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ABSTRACT
Visual Question Answering (VQA) aims to answer natural language
questions given images, where great challenges lie in comprehen-
sive understanding and reasoning based on the rich contents pro-
vided by both questions and images. Most existing literature on
VQA fuses the image and question features together with atten-
tion mechanism to answer the questions. In order to obtain a more
human-like inferential ability, there have been some preliminary
module-based approaches which decompose the whole problem
into modular sub-problems. However, these methods still suffer
from unsolved challenges such as lacking sufficient explainability
and logical inference — no doubt the gap between these preliminary
studies and the real human reasoning behaviors is still extremely
large. To tackle the challenges, we propose a Perceptual Visual Rea-
soning (PVR) model which advances one important step towards
the more explainable VQA in this paper. Our proposed PVRmodel is
a module-based approach which incorporates the concept of logical
and/or for logic inference, introduces a richer group of perceptual
modules for better logic generalization and utilizes the supervised
information on each sub-module for more explainability. Knowl-
edge propagation is therefore enabled by resorting to the modular
design and supervision on sub-modules. We carry out extensive
experiments with various evaluation metrics to demonstrate the su-
periority of the proposed PVR model against other state-of-the-art
methods.

KEYWORDS
neural module networks, compositional reasoning, visual question
answering

ACM Reference Format:
Guohao Li, Xin Wang, and Wenwu Zhu. 2019. Perceptual Visual Reasoning
with Knowledge Propagation. In Proceedings of the 27th ACM International
Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3343031.3350922

∗Beijing National Research Center for Information Science and Technology (BNRist).
†Corresponding Authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3350922

Multi-modal 

Attention

q

v

Fusion

Recurrent 

Cell

Recurrent 

Cell

Recurrent 

Cell

Recurrent 

Cell

Image

Question

Monolithic Methods

Recurrent Methods

Image

Question

Predicted scores of 

candidate answers

(a) Monolithic and Recurrent Methods

M0

M1 M2

M3

M4

Our Method

Question

Image

Knowledge Guidance

Module Parameters

visual features

supervise

Modular Network 

Instantiation

Predicted scores of 

candidate answers

supervise

Layout
Generation

(b) Our Proposed Method

Figure 1: Monolithic, Recurrent Approaches v.s. Our Pro-
posed Approach

1 INTRODUCTION
Visual Question Answering (VQA) is regarded as one of the most
compelling problems in both multimedia and computer vision due
to its tough requirement for comprehensively understanding and
reasoning based on the given cross-modal information. As a key
component in visual Turing test, VQA has drawn an increasing
number of research attention from both academia and industry.

One natural question is how well can a VQA algorithm answer
the given visual questions compared with humans. Many existing
works on VQA have been developed aiming to select candidate
options as correctly as a human for multi-choice questions [33]
and produce answers as similar as a human for open-domain ques-
tions [5]. One widely adopted solution so far is to locate the most
relevant visual region of images based on attentions obtained from
the given questions [7, 20, 28, 31], which can be referred to as mono-
lithic methods. Another type of solution is to utilize a recurrent
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cell whose output at the current step will be used as input to the
next running round [11, 25] for the purpose of simulating simple
sequential reasoning process. The general concepts of these two
types of solutions are depicted in Figure 1 (a).

However, both types of solutions fail to model comprehensive
reasoning when it comes to the scenario in which we need to locate
different objects, tell their colors, and compare their properties.
Although to ameliorate the ability of sophisticated reasoning, some
pioneering works [4, 10, 14] propose the module network which
utilizes several sub-modular networks to simulate the composi-
tional reasoning process of human in VQA tasks, their model still
suffers from two challenging problems: i) the “black box” issue
(unexplainability) in deep neural networks — it is unclear whether
these sub-modules are doing exactly the tasks that they are de-
signed for; ii) the common issue faced by all existing methods — it
is far from simulating human logic inferences. In general, there still
exists an extremely large gap between real human reasoning and
current VQA models.

In this paper, we propose a Perceptual Visual Reasoning (PVR)
model to tackle these challenges and move one important step
towards the more explainable VQA, as is shown in Figure 1 (b).
The proposed PVR model decomposes the given questions into
several sub-tasks with a hierarchical structure, chooses the most
appropriate perceptual module for each sub-task, and feeds them
with personalized inputs. Each perceptual module is designed to
realize a certain function with a joint perception of questions words,
image pixels and feedbacks from other modules in the hierarchical
structure. We incorporate the logical and/or to simulate the process
of logic inference. We design a richer group of perceptual mod-
ules than previous modular networks such that the PVR model
can possess a more powerful and flexible generation ability. To
further enhance the capability of explanation, guidance informa-
tion tailored for each perceptual module is employed to supervise
the learning process of each module. Thus the knowledge from
the supervised guidance information is able to propagate from top
perceptual modules to bottom ones through the connected hierar-
chical structure. Therefore, our proposed PVR model is capable of
simulating compositional inferring procedure and producing more
explainable intermediate results. Besides the VQA Accuracy metric
that is widely used in previous works, we also compare the pro-
posed PVR model with several state-of-the-art approaches based on
five additional metrics, e.g., Consistency and Grounding, for more
comprehensive evaluations.

