
Disentangled Self-Supervision in Sequential Recommenders
Jianxin Ma∗

majx13fromthu@gmail.com
Tsinghua University, Beijing, China

Alibaba Group, China

Chang Zhou
ericzhou.zc@alibaba-inc.com

Alibaba Group, China

Hongxia Yang
yang.yhx@alibaba-inc.com

Alibaba Group, China

Peng Cui
cuip@tsinghua.edu.cn

Tsinghua University, Beijing, China

Xin Wang†
xin_wang@tsinghua.edu.cn

Tsinghua University, Beijing, China
Key Laboratory of Pervasive

Computing, Ministry of Education,
China

Wenwu Zhu†
wwzhu@tsinghua.edu.cn

Tsinghua University, Beijing, China
Key Laboratory of Pervasive

Computing, Ministry of Education,
China

ABSTRACT
To learn a sequential recommender, the existing methods typically
adopt the sequence-to-item (seq2item) training strategy, which su-
pervises a sequence model with a user’s next behavior as the label
and the user’s past behaviors as the input. The seq2item strategy,
however, is myopic and usually produces non-diverse recommenda-
tion lists. In this paper, we study the problem of mining extra signals
for supervision by looking at the longer-term future. There exist two
challenges: i) reconstructing a future sequence containing many
behaviors is exponentially harder than reconstructing a single next
behavior, which can lead to difficulty in convergence, and ii) the se-
quence of all future behaviors can involve many intentions, not all
of which may be predictable from the sequence of earlier behaviors.
To address these challenges, we propose a sequence-to-sequence
(seq2seq) training strategy based on latent self-supervision and
disentanglement. Specifically, we perform self-supervision in the
latent space, i.e., reconstructing the representation of the future se-
quence as a whole, instead of reconstructing the items in the future
sequence individually. We also disentangle the intentions behind
any given sequence of behaviors and construct seq2seq training
samples using only pairs of sub-sequences that involve a shared
intention. Results on real-world benchmarks and synthetic data
demonstrate the improvement brought by seq2seq training.

KEYWORDS
recommender systems; sequence model; disentangled representa-
tion learning; self-supervised learning; contrastive learning
ACM Reference Format:
Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu
Zhu. 2020. Disentangled Self-Supervision in Sequential Recommenders. In

∗Work done when he was a research intern at Alibaba Group.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403091

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394486.3403091

1 INTRODUCTION
Sequences of user behaviors in recommender systems represent a
significant portion of the traffic in modern web and mobile appli-
cations. The central task related to this kind of sequence data is
to recommend the next item to a target user based on this user’s
sequence of past behaviors such as clicking and bookmarking. Moti-
vated by deep learning’s expressive power in describing sequential
data, recent efforts [18, 25, 49, 54] have gained impressive success on
this task with deep sequential models, such as the recurrent neural
networks and self-attention networks (aka., Transformers) [10, 51].

The standard approach for training the sequential models is to
take a user’s sequence of past behaviors as the input and use the
user’s next behavior as the supervision signals, i.e., to perform
sequence-to-item (seq2item) training. However, seq2item training
is myopic and can easily lead to non-diverse recommendation lists.
For example, the sequence “shirt, shirt, shirt, shirt, shirt, trousers”
contains far more consecutive sub-sequences whose correspond-
ing labels are shirt and only a few sub-sequences whose labels are
trousers. As a result, the algorithm trained via the seq2item strategy
will tend to recommend shirts much more frequently after a user
clicks a shirt, while in a real-world top-𝑘 recommender system we
would like the algorithm to recommend both shirts and trousers in
a more balanced manner when generating a page of 𝑘 items [4]. Sec-
ond, seq2item training is vulnerable if the next immediate behavior
in the training data is irrelevant to the sequence of behaviors that
happens before this new behavior. User nowadays have diverse and
constantly-changing intentions, and may even click novel items
merely out of curiosity regardless of the previous intentions.

In this paper, we study the sequential recommendation problem
andmine extra signals for supervision by looking at the longer-term
future, with the aim of complementing the standard sequence-to-
item training strategy. Nevertheless, supervising a sequential model
using a sequence of many future behaviors, instead of just the next
single behavior, poses significant challenges:

• First, a future sequence of many behaviors is exponentially
harder to reconstruct than a single next behavior. And it is
inefficient to reconstruct the behaviors (such as clicking an

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

483

https://doi.org/10.1145/3394486.3403091
https://doi.org/10.1145/3394486.3403091

The Earlier Sequence as Input

Sequence’s Representation

Sequence Encoder

Time Direction

⋯Item A Item B Item C Item D Item E

𝑡𝑡 − 1𝑡 − 2𝑡 − 3 𝑡 + 1

Sequence-to-Item(s) Training

Loss

The Future Item(s) as Label(s)

⋯ Item E Item F Item GItem D

𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 3

Loss Loss

Sequence-to-Sequence Training in the Disentangled Latent Space

Time Direction

The Earlier Sequence as Input

Sequence Encoder
+ Intention Disentanglement

Item A Item B Item C Item D

𝑡𝑡 − 1𝑡 − 2𝑡 − 3

Input Sequence’s Representation

Intention under Latent Category X

Intention under Latent Category Y

No Intention under Latent Category Z

The Future Sequence as Label

Item E Item F Item G

𝑡 + 3𝑡 + 2𝑡 + 1

Sequence Encoder
+ Intention Disentanglement

Label Sequence’s Representation

No Intention under Latent Category X

Intention under Latent Category Y

Intention under Latent Category Z

Loss

Figure 1: The sequence-to-item(s) training strategy in the literature directly reconstructs the future items, while our sequence-
to-sequence training strategy reconstructs the disentangled representations of the future sequences and avoids explicitly re-
constructing every item. In other words, we perform sequence-to-sequence self-supervision in a disentangled latent space.

item) one by one since there might be redundant supervision
signals in the future sequence, e.g., many clicks reflecting
the same intention.

• Second, the future sequence of behaviors, as the label of a
training sample, can involve multiple constantly evolving
user intentions. Notably, not all the intentions hidden in the
future may be relevant to the earlier behavior sequence that
serve as the input of the training sample. This being the
case, we will face a low signal-to-noise ratio unless we can
identify which portion of the future sequence is relevant to
and predictable from the earlier behaviors.

