1197, 2010.

[55] M. Kumar, et al. Learning specific-class segmentation from diverse
data. In ICCV, 1800–1807. IEEE, 2011.

[56] K. Lange, et al. Optimization transfer using surrogate objective
functions. JCGS, 9(1):1–20, 2000.

[57] Y. Lee, et al. Learning the easy things first: Self-paced visual
category discovery. In CVPR, 1721–1728. IEEE, 2011.

[58] C. Li, et al. A self-paced regularization framework for multilabel
learning. TNNLS, 29(6):2660–2666, 2017.

[59] C. Li, et al. Self-paced multi-task learning. In AAAI, 2016.
[60] H. Li, et al. Self-paced convolutional neural networks. In IJCAI,

2110–2116, 2017.
[61] H. Li, et al. Multi-objective self-paced learning. In AAAI, 1802–

1808, 2016.
[62] Y. Li, et al. Learning from noisy labels with distillation. In ICCV,

1910–1918, 2017.
[63] J. Liang, et al. Self-paced cross-modal subspace matching. In SIGIR

, 569–578, 2016.
[64] J. Liang, et al. Learning to detect concepts from webly-labeled

video data. In IJCAI, 1746–1752, 2016.
[65] L. Lin, et al. Active self-paced learning for cost-effective and

progressive face identification. TPAMI, 40(1):7–19, 2017.
[66] C. Liu, et al. Curriculum learning for natural answer generation.

In IJCAI, 2018.
[67] S. Liu, et al. Understanding self-paced learning under concave

conjugacy theory. arXiv preprint, 2018.
[68] X. Liu, et al. Norm-based curriculum learning for neural machine

translation. ACL, 2020.
[69] I. Loshchilov, et al. Online batch selection for faster training of

neural networks. arXiv preprint, 2015.

[70] F. Ma, et al. Self-paced co-training. In ICML, 2017.
[71] Z. Ma, et al. On convergence properties of implicit self-paced

objective. Information Sciences, 462:132–140, 2018.
[72] T. Matiisen, et al. Teacher-student curriculum learning. TNNLS,

2019.
[73] D. Meng, et al. A theoretical understanding of self-paced learning.

Information Sciences, 414:319–328, 2017.
[74] R. Moore, et al. Intelligent selection of language model training

data. In ACL, 2010.
[75] P. Morerio, et al. Curriculum dropout. In ICCV, 3544–3552, 2017.
[76] S. Narvekar, et al. Curriculum learning for reinforcement learning

domains: A framework and survey. arXiv preprint, 2020.
[77] S. Narvekar, et al. Autonomous task sequencing for customized

curriculum design in reinforcement learning. In IJCAI, 2536–2542,
2017.

[78] N. Natarajan, et al. Learning with noisy labels. In NIPS, volume 26,
1196–1204, 2013.

[79] E. Newport. Maturational constraints on language learning. Cog-
nitive science, 14(1):11–28, 1990.

[80] J. Olvera-López, et al. A review of instance selection methods.
Artificial Intelligence Review, 34(2):133–143, 2010.

[81] S. Pan, et al. A survey on transfer learning. TKDE, 22(10):1345–
1359, 2009.

[82] G. Penha, et al. Curriculum learning strategies for ir: An empirical
study on conversation response ranking. arXiv preprint, 2019.

[83] A. Pentina, et al. Curriculum learning of multiple tasks. In CVPR,
5492–5500, 2015.

[84] G. Peterson. A day of great illumination: Bf skinner’s discovery of
shaping. JEAB, 82(3):317–328, 2004.

[85] T. Pi, et al. Self-paced boost learning for classification. In IJCAI,
1932–1938, 2016.

[86] E. Platanios, et al. Competence-based curriculum learning for
neural machine translation. In NAACL-HLT, 2019.

[87] R. Portelas, et al. Automatic curriculum learning for deep rl: A
short survey. arXiv preprint, 2020.

[88] M. Qu, et al. Curriculum learning for heterogeneous star network
embedding via deep reinforcement learning. In WSDM, 468–476,
2018.

[89] S. Ranjan, et al. Curriculum learning based approaches for noise
robust speaker recognition. TASLP, 26(1):197–210, 2017.

[90] S. Reed, et al. Training deep neural networks on noisy labels with
bootstrapping. In ICLR, 2014.

[91] M. Ren, et al. Learning to reweight examples for robust deep
learning. In ICML, 2018.

[92] Y. Ren, et al. Robust softmax regression for multi-class classifica-
tion with self-paced learning. In IJCAI, 2641–2647, 2017.