To summarize, this paper makes the following contributions.

• We propose the perceptual visual reasoning (PVR) model,
which is a general modular taxonomy design for composi-
tional and explainable visual reasoning on real images.
• We unify visual and logic modules in a perceptual modular
framework to simulate the process of human inference.
• We employ guidance information tailored for different per-
ceptualmodules as auxiliary supervisions on sub-tasks, which
results in both improved model performance and better in-
terpretability.
• We conduct extensive experiments to demonstrate the ad-
vantages of proposed PVR model against other comparative
methods in terms of various evaluation metrics.

2 RELATEDWORK
In this section, we review related works on VQA by dividing them
into three groups.
Fusion of image and question features. The necessity of simul-
taneously analyzing image and text informationmakes VQA amulti-
modal task in essence [1, 5, 8, 13, 15, 18, 26]. Therefore, there have
been many works on VQA trying to improve the accuracy through
fusing the image and question features in many different ways such
as combining CNN features of images and LSTM features of ques-
tions together [7, 16, 17, 19, 20, 22–24, 27, 29, 30, 32]. Most works
make full use of the rich image information by resorting to the atten-
tion mechanism which can highlight the regions that are important
for getting the correct answers [20, 23, 24, 29–31]. In particular,
Yu et al. [29, 30] predict multiple attention maps for getting comple-
mentary visual features, Lu et al. [20] and Nguyen et al. [23] adopt
the idea of synchronous or asynchronous co-attention schemes to
bridge the correlations between images and questions. Although
these fusion-based approaches have achieved remarkable perfor-
mance gains, they fail to answer questions requiring complicated
logical inference for real images and are still far from real human
reasoning process.
Recurrent Approaches. In contrast with the above monolithic ap-
proaches, recurrent approaches [11, 25, 28] perform multiple-step
reasoning to answer complicated visual questions. Each reasoning
step is implemented using a general-purpose reasoning block which
takes results from the previous iteration as input and outputs an
updated result to its next iteration. In particular, Yang et al. [28]
stack the attention layers to form multi-step visual attentions,
Perez et al. [25] adopt multiple conditional normalization layers
to fuse visual and textual information, Hundson et al. [11] per-
form multi-step reasoning using a MAC cell that can extract visual
information and update the internal memory. Although these ap-
proaches can simulate sequential reasoning processes, especially in
simple synthetic visual reasoning scenarios (e.g., CLEVR [13]), they
do not explicitly interpret the reasoning procedure into a series of
semantic sub-tasks.
Modular Approaches. Given that the procedure of visual reason-
ing is essentially compositional, modular approaches [3, 4, 9, 10, 14,
21] model human’s visual capability through primitive modules and
investigate visual reasoning problem in a modular way. The major
difference between modular and recurrent approaches is that mod-
ular approaches explicitly decompose questions into semantic sub-
tasks and assemble specialized modules to handle these sub-tasks.
This compositional design enables more transparent reasoning pro-
cedures. However, existing modular approaches mainly focus on
simple and easy tasks for synthetic datasets [13] and fail to perform
more complex visual reasoning in real-world cases. For example,
the state-of-the-art modular approaches [14, 21] on CLEVR design
fine-grained dataset-specific modules, e.g., filter_rubber_material,
which cannot generalize to the real-world scenario and is very far
away from the real human reasoning behaviors.

In this work, we address these difficulties with a library of general
perceptual modules suitable for the real-world scenario, each of
which is capable of utilizing the supervised guidance information
for semantics-to-visual perception, helping itself to decouple and
cooperate with other modules.
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Figure 2: Overview of our proposed Perceptual Visual Reasoning (PVR) model. Given a pair of image and question, our model
constructs a series of perceptual modules (depicted as small colorful rectangles) using an Attentive Seq2Seqmodel, where each
module comes with a personalized textual input and visual input for semantics-to-visual perception. The perceptual modules
are assembled into a tree-structured reasoning layout and then instantiated into a neural network which takes image features
as input and executes the modules in a bottom-up manner until getting the final answer. We visualize the intermediate atten-
tionmaps for somemodules, e.g., the bottom Find(girl)module locates the girl in the image and the Rel2obj(wearing)module
locates the shirt and bowknot shewears. During training time, we leverage the guidance knowledge (visual objects coordinates,
attributes, and relationships) to find the appropriate inputs for different perceptual modules and supervise their learning pro-
cedures. Supervised guidance information (depicted as dashed colorful curve arrows) is designed to help semantics-to-visual
perception in eachmodule and propagated in a top-downmanner. Themodule perception is visualized by colorful forkmarks,
and the knowledge propagation is visualized by rainbow strips betweenmodules.We note that the guidance knowledge is only
used in training to help module learning, and will be discarded during test time.

