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ABSTRACT
The problem of social event organization (SEO) rises with the advent

of online web services and plays an important role in helping users

discover new offline events. Existing work on SEO only assumes

that different users have different preferences towards different

events, ignoring the fact that each event (its organizer) may have a

separate preference towards every user. In this paper, we investigate

joint user- and event- driven SEO by simultaneously considering

user preferences (towards events) and event preferences (towards

users). A risen challenging problem is that this joint consideration

may suffer instabilities between users and events which are NP-

hard to handle in SEO. Stability is a desired property that needs to

be maintained in SEO, otherwise participants will incline towards

changing to other events and trust less the organizer. To the best of

our knowledge, we are the first to study SEO with both preferences

from users to events and preferences from events to users being

considered. In this work, we formulate the stable social event orga-

nization (Stable-SEO) problem and prove its NP-hardness. We then

propose an efficient greedy heuristic algorithm to solve Stable-SEO,

taking both user preferences and event preferences into account.

The proposed approach is able to find an assignment of a group of

users to a set of events for an event organization, in which there is

a minimized number of users involved in user-event pairs such that

both the user and event in one such pair will be better off when

reassigning the user to this event. Our experiments on two real-

world datasets demonstrate the strong superiority of our proposed

approach over existing methods.
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1 INTRODUCTION
Online web services such as Meetup and Plancast which organize

group meetings and social events have come into our sights in re-

cent years, resulting in the emergence of the problem of organizing

social events for a group of people. Being capable of utilizing online
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user information to get people meet offline, organizing social events

has become a newly rising interesting and important application.

Event organization normally involves two kinds of entities / actors

– the organizers planning the event and the attendees taking part

in the event. In real life applications, for instance, users on Meetup

can act as organizers who schedule events and other users can

be attendees deciding whether to participate in the event or not.

In SEO, we focus on scenarios where users can choose only one

event/activity to attend at one time (i.e., users can not leave their

current events/activities and switch to others). We also note that

SEO aims to address problems on organizing events rather than

detecting events.
As a general setting [16], there is often cardinality constraint in

SEO which bounds the capacity of an activity by a minimum quota

and maximum quota. Taking table tennis as an example activity,

the minimum quota is two and the maximum quota is four – two

people can play a single match, three people can play a single match

in turn and four people can play a double match. Besides, a user’s

preference towards attending an event in SEO depends on two

crucial factors: how interesting the event itself is to her and the

extent to which she is going to enjoy the company of the people

who will also attend the event. The former factor is referred to as

the user’s innate affinity towards an event and the later as the user’s

pairwise social affinity towards other attendees of an event. There

are many possible ways to compute the innate affinity and social
affinity depending on what kind of data is available, and how these

two important factors are calculated is orthogonal to the problem

of SEO. We remark that the existing work [9, 16] on SEO assumes

that different users have different preferences towards different

events and does not consider the fact that each event (its organizer)

may have a separate preference towards every user.

In this paper, we explore joint user- and event- driven SEO

through considering both user preferences towards events/activities

and event/activity preferences towards users, which may come

across the instability issues that popularly exist in the fields of com-

binatorics [5, 6, 10, 15] between users and events. The property of

stability is necessary to be maintained, otherwise users will tend to

switch to other activities and lose faith in the organizers. Thereby,

we formulate the problem of stable social event organization (Stable-

SEO) to deal with the instability issues in SEO. Stable-SEO is advan-

tageous because it takes care of stabilities between users and events

in SEO. The stability problem in SEO is easy to handle when we

take only user preferences or event preferences into consideration.

However, the joint consideration of user and event preferences will

make instability issues between users and events become NP-hard

to solve in SEO. In other words, solving Stable-SEO is NP-hard and
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therefore very challenging (proof in Section 3). Existing literature

in theoretical computer science such as Stable Marriage Problem

(SMP) [4], College Admissions Problem (CAP) [2] and National

Resident Matching Problem [19] can not be utilized to tackle Stable-

SEO for the reason that they consider merely innate affinity and

do not take social affinity into consideration, therefore is a special

case of our stable social event organization problem. This being the

case, we develop a polynomial time greedy algorithm that considers

both user preferences and event/activity preferences to tackle the

problem of Stable-SEO. Inspired by the famous Gale-Shapley algo-

rithm [4], the proposed method solves the instability issues in SEO

through finding an assignment of a group of users to a set of events,

which minimizes the number of users involved in user-event pairs

such that both the user and event in one such pair will be better off

when reassigning the user to the event (i.e., unstable), satisfying

the cardinality constraint of the event (i.e., if the capacity of the

event is not yet full, just assign the user to the event; if the capacity

is full and the event prefers this user to at least one of the users

already assigned to it, replace the less preferred user with this user).

Compared to existing methods, our approach is capable of keeping

the number of unstable users in SEO as small as possible and there-

fore is beneficial in preventing each individual from losing trust

towards the event organizer(s).

In summary, this paper makes four major contributions:

• We explore joint user- and event- driven stable social event

organization through considering both user preferences and

event preferences simultaneously. To the best of our knowl-

edge, this is the first work to investigate SEO taking both user

and event preferences into account.

• We formulate stable social event organization (Stable-SEO) as an
optimization problem that requires an assignment of users to

events with the number of unstable users as small as possible,

while satisfying the cardinality constraint of each event.

• We prove the NP-hardness and polynomial time inapproxima-

bility of the stable social event organization problem, and then

propose a heuristic greedy algorithm, User-stable Greedy, to
solve the stable social event organization problem.

• We conduct extensive experiments on two real-world datasets,

Meetup and Plancast. The experimental results demonstrate

the significant improvement of our proposed approach against

several existing methods.