To tackle these challenges, we propose a novel sequence-to-
sequence (seq2seq) training strategy in this paper. Our seq2seq
training strategy is executed in parallel to the standard sequence-
to-item (seq2item) training strategy, and complements the latter
by further mining supervision signals from the whole future se-
quences. The proposed seq2seq strategy employs the ideas of latent
self-supervision and intention disentanglement to address the afore-
mentioned two challenges, respectively. Our first core idea is to
perform self-supervision 1 in the latent space, rather than in the data
space. In other words, our seq2seq training strategy asks the model
to predict the representation of the future sub-sequence given the
earlier sequence’s representations. This design avoids individually
reconstructing all the behaviors in the future sequence and eases
convergence of the seq2seq training process. The representation to
be predicted effectively serves as a distilled pseudo behavior (e.g.,
clicking a pseudo item) in the vector space, which summarizes the
main intention present in the future sequence. Our second core
idea is to design a sequence encoder that can infer and disentangle
the latent intentions reflected by a given sequence of behaviors.
The disentangled encoder outputs multiple representations of a
given sequence of behaviors, where each representation focuses on
a distinct sub-sequence of the given sequence. Each of the multi-
ple representations characterizes the user’s intention related to a

1We use self-supervision to refer to the idea of training a model by asking it to predict
one part of an instance given another part of the same instance, i.e., to predict a
sub-sequence of behaviors given another sub-sequence by the same user in our case.

different latent category. We can then construct seq2seq training
samples using only pairs of sub-sequences whose intentions are
relevant in that they involve the same latent category.

We conduct extensive experiments on both real-world bench-
marks and synthetic data. The empirical results demonstrate that
our seq2seq training strategy brings improvements over the base-
lines, by discovering additional supervision signals not covered by
seq2item training.

We summarize our main contributions as follows:

• We propose a novel seq2seq training strategy, which extracts
additional supervision signals by investigating the longer-
term future instead of just the next immediate behavior.

• We suggest performing self-supervision in the latent space
to boost convergence, and propose intention disentangle-
ment to determine if two sub-sequences are relevant when
selecting seq2seq training samples.

• We empirically demonstrate the efficacy of our seq2seq train-
ing strategy, which complements seq2item training.

2 RELATEDWORK
2.1 Sequential Recommendation
Early recommender systems typically employ collaborative fil-
tering [9, 22, 43, 45, 47], especially those based on matrix fac-
torization [29, 46], for mining users’ preference from their be-
havior. The advent of deep learning later further advances the
field [8, 17, 32, 33, 52, 58]. Despite their success, these pioneering
work typically neglect the sequential nature of a user’s interac-
tions with the recommender systems. As a result, some later rec-
ommenders propose to model the users’ sequential behaviors as
first-order or higher-order Markov chains [14–16, 44, 50, 53]. Mo-
tivated by the expressive power of deep sequential models, later
sequential recommenders [7, 18, 19, 23, 25, 30, 35, 36, 49, 50, 56, 58]
have achieved further success with more advanced deep models
such as the recurrent networks, the convolutional neural networks,
and the more recent self-attention based models such as Trans-
former [51] and BERT [10]. However, so far the deep sequential

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

484

recommenders in the literature are mainly inspired by neural lan-
guage models, and follow the setting of language generation where
every item in the future sequence is explicitly reconstructed. Our
work differs from these existing sequential recommender systems
in that we perform sequence-to-sequence training in a space more
abstract than the data space, i.e., the latent space.

2.2 Disentangling a User’s Mixed Intentions
Adisentangled representation characterizes the various explanatory
factors behind an observed instance in different parts of the vector
representation [1]. Many approach have been proposed to force
the emergence of disentanglement in the learned representations.
For example, some re-interpret the variational auto-encoders [28]
from an information-theoretic perspective and derive various reg-
ularization terms that minimize the mutual information between
a representation’s different parts [3, 5, 20, 26]. Disentangling the
factors behind an instance is sometimes also studied from the per-
spective of mixture data [2, 6, 11, 12, 24]. Lately, several representa-
tion learning-based algorithms are proposed for disentangling and
preserving the multiple intentions behind the edges in relation data
such as social networks and user-item interaction graphs [34, 37, 38].
We disentangle the intentions for a different purpose than these
recent algorithms. Our purpose is to determine if there are shared
intentions between the input sequence and the label sequence, and
thus whether to use this pair for training.

2.3 Self-Supervision and Contrastive Learning
Self-supervised learning has gained increasing popularity for learn-
ing representations from unlabeled data via the pretext tasks. The
pretext tasks dismantle complex objects into sub-parts and/or trans-
form them into another near-equivalent form, based on which
a prediction task or a discrimination task is conducted. The pre-
diction tasks predict one part given another like a general Cloze
test [10, 41, 57]. There are also works that predict the ordering
relationship, trying to recover the original order or position of each
part of a data example [39, 40]. The discrimination tasks usually
adopt a contrastive learning paradigm which tries to discriminate
the relationship of a paired example, e.g., whether a data example
is transformed from the other [13, 21, 55], or whether two sub-
parts are from the same object [31, 48]. Recently, some contrastive
losses are proved capable of reducing the selection bias in training
data, e.g., the exposure bias in recommender systems [59]. Among
these works, contrastive predictive coding (CPC) [41] pioneers the
practice of predicting the future part in the latent space for unsu-
pervised pre-training, i.e., performing self-supervision in a latent
space. However, CPC explores general settings where entangle-
ment is much less severe and does not incorporate disentangled
representation learning.

3 METHOD
3.1 Notations and Problem Formulation

Sequence data. Let {x(𝑢) }𝑁
𝑢=1 be the training data, i.e. the set of

user click sequences. Here 𝑁 is the number of users, while x(𝑢) =
[𝑥 (𝑢)1 , 𝑥 (𝑢)2 , . . ., 𝑥 (𝑢)

𝑇𝑢
] is an ordered sequence of items clicked by user

𝑢, where 𝑇𝑢 is the number of clicks made by user 𝑢 and 𝑥 (𝑢)
𝑇𝑢

is the

Table 1: Notations.