3 PERCEPTUAL VISUAL REASONINGWITH
KNOWLEDGE PROPAGATION

In this section, we detailedly discuss the Perceptual Visual Reason-
ing (PVR) model which targets at explainable and compositional
reasoning in real-world visual scenes. Figure 2 gives an overview
of our PVR model based on an example. Concretely, the PVR model
consists of three components:

(1) Modular Layout Generation. This component generates
several sub-tasks with a hierarchical structure based on the
given question and assembles various functional perceptual
modules with personalized inputs together to perform these
sub-tasks.

(2) Modular Network Instantiation. This component dynam-
ically instantiates a modular deep neural network according
to the generated modular layout and execute these instanti-
ated neural modules in a bottom-up way.

(3) SupervisedKnowledgeGuidance. This component super-
vises the learning procedure of the above two components in
the training stage such that each perceptual module is func-
tioning exactly as it is designed and the guidance knowledge
can propagate from top modules down to bottom modules.

We first describe our module designs in Sec. 3.1 and then present
the modular layout generation in Sec. 3.2, followed by the modular

network instantiation and knowledge propagation among percep-
tual modules in Sec. 3.3. We remark that the executions of both
modular layout generation and modular network instantiation are
under the supervision of knowledge guidance.

3.1 Module Designs
A module can be regarded as a progressive summing up from exist-
ing reasoning states to a new reasoning state. Each module accepts
zero, one or more inputs, and then generates one output. This
many-to-one design establishes a hierarchical tree-based reason-
ing procedure and enables us to simulate the reasoning process by
exploiting its compositional nature.

PVR adopts a hierarchical tree-based modular network to con-
nect low-level visual perception with high-level logic inference,
decoupling perceptual modules with specific functionalities to en-
courage compositional reasoning and allowing perceptual mod-
ules to accept both textual and visual inputs to improve versatility
in complicated real-world visual scenarios. These designs aim at
simulating human-like inferring procedure in complicated visual
scenarios and producing more explainable intermediate results.

As shown in Table 1, we propose a library of modules designed
for various sub-tasks ranging from lower-level visual perception
to higher-level logic inference. We divide our modules into four
categories based on their designed functionalities.
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Table 1: The list ofmodules in ourmodel. Modules are classified into four categories and operate with three kinds of data types
(att, bool, ans). Modules that accept textual parameters (xtxt ) are marked with ✓. Modules also use the image features (xvis )
and question features (xq ) in implementation. The ⊙ operation is element-wise multiplication, vec is an operation flattening
attention maps and adding extra dimensions(e.g., max, min, average over attention maps). P (b) is the probability being true
that b represents. The padding operation converts logical outputs to answers.

Module Type Module Name xtxt Inputs Output Implementation Details

Attention

Find ✓ - att aout = conv2 (conv1 (xvis ) ⊙Wxtxt )
Filter[Attr|Pos] ✓ att att aout = minimum(a1, conv2 (conv1 (xvis ) ⊙Wxtxt ))

FilterDiff [att, att] att aout = minimum(a1, a1 − a2)
Rel2[subj|obj] ✓ att att aout = conv2 (conv1 (xvis ) ⊙W1

∑
(a ⊙ xvis ) ⊙W2xtxt )

And [att, att] att aout = minimum(a1, a2)

Logic

Exist att bool bout =W T
b vec(a)

Verify[Attr|Pos] ✓ att bool bout =W T
b (W1

∑
(a ⊙ xvis ) ⊙W2xtxt )

VerifyRel, Same ✓ [att, att] bool bout =W T
b (W1

∑
(a1 ⊙ xvis ) ⊙W2

∑
(a2 ⊙ xvis ) ⊙W3xtxt )

SameAll ✓ att bool bout =W T
b

[
W1
∑
(a ⊙ xvis ) ⊙W2xtxt ,W3xq

]

Inference
LogicNot bool bool P (bout ) = 1 − P (b )
LogicAnd [bool, bool] bool P (bout ) = P (b1)P (b2)
LogicOr [bool, bool] bool P (bout ) = 1 − (1 − P (b1)) (1 − P (b2))