2 RELATEDWORK
The Stable-SEO problem is closely related to Social Event Organiza-

tion (SEO) [9, 16], in which events are indifferent among users and

the goal is to find an assignment of users to events that maximizes

the total social welfare between users and events. Our Stable-SEO

departs from SEO in focusing on the goal of finding an assignment

that involves minimum number of unstable users when events or

their organizers have different preferences over different users. First

of all, Li et al.’s work does not focus on any stability issues and

therefore can not solve our Stable-SEO problem. Second, we argue

that the stability of an assignment is much more a crucial criteria

for evaluating the “goodness” of the assignment – the property

of stability becomes extraordinarily important when activities (or

their organizers) have different innate affinities towards different

users. This is because the maximization of overall social welfare (

Li et al.’s work)may disregard individualistic needs for certain users
who “sacrifice” themselves for the sake of total “happiness” of all

users, and therefore make stability indeed a desired property to

have – if an event organization does not have that, participants will

tend to switch to other events and have less faith in the organizers.

Aside from the SEO problem, Stable-SEO is also related to the

stable matching problem (SMP) [4] in which the objective is to find

a stable matching between men and women, where all men and

women have preferences over members of the opposite sex. For

a stable matching, there must be no man-woman pair such that

both of them have the preference to exchange each other with their

currently matched partners. Gale and Shapley give a polynomial

algorithm to find such a stable matching for any instance of SMP.

Many variants of SMP have been widely studied [6, 11, 15, 18–20],

among which the Stable Matching with Master List (SM-ML) [11]

and the National Resident Matching Problem (NRMP) [19] have

particular close connections with Stable-SEO. The SM-ML problem

is a natural extension of the vanilla SMP in which the preferences of

men, women, or both, are derived from amaster preference list. SM-

ML has real-world applications in which users are ranked according

to some objective criteria or a shared common criterion of users on

the opposite side. Irving et al. [11] give a formal definition that a

master list of men (resp. women) is a single list containing every

man (resp. woman), and each woman’s (resp. man’s) preference

list contains her (resp. his) partners ranked precisely according

to the master list. NRMP, on the other hand, is a many-to-one

extension of SMP where men are regarded as residents and women

as hospitals. Every hospital has a maximum quota that bounds the

maximum number of residents being served in the hospital. NRMP

can be reduced to SMP through replacing each quota-q hospital

by q copies of quota-1 hospitals, resulting in the fact that most

conclusions established for SMP can be carried over to NRMP [6].

We remark that both SM-ML and NRMP are special cases of Stable-

SEO even when no user-user social affinities which act as a key

component in Stable-SEO are taken into consideration:

• Stable-SEO reduces to SM-ML (with users regarded as entities

in the master list and events regarded as entities on the other

side) when no user-user social affinities are considered and

each event has a maximum quota of 1 and a minimum quota

of 1.

• Stable-SEO reduces to NRMP (with users regarded as residents

and events regarded as hospitals) when no user-user social

affinities are considered and each event has a minimum quota

of 0, plus a master list of users.

Stable-SEO and the problem of recommending item(s) to a group

of users [1] (with events treated as items) share some common

properties as well when we know which group of users will attend

a certain unknown event together ahead of time. However, in our

problem, we do not know the sets of users who will attend an event

together (i.e., membership of the users in a group) in advance, and

the goal of Stable-SEO is to find such sets of users by considering

not only the innate affinities but also the social affinities. Stable-SEO

is also related to recommending groups to users [21] when groups

of people will for sure attend some certain events and the remain-

ing users have not yet decided which event to attend, information

about both of which is unfortunately unknown and unavailable to
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us. Furthermore, another important difference which distinguishes

Stable-SEO from recommending items to group of users and recom-

mending groups to users is that Stable-SEO cares about the property

of stability while neither of the two recommendation problems do.

3 JOINT USER- AND EVENT- DRIVEN STABLE
SOCIAL EVENT ORGANIZATION

Joint user- and event- driven stable social event organization, with

both user preferences (towards events) and event preferences (to-

wards users) being considered, makes instabilities in SEO become

NP-hard to deal with. To tackle this challenge, we concretely de-

scribe the problem of stable social event organization (Stable-SEO)

in this section. We first briefly introduce some preliminary knowl-

edge about SEO, then give a formal formulation of Stable-SEO as

a discrete optimization problem, followed by the illustration of its

hardness and polynomial time inapproximation.

3.1 Preliminary
Consider a setting where a company is organizing an offsite event

and we want to divide employees into smaller groups and each

group will participate in an activity. A similar scenario happens in

a large conference or convention, where the organizers may want

to assign small groups of attendees to a set of social activities, to

promote networking or enhance professional relationships.

The Social Event Organization (SEO) problem posed in [16] aims

to address the above mentioned scenario. This problem is defined

as follows.

• U is a set of userswho are awaiting activity assignments. We

are also given a social network, represented by an undirected

graphG = (U ,E). If user u and user v are friends, there is an

edge (u,v) ∈ E.
• A is a set of activities to be assigned. For each activity a ∈ A,
there are two cardinality constraints: First, γa is the lower

bound, i.e., there must be at least γa users assigned to a.
Second, δa is the upper bound, i.e., the number of assignees

must not exceed δa . For example, if a is chess, then γa =
δa = 2; if a is table tennis, then γa = 2 (single match) and

δa = 4 (double match); if a is outdoor movie, then γa = 0

and δa = ∞.
• There is a user-activity affinity function σ : U × A → R,
such that σ (u,a) is the innate affinity u has for a.
• There is also a user-user affinity function ω : U ×U → R,
such that ω(u,v) is the social affinity between user u and

user v . We note that social affinity is symmetric, i.e., for all

u,v ∈ U , ω(u,v) = ω(v,u).
• Let Sa denote the set of users assigned to activity a under

assignmentM , then the social welfare of a produced by this

assignment is:

µ(Sa ,a) = (1 − α) ·
∑

u ∈Sa
σ (u,a)

+ α ·
∑

u,v ∈Sa,u,v
ω(u,v). (1)

• The SEO problem seeks an assignmentM : U → A, such that

the total social welfare ofM over all activities

SW =
∑
a∈A

µ(Sa ,a) (2)

is maximized and for all a ∈ A, such that Sa , ∅, the cardi-
nality constraints are satisfied: γa ≤ |Sa | ≤ δa .