[93] Z. Ren, et al. Self-paced prioritized curriculum learning with cov-
erage penalty in deep reinforcement learning. TNNLS, 29(6):2216–
2226, 2018.

[94] D. Rohde, et al. Language acquisition in the absence of explicit
negative evidence: How important is starting small? Cognition,
72(1):67–109, 1999.

[95] T. Sanger. Neural network learning control of robot manipulators
using gradually increasing task difficulty. IEEE TRA, 10(3):323–
333, 1994.

[96] N. Sarafianos, et al. Curriculum learning for multi-task classifica-
tion of visual attributes. In ICCVW, 2608–2615, 2017.

[97] S. Saxena, et al. Data parameters: A new family of parameters
for learning a differentiable curriculum. In NeurIPS, 11095–11105,
2019.

[98] J. Schmidhuber. Curious model-building control systems. In
IJCNN, 1458–1463, 1991.

[99] O. Selfridge, et al. Training and tracking in robotics. In IJCAI,
670–672, 1985.

[100] B. Settles. Active learning literature survey. Technical report,
UW-Madison Department of CS, 2009.

[101] A. Shrivastava, et al. Training region-based object detectors with
online hard example mining. In CVPR, 761–769, 2016.

[102] J. Shu, et al. Meta self-paced learning. SCIENTIA SINICA
Informationis, 50(6):781–793, 2020.

[103] Y. Shu, et al. Transferable curriculum for weakly-supervised
domain adaptation. In AAAI, volume 33, 4951–4958, 2019.

[104] S. Sinha, et al. Curriculum by smoothing. In NeurIPS, 2020.
[105] B. Skinner. Reinforcement today. American Psychologist, 13(3):94,

1958.
[106] P. Soviany, et al. Image difficulty curriculum for generative

adversarial networks (cugan). In WCACV, 3463–3472, 2020.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069908, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2020 20

[107] V. Spitkovsky, et al. From baby steps to leapfrog: How “less is
more” in unsupervised dependency parsing. In NAACL-HLT, 751–
759, 2010.

[108] K. Tang, et al. Shifting weights: Adapting object detectors from
image to video. In NeurIPS, 638–646, 2012.

[109] Y. Tang, et al. Self-paced dictionary learning for image classifica-
tion. In MM, 833–836, 2012.

[110] Y. Tang, et al. Self-paced active learning: Query the right thing at
the right time. In AAAI, volume 33, 5117–5124, 2019.

[111] Y. Tang, et al. Attention-guided curriculum learning for weakly
supervised classification and localization of thoracic diseases on
chest radiographs. In MLMI, 249–258. Springer, 2018.

[112] Y. Tay, et al. Simple and effective curriculum pointer-generator
networks for reading comprehension over long narratives. In ACL,
2019.

[113] Y. Tsvetkov, et al. Learning the curriculum with bayesian opti-
mization for task-specific word representation learning. In ACL,
2016.

[114] R. Tudor Ionescu, et al. How hard can it be? estimating the
difficulty of visual search in an image. In CVPR, 2157–2166, 2016.

[115] J. Tullis, et al. On the effectiveness of self-paced learning. JML,
64(2):109–118, 2011.

[116] G. Turkewitz, et al. Limitations on input as a basis for neural or-
ganization and perceptual development: A preliminary theoretical
statement. ISDP, 15(4):357–368, 1982.

[117] C. Wang, et al. Curriculum pre-training for end-to-end speech
translation. In ACL, 2020.

[118] W. Wang, et al. Dynamically composing domain-data selection
with clean-data selection by” co-curricular learning” for neural
machine translation. In ACL, 2019.

[119] W. Wang, et al. Learning a multi-domain curriculum for neural
machine translation. In ACL, 7711–7723, 2020.

[120] X. Wang, et al. Optimizing data usage via differentiable rewards.
In ICML, 9983–9995. PMLR, 2020.

[121] Y. Wang, et al. Dynamic curriculum learning for imbalanced data
classification. In ICCV, 5017–5026, 2019.

[122] Y. Wei, et al. Stc: A simple to complex framework for weakly-
supervised semantic segmentation. TPAMI, 39(11):2314–2320,
2016.

[123] D. Weinshall, et al. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In ICML, 2018.

[124] L. Wu, et al. Learning to teach with dynamic loss functions. In
NeurIPS, 6466–6477, 2018.

[125] L. Xiang, et al. Learning from multiple experts: Self-paced knowl-
edge distillation for long-tailed classification. In ECCV, 2020.

[126] B. Xu, et al. Curriculum learning for natural language under-
standing. In ACL, 6095–6104, 2020.

