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ABSTRACT
A heterogeneous information network (HIN) is one whose
nodes model objects of different types and whose links model
objects’ relationships. In many applications, such as social
networks and RDF-based knowledge bases, information can
be modeled as HINs. To enrich its information content, ob-
jects (as represented by nodes) in an HIN are typically as-
sociated with additional attributes. We call such an HIN an
Attributed HIN or AHIN. We study the problem of cluster-
ing objects in an AHIN, taking into account objects’ similar-
ities with respect to both object attribute values and their
structural connectedness in the network. We show how su-
pervision signal, expressed in the form of a must-link set
and a cannot-link set, can be leveraged to improve cluster-
ing results. We put forward the SCHAIN algorithm to solve
the clustering problem. We conduct extensive experiments
comparing SCHAIN with other state-of-the-art clustering al-
gorithms and show that SCHAIN outperforms the others in
clustering quality.

Keywords
semi-supervised clustering; attributed heterogeneous infor-
mation network; object attributes; network structure

1. INTRODUCTION
Networks (or graphs) model real world entities and their

relationships by objects and links. A heterogeneous infor-
mation network (HIN) is a network whose objects are of
different types and whose links represent different kinds of
relationships between objects. Compared with homogeneous
information networks (in which all objects/links are of one
single type), an HIN is much more expressive in capturing
complex real-world entities and their relationships. With the
rapid development of Web technology, much information is
collected and often the information can be modeled by HINs.
These HINs vary in terms of their complexities – from rel-
atively simple social networks to very complex knowledge
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bases. For example, the Facebook Open Graph1 contains
objects that represent Facebook users and other non-human
entities, such as photos, events and pages. As another ex-
ample, Yago2 is a knowledge base that captures information
derived from Wikipedia, WordNet and GeoNames. Yago is
a repository of information on more than 10 million objects
(such as persons, organizations, cities, etc.) and it records
more than 120 million facts about these entities. Yago can
be modeled as RDF graphs, which are examples of HINs.

To enrich the information content of an HIN, objects are
often associated with various attributes. For example, on
Facebook, a “user” object is associated with attributes like
age, gender, school, and workplace, while a “photo” object
has attributes like lat-long and date/time at and when the
photo was taken. We call an HIN with object attributes an
attributed HIN or AHIN for short.

Cluster analysis is a fundamental task in data analytics.
Given a set of objects, the goal is to partition them into
clusters such that objects in the same clusters are similar
among themselves, while objects from different clusters are
dissimilar. Clustering finds many interesting applications in
AHINs. For example, clustering can be applied to a social
network to identify user communities, based on which tar-
get marketing can be effectively done. The key to effective
clustering is the formulation of a similarity measure between
objects that well matches the clustering objective. In some
cases, such similarity measure cannot be intuitively derived
and need to be discovered, typically via a learning process.

The challenges of clustering in large AHINs are twofold.
(1) Objects similarity can be attribute-based or link-based.
The former refers to the similarity of two objects’ attribute
values, while the latter refers to how well two objects are
connected in the network. For AHINs, link-based similarity
can be measured by simple network distance measures (such
as shortest-path length and random-walk-based distances)
or by meta-path relations. A meta-path is a sequence of
node types that expresses a relation between two objects
in an AHIN. For example, if U and P represent “user” and
“product page” object types on Facebook, respectively, then
the meta-path U-P-U could represent a relation between two
users who have liked the same product page; and the meta-
path U-U-U could represent the relation between two users
who have a common friend. Meta-paths have been shown
to be very useful in many data mining tasks in expressing
the structural relations between objects in HINs [27, 31, 25,

1https://developers.facebook.com/docs/sharing/opengraph
2 http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago
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13, 32]. An interesting issue is how the various types of
similarities, be they attribute-based or link-based, be aggre-
gated to measure the overall similarities of objects. (2) For
complex AHINs, there could be a large number of object at-
tributes and theoretically an unlimited number of possible
meta-paths to be considered in the formulation of a simi-
larity measure. In most cases, only certain attributes and
meta-paths are relevant to a clustering task. For example,
the similarity of two Facebook users in their interests in dif-
ferent kinds of consumer products could involve factors like
their age, gender, as well as how often they like the same
product pages and whether they have common friends. The
complexity necessitates an automatic process of selecting the
best set of attributes/meta-paths and evaluating their im-
portance (often captured by a weighting scheme) for deriving
the best similarity formula. One practical approach to guide
such a process is for a data analyst to provide supervision,
typically made available via examples such as a must-link
set (object pairs that should be put into the same clusters)
and a cannot-link set (object pairs that should not be put
into the same clusters).