The solution proposed in [16] assumes the innate affinities of ac-

tivities (or their organizers) towards all users to be the same, i.e.,

activities (or their organizers) are indifferent to different users, al-

though in many cases activities (or their organizers) may also have

preference to see certain kinds of users participate in some activi-

ties over others. For instance, it is natural to assume that activity

organizers tend to prefer attendees with a higher level of activity,

attendees with a broader interest and so on. Furthermore, maxi-

mizing the total social welfare has the disadvantage of ignoring

certain users’ individualistic needs, making them “sacrifice” them-

selves and end up missing those more attractive activities which

also prefer them more.

3.2 Stable Social Event Organization
Stable-SEO considers a more general case where activities (or their

organizers) have different innate affinities towards different users,

i.e., activities (or their organizers) may have preference to see cer-

tain users participate in some activities, and by optimizing an ob-

jective related to stability.

In addition to the user-activity innate affinity and user-user

social affinity, we introduce an additional affinity function for the

activity-user affinity:

• The activity-user affinity function κ : A ×U → R, such that

κ(a,u) is the innate affinity a has for u.

Let Sa denote the set of users assigned to activity a, and we define

the user-activity utility of user u towards activity a for assigning u
to a as:

φ(u,a) = (1 − α) · σ (u,a) + α ·
∑

v ∈Sa
ω(u,v), (3)

and the activity-user utility of activitya towards useru for assigning

u to a as:

ϑ (a,u) = κ(a,u). (4)

We note that the user-activity utility φ(u,a) is a weighted com-

bination of the innate affinity of u towards a and the sum of u’s
pairwise social affinities with the other users assigned to a. The
activity-user utility ϑ (a,u) equals to κ(a,u), the innate affinity of

a towards u. Consistent with [16], an assignmentM is defined as

a mapping fromU to A, i.e.,U → A. We further defineM−1(a) as
the set of users assigned to a, i.e.,M−1(a) = {u ∈ U |M(u) = a} for
a ∈ A. An assignment M is said to be feasible if all its cardinality
constraints are satisfied, i.e., ∀a ∈ A for whichM−1(a) , ϕ, we have
γa ≤ |M

−1(a)| ≤ δa . Now we give the formal definition of stable

assignment under the stable social event organization problem as

follows.

Definition 3.1. AssignmentM in a stable social event organiza-

tion instance is stable if there is no user-activity pair (u,a) such
that

• M(u) = ϕ ∨ φ(u,a) > φ(u,M(u))

• |M−1(a)| < δa ∨ ∃v ∈ M−1(a) ∧ ϑ (a,u) > ϑ (a,v).

The two conditions above can be expressed as follows in plain

English:

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1515



• User u is either not assigned to any activity or prefers a to the

activity that she is currently assigned to.

• Activity a either has an unfilled position or prefersu to at least

one of the users assigned to it.

Definition 3.2. A user-activity pair satisfying the two conditions

in Definition 3.1 is an unstable pair.

Definition 3.3. A user in an unstable pair is an unstable user.

The objective of stable social event organization is to find a

feasible assignment of a set of users to a set of events, in which the

number of unstable users is minimized.

u1 u2 u3 u4 u5 u6
a1 1 2 3 4 5 6

a2 1 2 3 4 5 6

Table 1: Activity-user in-
nate affinities

a1 a2
u1 21 10

u2 10 1

u3 10 1

u4 19 10

u5 1 10

u6 1 11

Table 2: User-activity innate affinities

u1 u2 u3 u4 u5 u6
u1 / 1 1 1 1 1

u2 1 / 1 1 1 1

u3 1 1 / 1 1 1

u4 1 1 1 / 1 1

u5 1 1 1 1 / 1

u6 1 1 1 1 1 /

Table 3: User-user social affinities

Lemma 3.4. A solution to SEO is not necessarily stable.

Proof. We prove Lemma 3.4 through giving an example.

Assume the example contains six users u1, · · · ,u6 and two

events/activities a1,a2 where γa1 = δa1 = 3,γa2 = δa2 = 3. Ta-

ble 1, 2 & 3 show the activity-user innate affinities κ(·, ·), user-
activity innate affinities σ (·, ·) and user-user social affinities ω(·, ·)
for users and events respectively. As the SEO problem proposed

in [16] assumes the activities (or their organizers) are indifferent

to different users, the social welfare of an activity defined in (1)

does not contain the activity-user innate affinities κ(·, ·). One way
to cast the activity-user innate affinity into SEO could be to add an

additional term κ(·, ·) after each user-activity innate affinity σ (·, ·),
resulting in a modified social welfare function µ(Sa ,a),

µ(Sa ,a) = (1 − α) ·
∑

u ∈Sa

[
σ (u,a) + κ(a,u)

]
+ α ·

∑
u,v ∈Sa,u,v

ω(u,v). (5)

However, we note that as shown in Table 1, a1 and a2 have exactly
the same activity-user innate affinities for different users in our

example, so that the values of κ(a,u) will not affect the summation

of µ(Sa ,a) over a1 and a2, i.e., the total social welfare
∑
a∈A µ(Sa ,a)

as defined in (2), no matter how the users are assigned to a1 and
a2. In other words, if the total social welfare with µ(Sa ,a) defined
according to (1) is maximized, then it will also be a maximum with

µ(Sa ,a) defined according to (5).

We will still adopt the original definition in (1) to compute

µ(Sa ,a) for the sake of succinctness in the example. First of all,

we can only assign three users to each of the two activities in or-

der to satisfy the cardinality constraints, and the assignment M
which maximizes the overall social welfare SW according to (2)

is as follows: Sa1 = {u1,u2,u3}, Sa2 = {u4,u5,u6}. On the other

hand, it is easy to calculate that φ(u4,a1) = 10.5 > φ(u4,a2) = 6

and ϑ (a1,u4) = 4 > ϑ (a1,u1) = 1. By Definition 3.1, (u4,a1) is an
unstable pair and thus assignment M which maximizes the overall

social welfare is not stable. Now let’s consider another assignment

M ′ where Sa1 = {u2,u3,u4}, Sa2 = {u1,u5,u6}, which is stable by

Definition 3.1, and we have SW (M ′) = 38 < SW (M) = 39 by (1)

and (2).