Notation Description

𝑁 the number of sequences, aka. the number of users
𝑀 the number of items
𝐷 the dimensionality of the latent representations
𝐾 the number of disentangled user intentions
x(𝑢) the sequence of items clicked by the 𝑢th user
𝑥
(𝑢)
𝑡 the 𝑡 th click in the 𝑢th user’s sequence x(𝑢) =

[𝑥 (𝑢)1 , 𝑥
(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑇𝑢

], where 𝑥 (𝑢)𝑡 ∈ {1, 2, . . . , 𝑀}
𝑇𝑢 the length of the 𝑢th user’s click sequence x(𝑢)
𝜽 parameters of the sequence encoder
H ∈ R𝑀×𝐷 the item embedding table, included in 𝜽
H𝑖,: ∈ R𝐷 the 𝑖th item’s representation, i.e. the 𝑖th row of H
h(𝑢)𝑡 ∈ R𝐷 the representation of item 𝑥

(𝑢)
𝑡 , i.e. row 𝑥

(𝑢)
𝑡 of H

𝜙𝜽 (·) the sequence encoder, which outputs 𝐾 vectors
𝜙
(𝑘)
𝜽 (x(𝑢)) the representation of user 𝑢’s intention under the

𝑘th latent category, where 1 ≤ 𝑘 ≤ 𝐾

𝜆 ∈ [0, 1] the threshold for selecting sequence-to-sequence
training samples of high confidence

B a mini-batch of sequences for training

user’s latest click. Each element 𝑥 (𝑢)𝑡 ∈ {1, 2, . . . , 𝑀} (1 ≤ 𝑡 ≤ 𝑇𝑢) in
the sequence is the index of the item being clicked. We focus on the
candidate generation phase of a modern recommender system [8],
where the task is to predict the next item(s) that user 𝑢 is likely
to click, among all the 𝑀 possible options, based on the observed
sequence x(𝑢) .

Deep sequential recommenders. A deep sequential model for can-
didate generation typically has a sequence encoder 𝜙𝜽 (·) and an
item embedding table H ∈ R𝑀×𝐷 , where 𝜽 is the set that contains
all the trainable parameters including H. The encoder takes a se-
quence x𝑢 as input and outputs the representation of the sequence
𝜙𝜽 (x𝑢), which can be viewed as the representation of the user’s
intention(s). Most encoders 𝜙𝜽 (·) in the literature output a single
𝐷-dimensional vector, while there are also models that outputs 𝐾
𝐷-dimensional vectors to preserve the user’s intentions under 𝐾
latent categories. The model then estimates the probability that
user 𝑢 will click the 𝑖th item by measuring the similarity between
the user representation 𝜙𝜽 (x𝑢) and the 𝑖th item’s representation
H𝑖,: in the vector space.

Sequence-to-item (seq2item) training. So far the most common
practice for training a deep sequential recommender is to train
the model to recover the next click 𝑥 (𝑢)

𝑡+1 based on the truncated
sequence prior to the click, i.e. [𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑡]. For example,

one commonly used training loss of this kind is

L𝑠2𝑖 (𝜽) =
∑
𝑢

∑
𝑡

L𝑠2𝑖 (𝜽 , 𝑢, 𝑡), (1)

L𝑠2𝑖 (𝜽 , 𝑢, 𝑡) = − ln 𝑝𝜽 (𝑥
(𝑢)
𝑡+1 | 𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑡), (2)

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

485

where the probability 𝑝𝜽 (𝑥
(𝑢)
𝑡+1 | {𝑥 (𝑢)

𝑖
}𝑡
𝑖=1) is designed to be pro-

portional to the similarity between the item to be recovered and
the given sequence in the vector space.

3.2 Sequence-to-Sequence Self-Supervision
In this subsection, we describe our seq2seq training strategy. The
purpose of our seq2seq loss is to complement, not replace, the
traditional seq2item loss. In other words, we minimize both the
seq2item loss and the seq2seq loss when processing eachmini-batch
B using mini-batch gradient descent.

Each mini-batch B is a set of sampled sequence. We construct
the mini-batch B by sampling each of its element from the training
set {(𝑢, 𝑡) : 1 ≤ 𝑢 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇𝑢 − 1} uniformly. Each training
example (𝑢, 𝑡) in the mini-batch B refers to an earlier sequence
x(𝑢)1:𝑡 = [𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑡] and its corresponding future sequence

x(𝑢)
𝑡+1:𝑇𝑢 = [𝑥 (𝑢)

𝑡+1 , 𝑥
(𝑢)
𝑡+2 , . . . , 𝑥

(𝑢)
𝑇𝑢

]. We further use x(𝑢)
𝑇𝑢 :𝑡+1 to represent

the reversed sequence of x(𝑢)
𝑡+1:𝑇𝑢 , i.e. x

(𝑢)
𝑇𝑢 :𝑡+1 = [𝑥 (𝑢)

𝑇𝑢
, 𝑥

(𝑢)
𝑇𝑢−1, . . . , 𝑥

(𝑢)
𝑡+1].

We assume that we have a sequence encoder 𝜙𝜽 (·), whose im-
plementation will be presented in subsection 3.3. The output of
the encoder are 𝐾 vectors in 𝐷-dimensional space, i.e. 𝜙𝜽 (·) =

{𝜙 (𝑘)
𝜽 (·)}𝐾

𝑘=1, which represents a user’s preference under 𝐾 differ-
ent latent categories of items. We also assume that the value of
𝜙
(𝑘)
𝜽 (x(𝑢)1:𝑡) will be merely a white noise vector if the sequence x(𝑢)1:𝑡

does not contain any items under the 𝑘th latent category. In our
implementation of the encoder, each output 𝜙 (𝑘)

𝜽 (x(𝑢)1:𝑡) of the 𝐾
outputs pay attention to a different sub-sequence of the input se-
quence. We can view 𝜙

(𝑘)
𝜽 (x(𝑢)1:𝑡) as a pseudo item that summarizes

the clicked items that are under the 𝑘th latent category.