Answer

AnswerLogic bool ans yout = paddinд (b )
QueryName att ans yout =W T

y

(
W1
∑
(a ⊙ xvis ) ⊙W2xq

)
QueryPos att ans yout =W T

y (W1
∑
(a ⊙ xvis ))

QueryAttr, Choose ✓ att ans yout =W T
y (W1

∑
(a ⊙ xvis ) ⊙W2xtxt )

ChooseRel ✓ [att, att] ans yout =W T
y [W1

∑
(a1 ⊙ xvis ),W2

∑
(a2 ⊙ xvis )]

Common [att, att] ans yout =W T
y

[
W1
∑
(a1 ⊙ xvis ) ⊙W2

∑
(a2 ⊙ xvis ),W3xq

]

1) Attention Modules localize the most relevant visual regions.
Each attention module generates an attention map over the image
based on the input attention map(s) (if any) and its specified func-
tionality. Essentially, attention modules perform sub-tasks such as
detecting visual objects or modeling visual relations.

2) Logic Modules analyze the localized visual information and
generate a logical output. They may be used for checking the exis-
tences or verifying the properties of some attended subjects.

3) Inference Modules perform basic logical inference, e.g., not,
and, or. They accept logical input(s) and generate a logical output.

4) Answer Modules serve as the top-level module. In the VQA
task, an answer module generates the final answer based on the
intermediate results produced by bottom modules.

Modules are designed for specific functionalities with semantic
meanings. For example, a Find module can localize visual regions
given a name; a Rel2subj module would localize the subject visual
regions given the relation and object by modeling (subject, relation,
object) relationships; a VerifyAttr module would check whether
the localized visual regions satisfies some specified attributes. Fur-
thermore, our knowledge propagation strategy encourages these
modules to learn its expected behavior in the training stage, which
will be elaborated in Sec. 3.3.

Modules can accept textual parameters to improve perceptual
versatility in the complicated real-world visual scenario. A module
is usually instantiated with a textual parameter to specify a particu-
lar functionality. For example, Find[cat] and Find[dog] instantiates
the same findmodule with different textual parameters, where one
would localize cat while the other would localize dog in the image.
Besides the textual parameters, a module can optionally take image
features and question features as inputs.

Formally, a module Fm is a parameterized function that receives
zero, one or more reasoning states {Smi } and outputs one reasoning
state Sm = Fm ({Smi }|xvis ,xq ,xtxt ;θm ), where θm is internal neu-
ral network parameters, xvis , xq , and xtxt are image features, ques-
tion features and textual parameters respectively. We will explain
the generation for xq and xtxt in Sec. 3.2. In our implementation,
reasoning state Sm can be one of the following three tensors depend-
ing on the module types: 1) An attention map over objects-based
image features, denoted as am ; 2) A representation of the proba-
bility being logical true or false, denoted as bm ; 3) A probability
distribution over possible answers, denoted as ym .

Modules are usually implemented as small differentiable neural
networks. We list the implementation details in Table 1. For logical
inference modules, e.g., LogicAnd and LogicOrmodules, we derive
formulations based on the assumption that events are independent
with each other. Note that although there are various types of
modules, they are all unified in our modular framework as building
blocks for visual reasoning.

3.2 Modular Layout Generation
Based on the semantics and logic in the given question, we construct
a hierarchical tree-based modular layout — a tree composed of
modules. The bottom modules (tree leaves) are usually used for
low-level visual perceptions and the top-most module (tree root) is
used to generate an answer. We execute these modules in a bottom-
up manner to reach the final answer.

Unlike previous works whose module’s textual parameters are
either hard-coded [14, 21] or set without any guidance [9, 10], the
PVR model not only predicts the overall modular layout but also
learns to fit each module with personalized textual parameters at
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the same time. As such, PVR ensures that each module receives
appropriate textual parameters and therefore generates explainable
results, which is of great importance in constructing an explainable
visual reasoning system.

We note that a valid tree-based modular layout can be repre-
sented as a unique sequence after a postorder traversal and vice
versa. Thus a module sequence (if valid) can be reverted to a unique
tree structure following the topological restrictions of modules.
Therefore, the module layout prediction problem can be formulated
as a sequence-to-sequence problem. We adopt the Attentive Re-
current Neural Network [6] to address the sequence-to-sequence
layout prediction problem, adding an extra loss in the training stage
to personalize the textual input for each module.