It is therefore sufficient to conclude that an assignment maxi-

mizing the overall social welfare defined in (2) may not be stable

by Definition 3.1. �

In stable social event organization problem, we use user-activity

utility φ(u,a) and activity-user utility ϑ (a,u) to simulate the extend

to which user u is interested in activity a and how the organizers

of activity a like user u, which follows a natural intuition. The

individual utility of a user towards an activity increases when

her innate affinity towards this activity, as well as the sum of her

pairwise social affinities towards those who will also attend the

same activity, increases. The definition of user-activity utility just

simply follows this intuition. Though other different definitions can

also be applied to the user-activity utility and activity-user utility,

we remark that this is orthogonal to our focus in this work and can

be further investigated in future work. The problem of stable social

event organization is formally defined in the following.

Problem 1. Stable Social Event Organization (Stable-SEO)
Given a set of usersU , a set of eventsAwhere for each a ∈ A, there is
a minimum quota γa ∈ N and a maximum quota δa ∈ N such that
γa ≤ δa , a user-user social graphG = (U ,E), a user-activity affinity
function σ (·, ·), an activity-user affinity function κ(·, ·) and a user-
user affinity function ω(·, ·), find a feasible assignment M : U → A
with the minimum number of unstable users.

We would like to point out that minimizing the number of un-

stable pairs defined in Definition 3.2 may serve as an alternative

objective for the stable social event organization problem. However,

consider two cases, one with ten different users involved in ten

unstable pairs and the other with one user involved in ten unstable

pairs. It is natural to assume that the later case is more desirable

than the former one in practice because we always prefer having

less unsatisfied users (e.g., one rather than ten) in real-world (user-

centric) applications. Therefore, we choose to minimize the number

of unstable users instead of unstable pairs in this paper.

In applications such as a company organizing an offsite gath-

ering and a research community hosting a scientific conference

where all the activities share the same group of organizers, it is rea-

sonable to assume that all the activities have the same activity-user

utilities towards the attendees, similar to the above example shown

in Table 1. Moreover, it will always be helpful to have an objective

criterion for activity-user utility, such as how active the user is

and how many events she has taken part in already – not every

individual organizer is willing to generate the activity-user utility

by herself. To make the stable social event organization problem

less complex and more practical for real-world applications, we
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assume a common list of activity-user utilities for each instance

and show that even the problem of stable social event organization

with one common activity-user utility list is still very hard to solve

in polynomial time in 3.3.

3.3 NP-Hardness of Stable-SEO
The first question to ask is that can Stable-SEO be solved in poly-

nomial time? Unfortunately, we have a negative conclusion that

the problem of stable social event organization is NP-hard. We

give a polynomial-time reduction from the Hospitals / Residents

Problem with Minimum Quota (HRMQ) [7] which receives lots

of attention as a hard variant of the classic Hospitals / Residents

Problem (HR) [4]. In HR, there are two sets, one is a set of residents

and the other is a set of hospitals. Each resident has a preference

list containing a rank of all hospitals in an non-increasing order

and each hospital has a similar preference list towards all residents.

Every hospital has an additional maximum quota, so that it can

receive up to the quota number of residents. Then the objective is

to find a feasible and stable matching between the set of residents

and hospitals such that the number of residents assigned to each

hospital will not exceed its maximum quota. Hamada et al. [7] are

the first to introduce the concept of minimum quota, followed by

Huang et al. [8] and Biró et al. [2]. Although Gale and Shapley [4]

show that the problem of HR with only maximum quota can be

solved efficiently in polynomial time, Hamada et al. [7] prove that

it is NP-hard to find a feasible and stable matching that has the

minimum number of unstable residents even if all the hospitals

share a common preference list of all residents (i.e., a master list as

stated in the original work).

Theorem 3.5. Stable Social Event Organization is NP-hard.

Proof. Hamada et al. [7] show that the problem of minimiz-

ing the number of unstable residents in HRMQ with a master list

of residents (denoted as Min-ML-HRMQ) is NP-hard through a

polynomial-time reduction from CLIQUE, a NP-complete problem,

in which given a graph G = (V ,E) and a positive integer K ≤ |V |,
we are asked if G has a complete subgraph with K vertices. They

complete the proof by building a large gap between the “yes” in-

stance and “no” instance of CLIQUE.

An instance of Min-ML-HRMQ can be obtained from an instance

of Stable-SEO which totally ignores the social affinities between

users, i.e., setting ω(u,v) = 0 for all u,v ∈ U and α = 0. The two

sets of events/activities and users are hospitals and residents, with

the cardinality constraints becoming the maximum and minimum

quota. A preference list of events/activities can be constructed by

ranking user-activity utilities in a non-increasing order with ties

broken arbitrarily for each user and the master preference list of

users can be similarly formed through ranking activity-user utilities

for events/activities as well. Thus Min-ML-HRMQ is isomorphic

to a special case of Stable-SEO where all user-user social affinities

are zero, indicating that the hardness of Min-ML-HRMQ directly

carries over to Stable-SEO. �

After obtaining the hardness result of Stable-SEO, it is important

to ask about the hardness of approximating Stable-SEO. Besides the

NP-hardness, we are also able to show a strong evidence for the in-

approximability of Stable SEO through relating the approximability

of Stable SEO to the approximability of Dense k-Subgraph Problem
(DkS). The Dense k-Subgraph Problem (DkS) is that given a graphG
and a positive integer k , find an induced subgraph ofG with k nodes

which includes as many edges as possible. DkS is a NP-hard prob-

lem whose approximability has been widely studied. However, the

gap between the approximability and inapproximability of DkS still
remains large, and there have been no polynomial-time approxima-

tion schemes for DkS reported so far [3, 14]. Theorem 3.6 indicates

that approximating Stable-SEO is equivalent to approximating DkS.