Sequence-to-sequence (seq2seq) loss. We define the sequence-to-
sequence loss for this sample as

L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘) = − ln 𝑝𝜽 (𝜙
(𝑘)
𝜽 (x(𝑢)

𝑇𝑢 :𝑡+1) | 𝜙
(𝑘)
𝜽 (x(𝑢)1:𝑡)) =

− ln
exp

(
1√
𝐷
𝜙
(𝑘)
𝜽 (x(𝑢)

𝑇𝑢 :𝑡+1) · 𝜙
(𝑘)
𝜽 (x(𝑢)1:𝑡)

)
∑

(𝑢′,𝑡 ′) ∈B
∑𝐾
𝑘′=1 exp

(
1√
𝐷
𝜙
(𝑘′)
𝜽 (x(𝑢

′)
𝑇𝑢′ :𝑡 ′+1) · 𝜙

(𝑘)
𝜽 (x(𝑢)1:𝑡)

) ,
(3)

We have scaled the dot product scores by a factor of 1√
𝐷

because
the last layer of our encoder is a layer-normalization layer and the
scaling factor helps convergence. Here the softmax is normalized
over the samples that appear in the current mini-batch [48] B,
instead of being normalized over all possible options that appear
in the training set, so as to save computation. We use the reversed
sequence x(𝑢)

𝑇𝑢 :𝑡+1 instead of the original x
(𝑢)
𝑡+1:𝑇𝑢 , because our encoder

weights the items in a sequence according to the time order and we
would like the items closer to position 𝑡 to gain more weights.

Select samples of high confidence for seq2seq training. However,
we should only use a selected subset of {L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘) : (𝑢, 𝑡) ∈
B, 1 ≤ 𝑘 ≤ 𝐾}, rather than using all of them, for training. For
example, if an earlier sequence x(𝑢)1:𝑡 involves intention under latent
category 𝑘 = 1 and 𝑘 = 3 while the future sequence x(𝑢)

𝑇𝑢 :𝑡+1 involves
intention under category 𝑘 = 1 and 𝑘 = 2, then we should use only
L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘 = 1), but not use 𝑘 = 2 and 𝑘 = 3, when training the

model. We therefore choose to compute the loss for the current
mini-batch B based on some selected samples that are considered
to be of high confidence according to the model. To be specific, the
sequence-to-sequence loss is computed as

L𝑠2𝑠 (𝜽 ,B) =
∑

(𝑢,𝑡) ∈B

𝐾∑
𝑘=1

L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘) · 1[L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘) ≤ 𝜏]

(4)
where 𝜏 is the ⌈𝜆 · |B| · 𝐾⌉th smallest value in {L𝑠2𝑠 (𝜽 , 𝑢, 𝑡, 𝑘) :
(𝑢, 𝑡) ∈ B, 1 ≤ 𝑘 ≤ 𝐾}. Here 𝜆 ∈ [0, 1] is a hyper-parameter.
In other words, we keep only the top 𝜆-percent of the sequence-
to-sequence training samples that are considered to be of high
confidence by the model.

Sequence-to-item (seq2item) loss. The traditional sequence-to-
item training strategy is necessary for learning a proper encoder
in a relatively short time, as well as aligning the sequences’ vector
space and the items’ vector space. Our sequence-to-item loss is
defined as follows:

L𝑠2𝑖 (𝜽 ,B) =
∑

(𝑢,𝑡) ∈B
L𝑠2𝑖 (𝜽 , 𝑢, 𝑡), (5)

L𝑠2𝑖 (𝜽 , 𝑢, 𝑡) = − ln 𝑝𝜽 (h
(𝑢)
𝑡+1 | 𝜙𝜽 (x

(𝑢)
1:𝑡)) =

− ln
max𝑘∈{1,2,...,𝐾 } exp

(
1√
𝐷

h(𝑢)
𝑡+1 · 𝜙

(𝑘)
𝜽 (x(𝑢)1:𝑡)

)
∑

(𝑢′,𝑡 ′) ∈B
∑𝐾
𝑘′=1 exp

(
1√
𝐷

h(𝑢
′)

𝑡 ′+1 · 𝜙
(𝑘′)
𝜽 (x(𝑢)1:𝑡)

) , (6)

where h(𝑢)
𝑡+1 ∈ R𝐷 is the representation of item 𝑥

(𝑢)
𝑡+1 , i.e. row 𝑥

(𝑢)
𝑡+1

of the item embedding table H ∈ R𝑀×𝐷 .
We optimize the following loss when training our model using

mini-batch gradient descent:
L(𝜽 ,B) = L𝑠2𝑖 (𝜽 ,B) + L𝑠2𝑠 (𝜽 ,B). (7)

3.3 Disentangled Sequence Encoding
The state-of-art sequence encoders for recommendation are those
that based on the multi-head self-attention encoder, aka. the Trans-
former encoder [51]. For example, the SASRec encoder [25] is a
recent variant of Transformer that uses a set of trainable position
embeddings, instead of the original handcrafted position embed-
dings, to encode the order of the items in a sequence. Moreover,
SASRec reuses the item embedding table H, instead of building
another item embedding table for the encoder, when encoding a
sequence. In other words, its first layer takes [h(𝑢)1 , h(𝑢)2 , . . . , h(𝑢)𝑡]
as input when encoding the sequence x(𝑢)1:𝑡 = [𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑡].

However, the SASRec encoder alone does not completely fulfill
our requirements of the sequence encoder 𝜙𝜽 (·). In particular, its
ability at capturing multiple intentions is limited. The authors of
SASRec report that the multi-head version of SASRec, which out-
puts multiple vector representations for the same input sequence,
does not seem to have a clear advantage over the single-head im-
plementation. Empirically both single-head SASRec and multi-head
SASRec tend to recommend items of the same category as the latest
one click in the input sequence, even if the user has clicked items
of other categories earlier.

We therefore propose an intention-disentanglement layer here,
which is appended after a single-head SASRec encoder so as to reuse

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

486

SASRec’s expressive power. Let [z(𝑢)1 , z(𝑢)2 , . . . , z(𝑢)𝑡], where z(𝑢)
𝑖

∈
R𝐷 , be the outputs of the single-head SASRec encoder at the 𝑡 posi-
tions when given the input sequence x(𝑢)1:𝑡 = [𝑥 (𝑢)1 , 𝑥

(𝑢)
2 , . . . , 𝑥

(𝑢)
𝑡].