In this paper we study the problem of semi-supervised
clustering on attributed heterogeneous information networks.
Our main contributions include:
• We show how attribute-based similarities and link-based
similarities can be effectively aggregated via a weighting
scheme. Given a supervision constraint expressed via a
must-link set and a cannot-link set, we show how the weight-
ing scheme can be theoretically optimized with respect to
the constraint. Our approach is to solve the optimization
problem using an iterative mutual update process.
•We show how the mutual update process can be computa-
tionally done by proving that it is reducible to a trace maxi-
mization problem and a non-linear parametric programming
(NPP) problem. We further prove some properties of the
NPP problem, which allow us to solve it computationally.
Based on the iterative update process, we put forward the
SCHAIN algorithm for clustering objects in an AHIN.
•We perform extensive experiments on real data sets study-
ing the various characteristics of SCHAIN. We compare the
performance of SCHAIN against other state-of-the-art HIN
clustering algorithms. Our results show that SCHAIN out-
performs its competitors.

The rest of the paper is organized as follows. Section 2
mentions related works. Section 3 gives some basic defini-
tions. In Section 4, we discuss how attribute-based similar-
ities and link-based similarities are integrated into a single
similarity measure via a weighting scheme. We show how
to model supervision constraints as a penalty function of
the weighting scheme that is subject to optimization, and
describe the SCHAIN algorithm. Section 5 presents experi-
mental results. Finally, Section 6 concludes the paper.

2. RELATED WORK
Cluster analysis is a fundamental task in data mining. For

a survey of clustering algorithms on traditional relational
data, see [3]. As we have explained in the introduction,
our goal is to cluster objects in an AHIN given a supervi-
sion constraint expressed via a must-link set and a cannot-
link set. The clustering algorithm we seek should consist
of the following elements: (1) It considers both object at-
tribute values as well as object connectedness in measuring
object similarity. (2) It applies to networks that are het-

erogeneous, i.e., objects and links can be of different types.
(3) It is a semi-supervised process which takes into account
supervision constraints. There are quite a number of al-
gorithms previously proposed to cluster networked objects,
but most of these algorithms miss one or more elements we
mentioned above. In this section we summarize and cate-
gorize these previous algorithms. We also briefly describe
four algorithms, namely, PathSelClus [27], GNetMine [10],
SemiRPClus [16] and FocusCO [20], and show how they
could be adapted to solving our clustering problem. The
performances of the four algorithms are evaluated and com-
pared with SCHAIN in Section 5.

[Link-based clustering] There are algorithms that clus-
ter objects in a network based on object linkage. While the
works presented in [22, 19, 34, 36, 29] focus on homoge-
neous information networks, RankClus [26], NetClus [28],
SI-Cluster [40] and matrix-factorization-based methods [33]
focus on heterogeneous networks. These methods are unsu-
pervised methods and they do not consider object attributes.

[Unsupervised clustering] In recent years, a number of
algorithms have been put forward to cluster network objects
considering both attribute values and network links. Most
of these works apply to homogeneous networks only [37, 38,
35, 39, 8, 21, 18]. There also exist some more elaborate
methods that apply to heterogeneous networks, such as [14,
15, 24, 6], however, they are unsupervised algorithms.

[Semi-supervised clustering] There are a number of
semi-supervised clustering algorithms on networked data [2,
1, 12, 5, 11, 41]. However, they are applicable to homoge-
neous networks only.

PathSelClus [27] is a semi-supervised clustering algorithm
on HINs that is based on meta-path selection. Supervision
is given by users providing seed objects for some clusters.
Given two objects, the number of instances of a certain
meta-path P connecting them reflects how strongly the two
objects are “connected” via the meta-path relation P . For
each meta-path P , objects’ similarities via the meta-path re-
lation are captured by a relation matrix, which is regarded
as observations. A probabilistic model of the hidden clusters
is then employed to evaluate the probabilities of the obser-
vations (i.e., relation matrix). Each meta-path is assigned a
weight. These weights are learned by an iterative strategy
that maximizes the consistency between the weighted rela-
tion matrix and the clustering results as given by the seed
objects of each cluster. Since PathSelClus does not consider
object attribute values, when we apply it to AHINs, the
attribute values are ignored.