Theorem 3.6. If the Dense k-Subgraph Problem (DkS) does not
have any polynomial-time approximation algorithm, then Stable So-
cial Event Organization has no polynomial-time approximation.

Proof. Again, we start from the subproblem of Stable-SEO in

which ω(u,v) = 0 for all u,v ∈ U and α = 0. The reduction of

Min-ML-HRMQ from Stable-SEO is the same as in the proof of

Theorem 3.5.

Lemma 3.7. If Min-ML-HRMQ has a polynomial-time c-
approximation algorithm, then DkS has a polynomial-time
(1 + ϵ)c4-approximation algorithm for any positive constant ϵ .

The above Lemma 3.7 is proved in [7], and by taking its converse-

negative proposition, it is clear that the hardness of approximation

carries from DkS through Min-ML-HRMQ to our Stable-SEO prob-

lem. �

As a conclusion for the hardness results in this section, it is

unlikely to approximate Stable-SEO within a constant ratio in poly-

nomial time unless the inapproximability for DkS breaks down. We

remark that the hardness of Stable-SEO is proved through showing

the hardness of a subproblem of Stable-SEO, which means the full

problem of Stable-SEO may be even more difficult.

4 THE ALGORITHM
Given the strong evidence for the inapproximability of Stable-SEO,

we propose a heuristic greedy algorithm to solve the Stable-SEO

problem in this section. Before introducing various solutions in

detail, we first describe some common settings shared by the algo-

rithms in this section.

Available. An activitya is said to be available if the number of users

assigned to a has not exceeded its maximum quota, i.e., |Sa | < δa .
A user u is regarded as available if she has not been assigned to any

activity.

User’s List and Activity’s List. Without loss of generality, we

generate a user-activity utility list of activities for each user by

ranking this user’s user-activity utilities in a non-increasing order

with ties broken arbitrarily and generate an activity-user utility

list of users for all activities by ranking their common activity-

user utilities in the same way. In our problem setting, the activity-

user utility list contains all users and every user-activity utility list

contains all activities, i.e., all of the utility lists are complete. For

ease of reading, user’s user-activity list and activity’s activity-user

list are referred to user’s list and activity’s list respectively when

there is no confusion.

We note that the user’s list may be updated after each iteration

in the algorithms except Random because the order of activities in

a user’s list depends not only on the user-activity innate affinities
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but also the user-user social affinities between this user and every

user currently assigned to an activity, while the activity’s list will

always remain the same as no user-user social affinities are taken

into consideration to determine the users’ orders in it.

General Algorithmic Procedure. For ease of understanding, we
give a description about the high level ideas of the algorithms before

drilling down into their details. Each user will have a (possibly)

different user-activity list of all activities, Lu , given the current

assignment. During each iteration of an algorithm, the user-activity

list Lu for each user may be updated and reordered if necessary.

On the other hand, the common activity-user list L∗ will remain

unchanged during the whole running of the algorithm. Suppose the

common activity-user utility list of all users for all activities is in the

following order, L∗ : u1,u2, · · · ,u |U | ∈ U , the algorithm will then

iterate through u1 to u |U | . In the ith iteration where 1 ≤ i ≤ |U |,
if ui ’s list contains at least one available activity, then ui will be
assigned to the first available activity appearing on its list. It is

possible to implement Lu (for each u) and L∗ by a priority queue

with its elements ranked in a non-increasing order with respect

to their corresponding utilities. Last but not least, there will be a

post-processing phase making sure that no cardinality constraints

are violated, i.e., a feasible assignment is produced, and the details

of the post-processing phase can vary a lot depending on different

algorithms.

4.1 Random
Random is our first algorithm, and will be compared as a baseline in

the experiments. The idea is to assign users randomly to activities

and satisfy the cardinality constraints at the same time. To apply

this strategy for solving Stable-SEO, Random algorithm first shuffles

the common activity’s list L∗ for every activity and then shuffles

the user’s list Lu for each user u. It then iterates over each user

through traversing the activity’s list L∗, and assigns each user u to

the first available activity a (i.e.,|Sa | < δa ) on her list Lu , ignoring

the minimum quota. Our definition of available guarantees that
the number of users assigned to each activity will not exceed its

maximum quota. In order to obtain a feasible assignment, we finally

move users arbitrarily from activities with surplus (i.e., the number

of assigned users larger than the minimum quota) to activities

with deficit (i.e., the number of assigned users is smaller than the

minimum quota) while not creating any new activity with deficit.

Obviously, this is a naive baseline which randomly assigns users to

activities without violating any cardinality constraint.

4.2 Stable Greedy
We next introduce Stable Greedy, an algorithm that assigns users

to activities taking both user-activity innate affinities and user-

user pairwise social affinities into consideration. In particular, the

activity’s listL∗ with entry ⟨u,ϑ (a∗,u)⟩ is ordered non-increasingly
by the activity-user utility ϑ (·, ·) defined in (4), where a∗ denotes
an arbitrary activity. For each user, the algorithm orders her user’s

list Lu with entry ⟨a,д(u,a |Sa )⟩ by a non-increasing user-activity

potential utility under the current temporary assignment (possibly

incomplete), which is defined as follows,

д(u,a |Sa ) = (1 − α) · σ (u,a) + α ·
∑

v ∈Sa
ω(u,v). (6)

Procedure Greedy(U ,A,M,L∗,L)
1 for u = L∗ .PopUser () do

// Traverse user from top to bottom
2 if ∃a ∈ A ∧ |Sa | < δa then
3 M (u) ← argmax

a∈A
д(u, a |Sa ) on u ’s list

4 SM (u) ← SM (u) ∪ {u }
5 end
6 for v ∈ U ∧ v , u do
7 if ω(u, v) > 0 then
8 Lv .update (⟨M (u), д(v, M (u) |SM (u))⟩) // Equation (6)