We can view z(𝑢)
𝑖

as the latent intention of the user when the user
is clicking item 𝑥

(𝑢)
𝑖

, 𝑖 = 1, 2, . . . , 𝑡 .

Intention clustering. Our intention-disentanglement layer starts
by clustering the intentions according to their distance to a set of
intention prototypes:

𝑝𝑘 |𝑖 =
exp

(
1√
𝐷
LayerNorm1 (z

(𝑢)
𝑖

) · LayerNorm2 (c𝑘)
)

∑𝐾
𝑘′=1 exp

(
1√
𝐷
LayerNorm1 (z

(𝑢)
𝑖

) · LayerNorm2 (c𝑘′)
) ,
(8)

where 𝑖 = 1, 2, . . . , 𝑡 and 𝑘 = 1, 2, . . . , 𝐾 . Here {c𝑘 ∈ R𝐷 : 1 ≤
𝑘 ≤ 𝐾} are the prototypical intention representations under the
𝐾 latent categories, which are part of the model parameters 𝜽 .
LayerNorm𝑙 (·) is a layer-normalization layer, where we use the
subscript 𝑙 to avoid confusion of the different layer-normalization
layers, since each has its own parameters for scaling its output. We
are in effect using cosine, instead of dot product, due to the normal-
ization, when measuring the similarity between a given intention
z(𝑢)
𝑖

and a typical intention prototype c𝑘′ . Previous work [38] has
found that cosine is much less vulnerable than dot product when it
comes to mode collapse, i.e., the degenerate situation where most
prototypes are being ignored by the model.

Intention weighting. The attention weight 𝑝𝑘 |𝑖 described above
measures how likely the primary intention at position 𝑖 is related
with the 𝑘th latent category. We now introduce another attention
weight 𝑝𝑖 to measure how likely the primary intention at position
𝑖 is important for predicting the user’s future intentions:

𝑝𝑖 =

exp
(

1√
𝐷
key𝑖 · query

)
∑𝑡
𝑖′=1 exp

(
1√
𝐷
key𝑖′ · query

) , (9)

key𝑖 = k̃ey𝑖 + ReLU(W⊤k̃ey𝑖 + b), (10)

k̃ey𝑖 = LayerNorm3 (𝜶 𝑖 + z(𝑢)
𝑖

), (11)

query = LayerNorm4 (𝜶 𝑡 + z(𝑢)𝑡 + b′), (12)

where 𝑖 = 1, 2, . . . , 𝑡 . Here W ∈ R𝐷×𝐷 , b ∈ R𝐷 , b′ ∈ R𝐷 , and
𝜶 𝑖 ∈ R𝐷 are parameters and are included in 𝜽 . We can view {𝜶 𝑖 :
𝜶 𝑖 ∈ R𝐷 , 1 ≤ 𝑖 ≤ max𝑇𝑢 } as a set of position embeddings used by
our intention-disentanglement layer. We compute the query based
on 𝜶 𝑡 and z(𝑢)𝑡 as well as a trainable parameter b′, based on the
assumptions that: the more recent clicks are more valuable, and the
earlier intentions that are close to the latest intention in the vector
space are more likely to be important. Yet these two assumptions
may not always be correct, which necessitates the introduction of
the trainable parameters W, b, and b′.

Intention aggregation. We can now aggregate the intentions col-
lected at all the positions according to 𝑝𝑘 |𝑖 and 𝑝𝑖 . The 𝐾 outputs
of the encoder are computed as follows:

𝜙
(𝑘)
𝜽 (x(𝑢)1:𝑡) = LayerNorm5

(
𝜷𝑘 +

𝑡∑
𝑖=1

𝑝𝑘 |𝑖 · 𝑝𝑖 · z
(𝑢)
𝑖

)
, (13)

where 𝑘 = 1, 2, . . . , 𝐾 . Here 𝜷𝑘 ∈ R𝐷 is the bias for output 𝑘 ,
initialized as a sample from a normal distribution of mean 0 and
standard deviation 1√

𝐷
. We use two different sets of {𝜷𝑘 }𝐾𝑘=1. One

of the two sets is for encoding a sequence that serve as the input of
a seq2seq sample, i.e., x(𝑢)1:𝑡 , while the other one is for encoding a
sequence that serve as the label, i.e., x(𝑢)

𝑇𝑢 :𝑡+1.

To encourage disentanglement in the loss functions. In the litera-
ture, many regularization methods are proposed to encourage the
𝐾 parts {𝜙 (𝑘)

𝜽 (·)}𝐾
𝑘=1 to preserve sufficiently different information,

e.g., regularization terms that minimize their mutual information.
However, we note that in our loss functions, each positive case’s
score computed based on the 𝑘th part 𝜙 (𝑘)

𝜽 (x(𝑢)1:𝑡) (see the numera-
tors in Eq. 3 and Eq. 6) are compared to those based on all the other
𝐾 − 1 parts {𝜙 (𝑘′)

𝜽 (x(𝑢)1:𝑡) : 1 ≤ 𝑘 ′ ≤ 𝐾,𝑘 ′ ≠ 𝑘)} (see the denomina-
tors in Eq. 3 and Eq. 6). As a result, the model is forced to preserve
different information in 𝜙 (𝑘)

𝜽 (x(𝑢)1:𝑡) than the other 𝐾 − 1 parts, if it
wants to maximize the likelihood of the positive case related with
part 𝑘 . We therefore do not introduce any extra regularization term
for disentanglement.

4 EXPERIMENTS
In this section, we evaluate 2 the performance of our approach
in comparison with the state-of-art sequential recommenders and
demonstrate the benefits of seq2seq training. We then conduct
ablation study and analyze the impact of the hyper-parameters.

4.1 Experimental Setup
We follow the experimental setup described by BERT4Rec, a state-of-
the-art sequential recommender based on BERT and Transformer.

Datasets. We conduct our experiments on the datasets processed
by SASRec [25] and BERT4Rec [49]. The four datasets are Amazon
Beauty (40,226 users and 54,542 items), Steam (281,428 users and
13,044 items), MovieLens-1M (6,040 users and 3,416 items), and
MovieLens-20M (138,493 users and 26,744 items), where the aver-
age sequence lengths are 8.8, 12.4, 163.5, and 144.4, respectively.
The items in a sequence are ordered by time, where the last po-
sition corresponds to the latest click. We split the datasets in the
same way as the previous work [25, 49], i.e., the last item of each
user’s sequence for testing, the second-to-last for validation, and
the remaining items for training.