For a questionqwithK words, questionwords are first embedded
into vectors {wk }k=1, · · · ,K . We use a multi-layer LSTM as encoder,
feeding the word sequences into it to get a sequence of hidden vec-
tors {henck }k=1, · · · ,K at each encoder time-step k . The final encoder
states are used as question features xq in module execution after-
ward. In the decoding stage, a decoder is implemented as an LSTM
that has the same structure with encoder but with different network
parameters. Similar to words, each module is regarded as a token
and also embedded into vectors. At each decoder time-step t , the
decoder fuses its hidden output and soft attended input sequence,
to predict a module tokenm(t ) , whose embedding is fed back into
the decoder at next time-step to predict the next module token.

Given the decoder output at t time-step hdect and the question
sequence encoding {henck }k=1, · · · ,K , the decoding procedure at t
time-step is described as follows:

utk = v
T tanh(W1h

dec
t +W2h

enc
k ), (1)

α
(txt )
tk =

exp(utk )∑K
i=1 exp(ut i )

, ct =
K∑
k=1

α
(txt )
tk henck , (2)

p (m(t ) |m(1) , · · · ,m(t−1) ,q) = softmax(W3h
dec
t +W4ct ), (3)

where theW{1,2,3,4} and v are network parameters to be learned
from data; α (txt )

tk is the attention weights over input quesiton se-
quence, and used for modeling p (m(t ) |m(1) , · · · ,m(t−1) ,q) — the
probability of predicting module tokenm(t ) at the t time-step. For
a module layout sequence l = [m(1) , · · · ,m(T )], the probability of
predicting l is p (l |q) =

∏
m (t ) ∈l p (m

(t ) |m(1) , · · · ,m(t−1) ,q).
We greedily select module token with the highest probability

as the tth module at decoder time-step t , and aggregate textual
parameter fromword embeddings x (t )txt =

∑K
k=1 α

(txt )
tk wk to specify

a particular functionality for the tth module.
At training time, we exploit dataset annotations to fabricate

the ground-truth layout l∗ and ground-truth question attention
α (txt )∗ as auxiliary supervise information. Given the training entry
(q, l∗,α (txt )∗), we maximize the likelihood of predicting ground-
truth layout l∗, as well as jointly minimize the KL-divergence be-
tween the predicted question attention α (txt ) and ground-truth
question attention α (txt )∗:

L (дen) = −p (l∗ |q;θ ) + β
1
|T |

∑
mt ∈T

KL(α
(txt )∗
t ,α

(txt )
t ). (4)

where T is the set of modules that accept textual parameters.

This joint training loss ensures that PVR learns to infer appropri-
ate modular layout for further reasoning from the given question,
as well as feed modules with personalized textual parameters.

3.3 Modular Network Instantiation and
Knowledge Propagation

We have so far designed a collection of neural modules and de-
scribed how to construct an appropriate hierarchical tree-based
modular layout for reasoning. In this section, we turn to Modular
Network Instantiation where modules in the generated modular
layout are dynamically assembled into a modular neural network.
Each module in this modular neural network takes outputs from
its child modules and feeds its output to its parent module until
obtaining a final answer from the top-most module. Formally, given
question q and image v , the modules eventually calculate a proba-
bility distribution over candidate answers and select the one with
the highest probability as the final answer:

ŷ = argmax P (y |q,v ;θ ). (5)

Existing modular approaches optimize their modules using a
single performance-oriented classification loss. In simple visual sce-
nario (e.g., CLEVR [13]), some modular approaches succeed in both
the performance and explainability [21]. However, in complicated
real-world scenario [8, 12], existing methods fail to produce clear
reasoning evidence and tend to sacrifice explainability for better
performance. The major challenge here is that modules have diffi-
culties in decoupling functionalities from each other when being
optimized jointly.

Instead of optimizing modules with supervision merely from
the ground-truth answer, PVR takes each module as an agent capa-
ble of perceiving external supervision from guidance knowledge
and leverages this rich auxiliary information to help optimizing
module parameters. Since these perceptual modules are organized
in a tree structure, we allow the guidance knowledge tailored for
each perceptual module to propagate from top modules to bottom
ones through the connected hierarchical structure in a top-down
manner. The guidance knowledge is expected to help modules to
learn specialized decoupled functionalities.

Top Task

Description

Tree Find (dog)

Find (man)

Rel2obj 

(wearing)
Find (girl)

Find (apple)

FilterAttr (red)

Rel2subj (eating)

And

Dog
All  things that the 

man wears
A girl who is eating red apple

Referential Expressions GroundingObject Detection
Relationships 

Modeling

Figure 3: Examples showing sub-trees can be regarded as sub-tasks.

In an alternative view, such an approach enables multi-task learn-
ing for visual reasoning, where each sub-tree in the modular layout
can be regarded as a sub-task to be executed. As the examples
in Fig. 3, Find[dog] is a single module in the tree structure de-
scribing an Object Detection sub-task for “dog(s)”; The sub-tree
Rel2obj[wearing](Find[man]) designates a sub-task of locating
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Table 2: Results on GQA dataset. The Grounding results are reported on the validation set, while other results on the test set.