9 end
10 end
11 end

Algorithm 1: Stable Greedy
1 M (u) ← null, ∀u ∈ U ; Sa ← ∅, ∀a ∈ A
// a∗ denotes an arbitrary activity

2 foreach u ∈ U do
3 L∗ .insert (⟨u, ϑ (a∗, u)⟩) // ϑ (·, ·) in Equation (4)

4 end
5 foreach u ∈ U do
6 foreach a ∈ A do
7 д(u, a |Sa ) ← (1 − α )σ (u, a)
8 Lu .insert (⟨a, д(u, a |Sa )⟩)
9 end

10 end
11 Procedure Greedy

(
U , A, M, L∗, L

)
12 foreach a ∈ A do
13 if |Sa | , γa then
14 if |Sa | < γa then
15 D ← D ∪ {a }
16 else
17 S ← S ∪ {a }
18 end
19 end
20 end
21 foreach a ∈ S do
22 arbitrarily move at most ( |Sa | − γa ) users in a to activities in D until for

each activity a′ ∈ D , |S ′a | = γ
′
a

23 end
24 return M

Although (6) has a very similar form to (3), it should be noticed

that φ(u,a) defined in (3) is computed after the algorithm termi-

nates, i.e., no more users will be assigned to activity a or any other

activities. On the other hand, д(u,a |Sa ) is calculated under the

current incomplete assignment when the algorithm is still run-

ning, indicating that more users could be assigned to activity a
and other activities in the future. We argue that д(u,a |Sa ) in (6)

and φ(u,a) in (3) have different meanings, though they look sim-

ilar. Apparently, the order of the common activity’s list L∗ will

remain unchanged during the whole algorithm. At the beginning

of the algorithm when no users are assigned to any activity, we

have д(u,a |Sa ) = д(u,a |∅) = (1 − α) · σ (u,a) for each pair of user

and activity. As is shown by Procedure Greedy in line 11 of Al-

groithm 1, the first available user u (i.e., currently most preferred)

on L∗ will be picked at each step and assigned to activity a which is
available (i.e., |Sa | < δa ) and has the maximum value of д(u,a |Sa )
in a greedy manner, ignoring the minimum quota. Then for every

remaining available user v on the list whose social affinity with

u is positive, i.e., ω(u,v) > 0, her utility towards a will increase
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Procedure Score(a,U ,A,L∗,L)
1 Ms (u) ← null, ∀u ∈ U ;As ← A.Copy()
2 δas ←∞ where as = a, as ∈ As
3 Procedure Greedy

(
U , As , Ms , L

∗, L
)

4 return |Sas |

as u being assigned to a. Thus д(v,a |Sa ) is then recomputed and

the position of tuple ⟨a,д(v,a |Sa )⟩ in v’s list Lv is updated as well

(line 8 of Procedure Greedy ). For the implementation of this al-

gorithm, we can use a priority queue of tuple ⟨a,д(u,a |Sa )⟩ in a

non-increasing order with respect to д(u,a |Sa ) to manage list Lu
for each u (same for list L∗). In the end, a post-processing which

moves users arbitrarily from activities with surplus to activities

with deficit is conducted to guarantee the feasibility of the final

assignment (line 12 to line 23).

4.3 User-stable Greedy
Before describing the idea behindUser-stable Greedy, let’s first recall
the Stable Greedy:

(1) Obtain an assignment through applying Procedure Greedy

to a given Stable-SEO instance I = {U ,A,M,L∗,L}.
(2) Move users arbitrarily from events/activities with surplus to

those with deficit while not creating new events/activities

with deficit.

For ease of notation, we denote a[γa ,δa ] as an activity with mini-

mum quota γa and maximum quota δa . Suppose during the execu-

tion of Stable Greedy, a user u is moved from one activity a[γa ,δa ]
(|Sa | = δa ) with surplus to another activity with deficit. Thus, not

only user u will have the possibility of creating unstable pairs with

a (and u becomes an unstable user), but also some other users may

create unstable pairs with a and become unstable users because

activity a now becomes available. Therefore, to minimize the poten-

tial for bringing in new unstable users, we propose our User-stable
Greedy algorithm.

Given an existing Stable-SEO instance, we first construct a new

instance of Stable-SEO (line 2 to line 4 in Algorithm 2), denoted

as max-1 Stable-SEO in which all activities have either minimum

quota being 0 and maximum quota being 1, i.e., a[0, 1] (at most one

user can be assigned to a), or both minimum and maximum quota

being 1, i.e., a[1, 1] (one and only one user must be assigned to a).
We will then run the algorithm on this max-1 Stable-SEO instance

and construct the solution for our original Stable-SEO instance from

that for max-1 Stable-SEO instance in the end (line 32 to line 40 in

Algorithm 2).

The calculation of д(·, ·) and maintenance of list L in User-stable
Greedywill be the same as in Stable Greedy for consistency (line 5 to
line 15). First, we apply Procedure Greedy to the max-1 Stable-SEO

instance (line 16), and compute the deficiency (i.e.,d) of the resulting
assignment which is the summation of the deficiencies over all activ-

ities in themax-1 Stable-SEO instance, i.e.,

∑
a′∈A′max(γa′−|Sa′ |, 0)

(line 17 to line 19). Then we choose one activity a[0, 1], set its max-

imum quota to ∞ and apply Procedure Greedy again so that all

users who have very strong utilities towards attending activity a
may actually be assigned to a in very high probabilities. As such,

these users will be unstable users when they are moved to other

activities with deficit while the remaining users on the other hand

Algorithm 2: User-Stable Greedy
1 M (u) ← null, M ′(u) ← null, ∀u ∈ U ; Sa ← ∅, ∀a ∈ A;A′ ← ∅; Sa′ ←
∅, ∀a′ ∈ A′;C ← ∅;d ← 0