Evaluation metrics. We evaluate all the methods in terms of re-
call, normalized discounted cumulative gain (NDCG), and mean
reciprocal rank (MRR). Higher value in all these metrics reflect bet-
ter recommendation performance. We follow BERT4Rec’s advice,
and pair each ground-truth item in the test set with 100 negative
items randomly sampled according to their popularity, which is a
common practice in the literature [49]. The recommendation task
then becomes to identify which item among these 101 items is the
ground-truth next item for each user.
2As pointed out by two reviewers, our empirical conclusions are not as reliable as they
seem, due to two flaws in our experimental setup. First, most of the evaluation metrics
are not reliable if sampling is used, except for the AUC, especially when the sample
size is small [42]. Second, instead of using a time based split, we use the latest events
of the users as test examples, which is vulnerable to information leak.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

487

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.00

0.05

0.10

0.15

R
ec

al
l@

1

.0077

.0415 .0407 .0435 .0402

.0551
.0475

.0906 .0953

.1522

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.00

0.05

0.10

0.15

R
ec

al
l@

1

.0159

.0314
.0246

.0358

.0574

.0812

.0495

.0885
.0957

.1668

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

R
ec

al
l@

1

.0141

.0914

.0397

.1386
.1583

.2092 .2194
.2351

.2863
.3050

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

R
ec

al
l@

1

.0221

.0553

.0231

.1079

.1459

.2021

.1232

.2544

.3440 .3497

ML-20m

(a) Recall items in the top 1 position (Recall@1).

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

R
ec

al
l@

5

.0392

.1209 .1305 .1387 .1315

.1781
.1625

.1934

.2207

.3225

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

R
ec

al
l@

5

.0805

.1177 .1203
.1517

.2171
.2391

.1766

.2559
.2710

.3986

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

0.6

R
ec

al
l@

5

.0715

.2866

.1932

.4297
.4673

.5103
.5353 .5434

.5876 .6025

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

0.6

R
ec

al
l@

5

.0805

.2128

.1358

.3601

.4657
.5118

.3804

.5727

.6323 .6528

ML-20m

(b) Recall items in the top 5 positions (Recall@5).

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

R
ec

al
l@

10

.0762

.1992
.2142

.2401 .2343
.2654 .2590 .2653

.3025

.4171

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

R
ec

al
l@

10

.1389

.1993 .2169
.2551

.3313
.3594

.2870

.3783
.4013

.5437

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

0.6

R
ec

al
l@

10

.1358

.4301

.3477

.5946
.6207 .6351

.6692 .6629
.6970

.7219

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

0.6

R
ec

al
l@

10

.1378

.3538
.2922

.5201

.5844

.6524

.5427

.7136
.7473 .7579

ML-20m

(c) Recall items in the top 10 positions (Recall@10).

Figure 2: Recommendation performance in terms of RecallG@1, Recall@10, and Recall@10. These metrics measure how well
a method can retrieve the relevant items with a limited budget.

Implementation and hyper-parameters. We implement our model
in TensorFlow and initialize the parameters using the default ini-
tialization recommended by TensorFlow. We use the Adam [27]
optimizer for mini-batch gradient descent and set the learning
rate to 0.001, while the size of each mini-batch is 128. We use the
single-head implementation of SASRec as part of our encoder. We
cap the maximum sequence length to 200 for MovieLens-1M and
MovieLens-20M, while capping it to 50 for the other two datasets,
which is the same configuration used by SASRec and BERT4Rec.
The other hyper-parameters are then tuned using random search.
Specifically, we follow BERT4Rec and choose the dimensionality
of the item embeddings, 𝐷 , from {16, 32, 64, 128, 256}. The num-
ber of self-attention blocks, which are used by the part of our
encoder borrowed from SASRec, is chosen from {1, 2, 3}. The hyper-
parameter 𝜆 is from {0.05, 0.10, . . . , 1.0}. The number of latent cate-
gories, 𝐾 , is chosen from {1, 2, . . . , 8}. The dropout rate is chosen
from {0, 0.1, 0.2, . . . , 0.9}, while the 𝑙2 regularization term is selected
from {0, 0.0001, 0.001, . . . , 1}.

4.2 Recommendation Performance
In this subsection, we report the overall performance of our ap-
proach compared to the state-of-art sequential recommenders.

Baselines. We compare our approach with a series of represen-
tative baselines. We include a naïve baseline that recommends the
most popular items (POP), the matrix factorization variant of the
classic Bayesian personalized ranking algorithm (BPR-MF) [43], as
well as the well-known neural collaborative filtering (NCF) [17]. We
then consider strong baselines that leverages the sequential nature
of the user behavior data, including the factorized personalized
Markov chains (FPMC) [44] that models a sequence as a Markov
chain, the recurrent neural network-based GRU4Rec [19] as well
as its improved version GRU4Rec+ [18], the convolutional neural
network-based Caser [50], the Transformer-based SASRec [25], and
the state-of-the-art deep sequential recommender BERT4Rec [49]
that trains a bi-directional Transformer encoder using BERT’s Cloze
objective.

Analysis. Figure 2 and Figure 3 presents the overall recommen-
dation performance of all methods on the four datasets. We can

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

488

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

N
D

C
G

@
5

.0230

.0814 .0855 .0902
.0812

.1172
.1050

.1436
.1599

.2404

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

N
D

C
G

@
5

.0477

.0744 .0717
.0945

.1370

.1613

.1131

.1727
.1842

.2863

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

N
D

C
G

@
5

.0416

.1903

.1146

.2885
.3196

.3705 .3832 .3980

.4454
.4615

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

N
D

C
G

@
5

.0511

.1332

.0771

.2239

.3090

.3630

.2538

.4208

.4967 .5058

ML-20m

(a) Normalized discounted cumulative gain, truncated at rank 5 (NDCG@5).