Methods Binary Open Consistency Plausibility Validity Distribution Grounding Accuracy
Global Prior 42.94 16.62 51.69 74.81 88.86 93.08 - 28.90
Local Prior 47.90 16.66 54.04 84.31 84.33 13.98 - 31.24

CNN 36.05 1.74 62.40 34.84 35.78 19.99 - 17.82
LSTM 61.90 22.69 68.68 87.30 96.39 17.93 - 41.07

CNN+LSTM 63.26 31.80 74.57 84.25 96.02 7.46 - 46.55
BottomUp [2] 66.64 34.83 78.71 84.57 96.18 5.98 - 49.74
N2NMN [10] 72.59 40.30 83.64 84.21 96.29 5.81 58.94 55.44
MAC [11] 71.23 38.91 81.59 84.48 96.16 5.34 88.29 54.06
PVR (Ours) 74.58 42.10 85.85 84.96 96.47 5.64 97.44 57.33

“all things that the man wears”, which involves the task of Rela-
tionships Modeling. Modules can be further organized for more
complicated Referential Expressions Grounding sub-tasks, such as
And(Find[girl], Rel2subj[eating](FilterAttr[red](Find[apple]))
which refers to “a girl who is eating red apple” in the image. Beyond
the Attention modules, the high-level modules (i.e., Logic, Inference
and Answer modules) also specify sub-tasks, and we regard them
as VQA sub-tasks.

However, we remark that our work is different from conventional
multi-task learning problem in several aspects:

1) Dynamic — tasks are changing from one training instance to
another training instance;

2) Consistent — tasks with similar routines are addressed by the
same set of neural modules;

3) Compositional — tasks are composed by several sub-tasks;
4) Plug and play — multi-task supervised information is optional

and can be used as long as it is available.

Here, we explain what the guidance knowledge is and how we
collect them in our PVR model. For Attention modules, guidance
information is the bounding boxes of visual regions that modules
should focus on. For high-level modules (i.e., Logic, Inference and
Answer modules), guidance information is the expected scores over
candidate answers. In our implementation, we use the guidance
information for all Attention modules and the top-most Answer
module. We collect the guidance knowledge by referring to ground-
truth scene graphs of the input images and pre-executing the mod-
ular networks in a symbolic manner. When ground-truth scene
graphs are not available, an alternative is to utilize state-of-the-art
scene graph parsers to collect guidance knowledge. Note that the
guidance knowledge is only used at training time to help module
learning, and is discarded at test time.

Next, we formulate the training procedure for Attentionmodules
in detail. Suppose an image has K objects-based visual features, the
kth of which corresponds to a bounding-box proposal bboxk . The
output of an attention module is therefore an attention map a1...K
over theK bounding-box proposalsbbox1...K , where

∑
k ak = 1. On

the other side, the guidance knowledge is L ground-truth bounding-
boxes bbox∗1...L , indicating the expected attention regions. To close
the gap between the module outputs and guidance knowledge, we
propose to align object-based attention maps in C ∗ C grid cells
in the whole image and minimize the KL-divergence between the
output attentions and the guidance attentions.

The alignment operation from object bounding-box bbox toC ∗C
grid cells is defined as:

G (i, j ) (bbox ) =
Area(Intersect (bbox ,дrid (i, j ) ))

Area(bbox )
, (6)

where дrid (i, j ) is the ith row, jth column grid cell, Intersect gen-
erates intersection region of two boxes, Area calculates the area
of one box, and G (bbox ) is a C ∗ C matrix summing up to 1. We
align module output attentions and guidance attentions into grids
as follows:

α (vis ) =

K∑
k=1

akG (bboxk ), α (vis )∗ =
1
L

L∑
l=1

G (bbox∗l ), (7)

where the α (vis ) and α (vis )∗ are C ∗C matrices summing up to 1.
Given a training entry (q,v,y∗,α (vis )∗), we jointly minimize

the softmax cross-entropy loss on the final answer scores and the
KL-divergence of the output attentions and the guidance attentions
in every attention module:

L (exe ) = −
∑
i
y∗i logP (yi |q,v ;θ ) + γ

1
|A|

∑
mt ∈A

KL(α
(vis )∗
t ,α

(vis )
t ),

(8)

where y∗ is the one-hot ground-truth answer, θ is the network
parameters of modules, A is the set of attention modules, γ is a
factor balancing the losses.