// Convert a[γa, δa ] into γa × a[1, 1] and δa × a[0, 1]
// a[γa, δa ] denotes an activity with minimum quota γa

and maximum quota δa
2 foreach a ∈ A do
3 A′ ← A′ ∪ {a1[1, 1], a2[1, 1], · · · , aγa [1, 1]} ∪

{aγa+1[0, 1], aγa+2[0, 1], · · · , aδa [0, 1]}
4 end
// a∗ denotes an arbitrary activity

5 foreach u ∈ U do
6 L∗ .insert (⟨u, ϑ (a∗, u)⟩) // ϑ (·, ·) in Equation (4)

7 end
8 foreach u ∈ U do
9 foreach a ∈ A do
10 for i ← 1 to δa do
11 д(u, ai |Sai ) ← (1 − α )σ (u, a)
12 Lu .insert (⟨ai , д(u, ai |Sai )⟩)
13 end
14 end
15 end
16 Procedure Greedy

(
U , A′, M ′, L∗, L

)
17 foreach a′ ∈ A′ do
18 d ← d +max (γa′ − |Sa′ |, 0)
19 end
20 C ← {a′

��a′ ∈ A′, |Sa′ | , ∅}
21 foreach a′ ∈ C do
22 if Score(a′, U , A′, L∗, L) is among the d smallest then
23 δa′ ←∞
24 end
25 end
26 Procedure Greedy

(
U , A′, M ′, L∗, L

)
27 foreach a′ ∈ A′ do
28 if γa′ = 0 and |Sa′ | > 0 then
29 arbitrarily move users in a′ to empty activities until a feasible

assignment is obtained (by first making every a′[1, 1] activity full)

30 end
31 end

// Construct solution for Stable-SEO
32 foreach a ∈ A do
33 for i ← 1 to δa do
34 if Sai , ∅ then
35 u ← Sai
36 Sa ← Sa ∪ {u }
37 M (u) ← a
38 end
39 end
40 end
41 returnM

will have far less possibilities to become unstable. In this way, the

potential for creating new unstable users can be dramatically re-

duced. This being the case, we are able to keep the number of

unstable users as small as possible compared to Stable Greedy. We

remark that merely extending the maximum quota of one activity

to∞ may not be sufficient to obtain a feasible solution and thus it

is necessary to select more activities such that sufficiently many

users can be moved to other activities with deficit in order to make

the assignment feasible. On the other hand, we also should keep the

number of selected activities minimum to guarantee the quality of

our solution. We balance this trade-off by choosing d activities with

the smallest Score values (ties are broken arbitrarily) from those ac-

tivities which are not empty after the first run of procedure Greedy
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(line 20 to line 25). As is shown in Procedure Score, the Score value
of an activity measures the number of users assigned to it after

running Procedure Greedy when setting its maximum quota to∞.

Since we are considering max-1 Stable-SEO, the deficiency of an

assignment (i.e., d) equals to the number of empty [1, 1]-activities.

Let Ad be the set of these selected activities, we extend the maxi-

mum quota of all activities in Ad to be∞ and then run Procedure

Greedy again (line 26). We thereafter move users who are assigned

to activities inAd arbitrarily to empty activities to make the assign-

ment feasible. We achieve this by first making [1, 1]-activities full

and if there still exist any activities inAd having two or more users,

then send remaining users arbitrarily to empty [0, 1]-activities, or

simply make them unassigned if there is no more [0, 1]-activity

left (line 27 to line 31). Finally, we construct the solution for our

original Stable-SEO instance from the resulting assignment above

for max-1 Stable-SEO instance (line 32 to line 40).

5 EMPIRICAL EXPERIMENTS
In this section, we compare the performance of our proposed

method with several baselines on two real-world public datasets.

5.1 Experimental Settings
Evaluation Metrics.

We evaluate different algorithms based on two metrics:

• Number of unstable users. This is quite a straightforward eval-

uation metric which is consistent with the objective of Stable-

SEO problem.

• Total social welfare (SW). We adopt this metric defined in (2)

to demonstrate that our proposed method can achieve a fairly

high social welfare as well when keeping a minimum number

of unstable users.

CHI PAR TKO NYC SFO LAX
#users 11907 18322 7828 7662 9760 2287

#events 803 852 885 1380 1198 360

Table 4: Statistics of users and events in different cities
Datasets. We conduct experiments on two real-world datasets:

Meetup and Plancast, which are first released by Liu et al. [17]. Both
of them are online social networking services that facilitate offline

social activities/events in various localities around the world. Specif-

ically, Meetup allows its members to find and join groups unified

by common interests such as politics, books, games, movies, health,

pets, careers or hobbies
1
. Due to the widely geographical distri-

bution of users and events in these two datasets, we extract users

and events from six metropolitan areas including Chicago (CHI),

Paris (PAR), Tokyo (TKO) on Meetup and New York City (NYC), San

Francisco (SFO), Los Angeles (LAX) on Plancast for experiments.

Table 4 shows the statistics of users and events in each area. Given

that the calculation of utilities is orthogonal to our methods in

this work, the way of computing different utilities will rely on the

information available in each dataset.

• Meetup. For activity-user utility, we define κ(a∗,u) to be

the number of activities u has taken part in. We note that

people on Meetup can set up and join various online inter-

est groups which in turn allow the organizations of offline

1
https://en.wikipedia.org/wiki/Meetup_(website)

activities. Therefore, it is possible to establish a heteroge-

neous graph of user u, group д and activity a where there

are two edges (u,д) and (д,a) connecting user u and activ-

ity a if user u participates in activity a and is a member of

group д organizing activity a. Besides, users on Meetup are

able to choose tags that best express their interests. Thus let

T (u) denote the set of tags labelled on u, for user-activity
utility, we follow previous work [16] by defining ω(u,v) to
be the Jaccard coefficient [12] between Taд(u) and Taд(v)

(i.e., ω(u,v) =
|Taд(u)∩Taд(v) |
|Taд(u)∪Taд(v) | ), and σ (u,a) to be the Katz dis-

tance [13] between user u and activity a in the heterogeneous

graph, where Katz(u,v) =
∑∞
l β l · |Pl

u,v |. Here P
l
u,v is the

set of l-length paths between u and v in the graph and β is

a controlling parameter to make Katz put more emphasis on

short length paths. Intuitively a larger Katz score indicates

a more closely connection between a user u and an event a,
demonstrating a higher user-activity innate affinity. Asω(u,v)
(i.e., Jaccard coefficient) lies in [0, 1], we normalize σ (u,a) (i.e.,
Katz Score) and κ(a∗,u) (i.e., number of activities participated)

to prevent the domination of a certain kind of affinity.