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

N
D

C
G

@
10

.0349

.1064 .1124 .1211
.1074

.1453
.1360

.1633

.1862

.2709

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

N
D

C
G

@
10

.0665

.1005 .1026
.1283

.1802
.2053

.1484

.2147
.2261

.3332

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

N
D

C
G

@
10

.0621

.2365

.1640

.3439
.3627

.4064
.4268 .4368

.4818
.5003

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

N
D

C
G

@
10

.0695

.1786

.1271

.2895

.3637
.4087

.3062

.4665

.5340 .5398

ML-20m

(b) Normalized discounted cumulative gain, truncated at rank 10 (NDCG@10).

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

M
R

R

.0437

.1006 .1043 .1056 .1023

.1299
.1205

.1536
.1701

.2448

Beauty

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.1

0.2

0.3

M
R

R

.0669

.0942 .0932
.1139

.1420

.1757

.1305

.1874 .1949

.2874

Steam

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

M
R

R

.0627

.2009

.1358

.2891
.3041

.3462
.3648 .3790

.4254
.4426

ML-1m

POP

BPR-M
F

NCF

FPM
C

GRU4Rec

GRU4Rec
+

Case
r

SASRec

BERT4Rec

This
W

ork

Method

0.0

0.2

0.4

M
R

R

.0709

.1503

.1072

.2273

.2967

.3476

.2529

.4026

.4785 .4816

ML-20m

(c) Mean reciprocal rank (MRR).

Figure 3: Recommendation performance in terms of NDCG@5, NDCG@10, and MRR. These metrics measure how well a
method can rank the relevant items before the irrelevant ones.

see that our approach, which combines the traditional seq2item
training strategy with disentangled latent seq2seq training, consis-
tently outperforms all the baselines. The improvement is especially
impressive on Beauty and Steam, where the relative improvement
over the strongest baselines is in general over 35%. However, we
also notice that the performance gains on the other two datasets,
MovieLens-1M and MovieLens-20M, are less impressive, where
the relative improvement over the strongest baselines is around
5%. This may due to the fact that these two latter datasets con-
tain much longer sequences, where the average lengths are 163.5
and 144.4, respectively, whereas Beauty and Steam contain much
shorter sequences of average length 8.8 and 12.4, respectively. Such
long sequences, of length over 140, can be particularly challenging
to disentangle.

4.3 Robustness to Synthetic Noises
We now analyze how robust our seq2seq training strategy are com-
pared to the traditional strategy that only uses seq2item training.
Specifically, we corrupt the training data by randomly replacing a
portion of the observed clicks in the training set with uniformly

sampled items. We conduct this experiment on Beauty, and range
the percentage of the corrupted training data from 10% to 50%.

We show in Figure 4 two variants of our method. One optimizes
both the seq2item loss and the seq2seq loss as we have described in
Section 3, while the other one optimizes only the seq2item loss. We
can see that the recommendation performance drops slower if the
seq2seq training strategy is in use, as long as the corruption level
remains relatively modest (e.g., < 20% noises). This indicates that
our seq2seq training strategy, by mining additional supervision
signals from the longer-term future and selectively learning from
seq2seq samples of high confidence, does have the potential to bring
improved robustness.

4.4 Ablation Study
Table 2 lists the results of the ablation study. Variant 1 of our method
removes the seq2seq loss and use only the seq2item loss.We observe
a drop in performance, demonstrating the efficacy of our seq2seq
loss. Variant 2 and 3 directly reconstruct every items, i.e., optimize
the seq2item loss for every items in the future sequence, instead of
using our seq2seq loss. Variant 2 and 3 perform even worse than

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

489

0 10 20 30 40 50

Percentage of Corrupted Training Data (%)

0.5

0.6

0.7

0.8

0.9

1.0

p
er

fo
rm

a
n

ce
w

it
h

n
o
is

y
d

a
ta

p
er

fo
rm

a
n

ce
w

it
h

cl
ea

n
d

a
ta

Performance drop in Recall@5

seq2item + seq2seq

seq2item

0 10 20 30 40 50

Percentage of Corrupted Training Data (%)

0.6

0.8

1.0

p
er

fo
rm

a
n

ce
w

it
h

n
o
is

y
d

a
ta

p
er

fo
rm

a
n

ce
w

it
h

cl
ea

n
d

a
ta

Performance drop in NDCG@5

seq2item + seq2seq

seq2item

0 10 20 30 40 50

Percentage of Corrupted Training Data (%)

0.5

0.6

0.7

0.8

0.9

1.0

p
er

fo
rm

a
n

ce
w

it
h

n
o
is

y
d

a
ta

p
er

fo
rm

a
n

ce
w

it
h

cl
ea

n
d

a
ta

Performance drop in MRR

seq2item + seq2seq

seq2item

Figure 4: Relative performance drop on dataset Beauty when the training data are corrupted by synthetic noises. The y-axis
is the ratio of the performance with noisy training data to the performance with clean training data.

Table 2: Ablation study on dataset Beauty.

Evaluation Metrics

Variants of Our Method Recall@1 Recall@5 Recall@10 NDCG@5 NDCG@10 MRR

(1) Remove seq2seq training 0.1358 0.3002 0.3891 0.2369 0.2675 0.2420
(2) Individually reconstruct all items in a future sequence 0.1071 0.2709 0.3744 0.1916 0.2251 0.1992
(3) Individually reconstruct the next three items 0.1202 0.2914 0.3898 0.2084 0.2403 0.2139

(0) Default 0.1522 0.3225 0.4171 0.2404 0.2709 0.2448

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.100

0.125

0.150

0.175

0.200

Recall@1

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.200

0.225

0.250

0.275

0.300

NDCG@10

Figure 5: Impact of the threshold hyper-parameter 𝜆 ∈ [0, 1],
which is for determining whether a seq2seq sample is of
high confidence and thus whether to use the sample for self-
supervised training. 𝜆 = 0 is equivalent to not using seq2seq
training, while 𝜆 = 1 selects all seq2seq samples for training.

variant 1 which considers only one future item. The degradation is
likely due to the many irrelevant items in the long-term future.

4.5 Hyper-parameter Sensitivity
Our seq2seq loss involves a critical hyper-parameter 𝜆 ∈ [0, 1],
which is the threshold for determining if a seq2seq sample in the
training set is of high confidence and therefore whether to use this
seq2seq sample for training. We conduct experiments on Beauty
and illustrate in Figure 5 the impact of this hyper-parameter.