3.4 Putting All Together
Finally, the Modular Layout Generation and Modular Network In-
stantiation under Supervised Knowledge Guidance can be jointly
optimized by the total loss:

L = L (дen) + ηL (exe ) . (9)

We close this section by pointing out that our proposed PVR
model encourages explainable and compositional visual reasoning
by unifying various types of modules, as well as supervising their
inputs (i.e., textual parameters) and outputs (i.e., attention maps)
simultaneously to regularize individual module behaviors.
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4 EMPIRICAL EXPERIMENTS
We evaluate our model on the recent GQA [12] dataset for real-
world visual reasoning. The dataset contains 113K real-world im-
ages and 22M multi-step compositional questions that require com-
plex and multiple reasoning skills to answer, such as recognition, re-
lation reasoning, logical inference, and comparisons. In this dataset,
each image is annotated with a scene-graph providing a structural
representation of semantics, while each question is associated with
a functional program that specifies the reasoning steps to answer
the question. In contrast to previous synthetic CLEVR [13] dataset,
GQA dataset focuses on real-world visual reasoning with a much
larger semantic space and more diverse visual concepts.

In general, the experiments demonstrate the following advan-
tages of our proposed Perceptual Visual Reasoning (PVR) model.
First, our model outperforms the state-of-the-art methods on stan-
dard VQA accuracy and exhibits superior performances on metrics
reflecting model consistency and explainability (Section 4.1). Sec-
ond, our model can provide clear reasoning evidence with semantic
meaning at each reasoning step (Section 4.2).

To gain better insights into the PVRmodel, we conduct extensive
ablation studies in section 4.3.

4.1 Model Performance
We use the official metrics for GQA dataset [12] to evaluate the
model performance, including standard VQA Accuracy metrics (for
open and binary questions), a Consistency metric measuring re-
sponses consistency across different questions, a Grounding metric
measuring the degree to which the model grounds its reasoning
in the image, Validity and Plausibility metrics measuring whether
the answer is valid or reasonable for the question regardless of the
image, a Distribution metric measuring the overall match between
the true answer distribution and the predicted distribution.

We compare the proposed PVRmodel with several baseline meth-
ods (LSTM-CNN, etc.) and state-of-the-art methods. The bottom-up
attention [2] is the winner of the 2017 VQA challenge, represent-
ing the state-of-the-art of monolithic methods. The N2NMN [10]
is a modular approach that can handle real-world visual scenes.
Here we use the same visual features as other methods for N2NMN
for fair comparisons. Note that most state-of-the-art modular ap-
proaches [14, 21] design specializedmodules for CLEVR [13] dataset,
e.g., filter_rubber_material, thus are difficult to adapt to the real-
world scenario. The MAC model [11] that performs multi-step
reasoning based on a powerful recurrent cell is the state-of-the-art
recurrent method for both the CLEVR [13] and GQA [12] visual
reasoning datasets.

The quantitative model performances of baseline methods and
ours are listed in Table 2.1 Compared with MAC, PVR gains 3.3%
improvement on VQA accuracy (3.3% and 3.2% for binary and
open questions, respectively). As for the Consistency metric, PVR
obtains even greater improvement (4.3%), demonstrating that our
model evinces more consistent behavior when answering different

1In Table 2, we report GQA results on the test set, except that the Grounding results are
reported on the validation set. Because the official evaluation server, which generates
GQA test set results, does not support evaluating the Grounding score. We instead
calculate the Grounding score on the validation set using the official evaluation scripts
offline. Due to the limit on the number of submissions to the official evaluation server,
we report the GQA results on the validation set in the rest of the paper.

questions, which is essentially the merits of our decoupled modular
design. For the Plausibility, Validity and Distribution metrics, PVR
also achieves competitive results, but we do not emphasize these
metrics, because they are either irrelevant to visual information
or heavily dependent on dataset distribution, providing limited
insights for visual reasoning methods.

We further compare PVR with MAC in terms of the accuracy
per question type in Table 3, where all results are reported on
the validation set. Each question in GQA is associated with two
types: structural type (e.g., query, verify, logical) and semantic type
(e.g., relation, attribute, object). Overall, PVR outperforms MAC
on every question type. For example, the significant improvement
on questions involving attribute semantics (4.00%) indicates that
our attribute-related modules (FilterAttr, VerifyAttr, etc.) ef-
fectively capture the diversity of object attributes. Although the
improvement for logical questions is relatively small (0.95%) due
to the simple implementations of logical inference modules, our
model is capable of revealing explicit reasoning procedures for log-
ical questions. After inspecting both the successful and failed cases,
we believe that the appropriate modular layout together with the
well-trained attention modules can benefit most types of questions.

Table 3: Accuracy per question type on GQA validation set.