• Plancast. We define κ(a∗,u) to be the number of activities

u has participated in Plancast, which is same as what we do

for Meetup. Since Plancast allows its users to subscribe to

each other so that subscribers can receive their subscribees’

updates, we set σ (u,a) to be the number of users in activity

a that have been subscribed by u and ω(u,v) to be the Katz

distance betweenu andv . Similarly, we also normalizeκ(a∗,u),
σ (u,a) and ω(u,v) to make them fall in the range of 0 and 1.

Due to the lack of ground truth information, we follow the same pre-

processing strategies in [16] and generate the maximum/minimum

cardinality constraints for all events as follows. We denote ρ =
#users
#events as the ratio between the number of users and the number

of events. Then for event a ∈ A in all areas, we sample its maxi-

mum quota δa from Gaussian distribution N(2ρ, ρ) and sample its

minimum quota γa from uniform distributionU(1,δa ). Moreover,

α is set to 0.5 for all methods in the experiments. Finally, Figure 1

shows the distributions of social affinity and Figure 2 displays the

normalized event-user affinity for all six metropolitan areas.

Methods for Comparisons. The following five algorithms includ-

ing our proposed method are tested in our experiments.

• User-Stable Greedy (USG). Our proposed User-Stable Greedy
algorithm, which takes both innate affinity and social affinity

in to account, and aims to minimize the number of unstable

users for an assignment.

• Stable Greedy (SG). The Stable Greedy algorithm introduced in

Section 4 that minimizes the total number of unstable user-

event pairs, taking both innate affinity and social affinity into

consideration.

• PCADG. The Phantom- and Community- Aware Dynamic
Greedy algorithm proposed in [16], whose objective is to max-

imize the total social welfare (Eq (2)) given an assignment.

• NRMP+. The NRMP+ baseline proposed in [16] with activity-

user innate being set to κ(·, ·) in our experiments. This algo-

rithm does not take social affinity into consideration.

• Random (RD). The naive method that randomly assigns users

to activities without violating the cardinality constraint.
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Figure 1: Distributions of social affinities in six metropolitan areas
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Figure 2: Distributions of event-user affinities (normalized) in six metropolitan areas
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Figure 3: Proportion of unstable users produced by different algorithms in six metropolitan areas (lower is better)
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Figure 4: Improvement of different algorithms (∗) over random (RD) in terms of social welfare (SW) (higher is better)

5.2 Results and Analysis

Number of unstable users. We present the proportion of unstable

users with respect to the total number of users (the lower, the better)

for our five comparison algorithms, i.e., User-Stable Greedy, Stable

Greedy PCADG, NRMP+ and Random, in each area. As is shown

in Figure 3, User-Stable Greedy (USG) clearly generates the least

unstable users and therefore beats all other methods for all six

cities, followed by Stable Greedy (SG) which tries to minimizes

the number of unstable user-event pairs rather than the number

of unstable users. As the most naive baseline, Random with no

doubt has the worst performance. Besides, PCADG and NRMP+

have comparable performances, lying between Stable Greedy and

Random, with PCADG outperforming NRMP+ for TKO, NYC, LAX

and NRMP+ outperforming PCADG for CHI, PAR and SFO. This

may be due to the reason that PCADG aims to maximize the total

social welfare defined in (2) and NRMP+ ignores the social affinities

among users. We can observe from Figure 3 that the proposed User-

Stable Greedy algorithm achieves a performance boost over the

best non-naive (non-random) method by a large margin (from 9.5%

for SFO to 31.4% for LAX).

Total social welfare. Figure 4 shows the test of relevant improve-

ment of User-Stable Greedy (USG), PCADG and MRMP+ over Ran-

dom method (RD) in terms of social welfare (SW). We adopt the

same evaluation methodology in [16] by measuring SW∗/SWRD ,

where SW is defined in (2) and ∗ denotes different algorithms. One

observation from Figure 4 is that NRMP+ performs the worst be-

cause of not considering any social affinities. We also observe that

User-Stable Greedy (USG) and PCADG have comparable perfor-

mances, with User-Stable Greedy (USG) slightly outperforming

PCADG for PAR and PCADG slightly beating User-Stable Greedy

(USG) for all the other cases.

Thereby, it is fair to conclude that our experiments demonstrate

the superiority of our proposed method over other comparative

approaches in producing a minimum number of unstable users and

maintaining quite large social welfare at the same time. That is to

say, our proposed approach is capable of reducing the number of

“unhappy” individuals as much as possible and keeping the overall

happiness of an event organization high simultaneously.

6 CONCLUSIONS
Social Event Organization (SEO), as a novel research topic, aims to

help people gather from online to offline through organizing differ-

ent social events/activities. Existing work on SEO only considers

the preferences from users to events/activities (i.e., user-activity

utilities) and fails to take preferences from events/activities or their

organizers to users (activity-user utilities) into account. In this

paper, we focus on SEO with both user preferences and event pref-

erences being taken into consideration and solve the unstable is-

sues brought by considering the two-side preferences. We formally

formulate the Stable-SEO propblem, prove its NP-hardness and

inapproximability in polynomial time. We propose an algorithm to

generate the most minimum number of unstable users and achieve

fairly large social welfare compared to existing methods. Extensive

experiments verify the efficacy of our proposed method.
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