[127] C. Xu, et al. Multi-view self-paced learning for clustering. In
IJCAI, 2015.

[128] H. Yu, et al. Self-paced learning for k-means clustering algorithm.
PRL, 132:69–75, 2020.

[129] M. Yuan, et al. Model selection and estimation in regression with
grouped variables. JRSS: Series B, 68(1):49–67, 2006.

[130] X. Yuan, et al. Adversarial examples: Attacks and defenses for
deep learning. TNNLS, 30(9):2805–2824, 2019.

[131] W. Zaremba, et al. Learning to execute. arXiv preprint, 2014.
[132] D. Zhang, et al. Learning object detectors with semi-annotated

weak labels. IEEE TCSVT, 29:3622–3635, 2019.
[133] D. Zhang, et al. Synthesizing supervision for learning deep

saliency network without human annotation. TPAMI, 42:1755–
1769, 2020.

[134] D. Zhang, et al. Leveraging prior-knowledge for weakly super-
vised object detection under a collaborative self-paced curriculum
learning framework. IJCV, 127(4):363–380, 2019.

[135] D. Zhang, et al. A self-paced multiple-instance learning frame-
work for co-saliency detection. In ICCV, 594–602, 2015.

[136] D. Zhang, et al. Few-cost salient object detection with adversarial-
paced learning. In NeurIPS, 2020.

[137] D. Zhang, et al. Spftn: A self-paced fine-tuning network for
segmenting objects in weakly labelled videos. In CVPR, 4429–
4437, 2017.

[138] X. Zhang, et al. An empirical exploration of curriculum learning
for neural machine translation. arXiv preprint, 2018.

[139] X. Zhang, et al. Curriculum learning for domain adaptation in
neural machine translation. arXiv preprint, 2019.

[140] M. Zhao, et al. Reinforced curriculum learning on pre-trained
neural machine translation models. In AAAI, 2020.

[141] Q. Zhao, et al. Self-paced learning for matrix factorization. In
AAAI, volume 3, page 4, 2015.

[142] W. Zheng, et al. Unsupervised feature selection by self-paced
learning regularization. PRL, 132:4–11, 2020.

[143] S. Zhou, et al. Deep self-paced learning for person re-
identification. Pattern Recognition, 76:739–751, 2018.

[144] T. Zhou, et al. Minimax curriculum learning: Machine teaching
with desirable difficulties and scheduled diversity. In ICLR, 2018.

[145] T. Zhou, et al. Curriculum learning by dynamic instance hard-
ness. In NeurIPS, 2020.

[146] Y. Zhou, et al. Uncertainty-aware curriculum learning for neural
machine translation. In ACL, 6934–6944, 2020.

[147] Z. Zhou. A brief introduction to weakly supervised learning.
National science review, 5(1):44–53, 2018.

Xin Wang is currently an Assistant Professor
at the Department of Computer Science and
Technology, Tsinghua University. He got both of
his Ph.D. and B.E degrees in Computer Science
and Technology from Zhejiang University, China.
He also holds a Ph.D. degree in Computing Sci-
ence from Simon Fraser University, Canada. His
research interests include relational media big
data analysis, multimedia intelligence and rec-
ommendation in social media. He has published
several high-quality research papers in top con-

ferences including ICML, KDD, WWW, SIGIR ACM Multimedia etc. He
is the recipient of 2017 China Postdoctoral innovative talents supporting
program. He receives the ACM China Rising Star Award in 2020.

Yudong Chen is a graduate student at the De-
partment of Computer Science and Technology,
Tsinghua University. His research interests in-
clude machine learning, data mining, and mul-
timedia analysis.

Wenwu Zhu is currently a Professor and the
Vice Chair of the Department of Computer Sci-
ence and Technology at Tsinghua University.
His research interests are in the area of data-
driven multimedia networking and Cross-media
big data computing. He has published over 350
referred papers and is the inventor or co-inventor
of over 50 patents. He received eight Best Pa-
per Awards, including ACM Multimedia 2012 and
IEEE Transactions on Circuits and Systems for
Video Technology in 2001 and 2019.

He served as EiC for IEEE Transactions on Multimedia from 2017-
2019. He served in the steering committee for IEEE Transactions on
Multimedia (2015-2016) and IEEE Transactions on Mobile Computing
(2007-2010), respectively.He is an AAAS Fellow, IEEE Fellow, SPIE Fel-
low, and a member of The Academy of Europe (Academia Europaea).

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:34:22 UTC from IEEE Xplore. Restrictions apply.