Q Types MAC [11] PVR (ours) Acc. Boost
All 62.07 64.47 +2.40
Open 46.65 49.29 +2.64
Binary 78.52 80.67 +2.15
Query 46.65 49.29 +2.64

Compare 66.80 69.06 +2.26
Choose 78.60 83.47 +4.87
Logical 81.23 82.18 +0.95
Verify 78.65 79.89 +1.24
Global 65.28 65.88 +0.60
Object 83.37 83.67 +0.30

Attribute 67.65 71.65 +4.00
Relation 53.59 55.36 +1.77
Category 55.44 59.16 +3.72

4.2 Explainability
We adopt the Grounding metric proposed in GQA [12] to quantita-
tively evaluate the degree to which the model grounds its reasoning
in the image. As is shown in Table 2, PVR achieves 97.44% ground-
ing score while MAC obtains 88.29% on the validation set of GQA
dataset. The metric shows that PVR effectively grounds its rea-
soning in the image instead of making educated guess based on
language priors or dataset biases.

Furthermore, we provide visualized examples in Fig. 4 to show
that our proposed PVR model can perform explainable visual rea-
soning in real-world scenarios through enabling every module to
carry out specialized functionality at each reasoning step.

4.3 Module Performances and Ablations
We conduct a more in-depth study on the GQA validation set by
analyzing the performance of individual components and modules
in our model, also by evaluating model ablations for obtaining more
insightful results.
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(1)  What is the blue bird standing on ?
(4)  Does the shirt have a different color 

than the kite ?

(3)  Are there any men to the right of the 

person that is holding the tennis racket ?

(2)  Are the curtains to the right or to the 

left of the red pillow ?
(5)  Is the frisbee thick and red ?

Logic And

VerifyAttrVerifyAttr

Find Find
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Figure 4: Real Examples visualizing the reasoning process of our PVR model. The intermediate outputs of attention modules
are depicted with overlaid attention maps. We also show the textual parameters that are fed to modules.

The modular layout generation component performs nearly per-
fect with a 99.4% accuracy. In order to measure the degree to which
modules receive proper textual parameters, we define a Textual
Attention Score metric. For each module, the metric is defined as the
sum of properly assigned question attention weights to this module.
By averaging over all modules, PVR achieves a nearly perfect score
of 97.8%.

Table 4: Module Performances.

Metrics Find
Filter
Attr

Rel2
subj

Verify
Attr

Exist
Query
Name

Att. 0.490 0.466 0.387 - - -
Acc. - - - 78.8 82.9 44.0

We further analyze the performances of individual modules of
our PVR model. For attention modules, we design a Grid Atten-
tion Score (Att.) metric

∑
minimum(α

(vis )∗
t ,α

(vis )
t ) to measure

the degree to which the attention module t attends to expected
regions, where α

(vis )∗
t ,α

(vis )
t are C ∗ C grid cells as defined in

Sec. 3.3, the minimum is an element-wise minimum operation. For
high-level modules, we use the accuracy (Acc.) metric. We list the
performances of several modules in Table 4.

As expected, increasing task complexity leads to the continual
performance drops for Find, FilterAttr and Rel2subj modules.
Furthermore, PVR performs well on tasks such as checking exis-
tences or verifying attributes while struggling on more difficult
tasks, e.g., inferring name from visual attention.

To gain further insights into the contributions of PVR, we con-
duct several ablation studies. We perform experiments using a sim-
plified library of modules similar to [10], including Find, Filter,
Relate, Exist and Query modules. This variant leads to a 4.37%

drop in the accuracy, 8.47% drop in the consistency score and 38.7%
drop in the grounding score. The ablations demonstrate that com-
pared with the simplified version, the hierarchical modular design
in PVR is effective in learning decoupled module functionalities
from data. In another ablation experiment, removing the guidance
knowledge leads to 0.82% drop in the accuracy, 1.76% drop in the
consistency score and 24.6% drop in the grounding score, which
reveals that the supervised guidance knowledge can benefit both
the performances and explainability of our PVR model.

5 CONCLUSIONS
In this work, we propose the Perceptual Visual Reasoning (PVR)
model, a module-based approach for real-world visual reasoning.
Our PVR model solves the real-world visual reasoning problem
by decomposing a given question into several correlated sub-tasks
and progressively solving these sub-tasks. We design a library of
hierarchical neural modules to bridge low-level visual perception
with high-level logic inference in a unified framework, where each
module is capable of perceiving external guidance information to
learn its specialized functionality. These design choices encourage
an explainable and compositional reasoning process. We validate
the superiority of our model in both performances and explain-
ability, showing that PVR is able to outperform state-of-the-art
models on the GQA dataset and produce transparent, explainable
intermediate results in the reasoning process.
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