Figure 5 shows that the choice of 𝜆 does matter. A threshold too
strict will limit the number of seq2seq samples being used, while
a threshold too loose will introduce too many irrelevant seq2seq

samples. Results on the other datasets follow a similar trend, even
though the optimal value may vary between datasets.

5 CONCLUSION AND FUTUREWORK
We have proposed a novel sequence-to-sequence training strategy,
which leverages additional supervision signals from the longer-
termed future by performing and self-supervised learning in the
latent space and disentangling users’ intentions. Empirically we
demonstrate the additional gains brought by the extra signals.

Future directions include reducing seq2seq training’s computa-
tional cost via an engineering-efficient framework [59], as well as
improving its performance on long sequences.

ACKNOWLEDGMENTS
This work is supported by the Natioanl Key R&D Program of China
under Grand No. 2018AAA0102001 and the National Natural Sci-
ence Foundation of China Major Project (No. U1611461).

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[2] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. 2018. Multi-level
variational autoencoder: Learning disentangled representations from grouped
observations. In Thirty-Second AAAI Conference on Artificial Intelligence.

[3] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guil-
laume Desjardins, and Alexander Lerchner. 2018. Understanding disentangling
in 𝑏𝑒𝑡𝑎-VAE. arXiv preprint arXiv:1804.03599 (2018).

[4] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[5] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David KDuvenaud. 2018. Isolating
sources of disentanglement in variational autoencoders. In Advances in Neural
Information Processing Systems. 2610–2620.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

490

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In NIPS 2016.

[7] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of WSDM 2018.

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[9] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. ACM TOIS 22, 1 (2004), 143–177.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh
Salimbeni, Kai Arulkumaran, and Murray Shanahan. 2016. Deep unsuper-
vised clustering with gaussian mixture variational autoencoders. arXiv preprint
arXiv:1611.02648 (2016).

[12] Emilien Dupont. 2018. Learning disentangled joint continuous and discrete
representations. In Advances in Neural Information Processing Systems. 710–720.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2019. Mo-
mentum contrast for unsupervised visual representation learning. arXiv preprint
arXiv:1911.05722 (2019).

[14] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. 2016. Vista: a
visually, socially, and temporally-aware model for artistic recommendation. In
Proceedings of the 10th ACM Conference on Recommender Systems. 309–316.

[15] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of ACM RecSys 2017.

[16] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 191–200.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of WWW 2017.

[18] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 843–852.

[19] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[20] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations, Vol. 3.

[21] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2018. Learning deep represen-
tations by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670 (2018).

[22] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. Ieee, 263–272.

[23] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced memory
networks. In SIGIR 2018.

[24] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou.
2017. Variational deep embedding: an unsupervised and generative approach to
clustering. In Proceedings of IJCAI 2017.

[25] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM 2018.

[26] Hyunjik Kim and Andriy Mnih. 2018. Disentangling by Factorising. In Interna-
tional Conference on Machine Learning. 2654–2663.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. In International Conference for Learning Representations.

[28] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[29] Yehuda Koren, Robert Bell, Chris Volinsky, et al. 2009. Matrix factorization
techniques for recommender systems. Computer 42, 8 (2009), 30–37.

[30] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[31] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
2019. Visualbert: A simple and performant baseline for vision and language.
arXiv preprint arXiv:1908.03557 (2019).

[32] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In Proceedings of SIGKDD 2017.

[33] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of WWW
2018.

[34] Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia
Hu. 2019. Is a Single Vector Enough? Exploring Node Polysemy for Network
Embedding. In Proceedings of SIGKDD 2019.

[35] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 1053–1058.

[36] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1831–1839.

[37] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled
Graph Convolutional Networks. In Proceedings of the 36th International Conference
on Machine Learning (ICML 2019).

[38] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing disentangled representations for recommendation. In Advances in Neural
Information Processing Systems. 5712–5723.

[39] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. 2016. Shuffle and learn:
unsupervised learning using temporal order verification. In European Conference
on Computer Vision. Springer, 527–544.

[40] Mehdi Noroozi and Paolo Favaro. 2016. Unsupervised learning of visual repre-
sentations by solving jigsaw puzzles. In European Conference on Computer Vision.
Springer, 69–84.

[41] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[42] Steffen Rendle. 2019. Evaluation Metrics for Item Recommendation under Sam-
pling. arXiv:arXiv:1912.02263

[43] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence.

[44] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[45] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooperative
work. ACM, 175–186.

[46] Ruslan Salakhutdinov and Andriy Mnih. 2011. Probabilistic matrix factorization.
In NIPS, Vol. 20. 1–8.

[47] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[48] Kihyuk Sohn. 2016. Improved deep metric learning with multi-class n-pair loss
objective. In Advances in Neural Information Processing Systems. 1857–1865.

[49] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In Proceedings of CIKM 2019.

[50] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565–573.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[52] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235–1244.

[53] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In Proceedings of SIGIR 2015.

[54] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the tenth ACM international
conference on web search and data mining. 495–503.

[55] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 3733–3742.

[56] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic
recurrent model for next basket recommendation. In Proceedings of SIGIR 2016.

[57] Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image colorization.
In European conference on computer vision. Springer, 649–666.

[58] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen,
and Jun Gao. 2018. ATRank: An attention-based user behavior modeling frame-
work for recommendation. In AAAI 2018.

[59] Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. 2020.
Contrastive Learning for Debiased Candidate Generation in Large-Scale Recom-
mender Systems. arXiv:arXiv:2005.12964

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

491

https://arxiv.org/abs/arXiv:1912.02263
https://arxiv.org/abs/arXiv:2005.12964

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Disentangling a User's Mixed Intentions
	2.3 Self-Supervision and Contrastive Learning

	3 Method
	3.1 Notations and Problem Formulation
	3.2 Sequence-to-Sequence Self-Supervision
	3.3 Disentangled Sequence Encoding

	4 Experiments
	4.1 Experimental Setup
	4.2 Recommendation Performance
	4.3 Robustness to Synthetic Noises
	4.4 Ablation Study
	4.5 Hyper-parameter Sensitivity

	5 Conclusion and Future Work
	Acknowledgments
	References