GNetMine [10] is a graph regularized transductive classi-
fication method in heterogeneous information networks. It
first constructs a predictive function f(lj |x) for each object
x and object label lj . Then it derives an objective function
which aims to minimize two values: (1) for any two linked
objects xp and xq, the difference between their predictive
values f(lj |xp) and f(lj |xq), and (2) for any labeled object,
xr, the difference between its predictive value f(lj |xr) and
its true label-induced value, which is 1 if xr’s label is lj ; 0
otherwise. The predictive functions f(lj |x)’s are trained by
optimizing the objective function via an iterative method.
Finally, labels are predicted based on the f(lj |x)’s. Even
though GNetMine is a classification algorithm, we can apply
it to our clustering problem by regarding cluster id’s as ob-
ject labels. Moreover, by assigning objects that “must-link”
to the same label and objects that “cannot-link” to different
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labels, we obtain labeled objects as the training data. Like
PathSelClus, GNetMine does not consider attribute values.

SemiRPClus [16] is a semi-supervised algorithm for clus-
tering objects in an HIN. Based on relation-paths (which are
subsets of meta-paths), the method derives several measures,
which are linearly combined to evaluate the similarities of
objects in the network. An objective function is defined to
learn the weights of different measures with the goal of max-
imizing intra-cluster similarity and minimizing inter-cluster
similarity. Also, a logistic model is used to learn the weights
of the relation-paths. After the weights are learned and a
weighted similarity matrix is derived, the algorithm resorts
to traditional clustering algorithms (e.g., hierarchical clus-
tering) to cluster objects. SemiPRClus does not consider
object attribute values.

In [20], a novel user-oriented clustering approach FocusCO
on homogeneous network is proposed. Given a set of user-
provided exemplar nodes, the algorithm first infers the ob-
ject attributes (and their weights) that are the most relevant
in making the exemplar nodes similar among themselves.
Then, the algorithm assigns a weight to each link in the
network based on the weighted similarity of its end-nodes’
attribute values. Next, edges with large weights are retained
and each connected component in the resulting graph forms
a core set. The core sets are then adjusted by adding or re-
moving members with the goal of decreasing the conductance
of the cores, which essentially measures how well objects in
a core are isolated from those outside the core. The result-
ing cores are then regarded as clusters of interest. FocusCO
considers both object attributes and link information. How-
ever, it only applies to homogeneous networks. When we
apply FocusCO to our clustering problem, we ignore object
and link types, and regard an AHIN as a simple graph.

3. DEFINITIONS
In this section we give a formal problem definition.

Definition 1. Attributed Heterogeneous Information
Network (AHIN). Let T = {T1, ..., Tm} be a set of m ob-
ject types. For each type Ti, let Xi be the set of objects of
type Ti and Ai be the set of attributes defined for objects
of type Ti. An object xj of type Ti is associated with an at-
tribute vector fj = (fj1, fj2, ..., fj|Ai|). An AHIN is a graph
G = (V,E,A), where V =

⋃m
i=1 Xi is a set of nodes, E is a

set of links, each represents a binary relation between two
objects in V , and A =

⋃m
i=1Ai. If m = 1 (i.e., there is only

one object type), G reduces to a homogeneous information
network. 2

Definition 2. Network schema. A network schema is
the meta template of an AHIN G = (V,E,A). Let (1) φ :
V → T be an object-type mapping that maps an object
in V into its type, and (2) ψ : E → R be a link-relation
mapping that maps a link in E into a relation in a set of
relations R. The network schema of an AHIN G, denoted
by TG = (T ,R), shows how objects of different types are
related by the relations in R. TG can be represented by a
schematic graph with T and R being the node set and the
edge set, respectively. Specifically, there is an edge (Ti, Tj)
in the schematic graph iff there is a relation inR that relates
objects of type Ti to objects of type Tj . 2

Figure 1(a) shows an example AHIN that models movie in-
formation (attribute information is not shown). The AHIN

M1 M2 M3 M4

A1 A3A2

D1 D2 P1 P2

(a)

M

D P

A

(b)

Figure 1: An AHIN (a) and its schematic graph (b)

consists of four object types: T = { movie (3), actor(2),
director(#), producer(4) }. There are also three relations in
R, which are illustrated by the three edges in the schematic
graph (Figure 1(b)). For example, the relation between ac-
tor and movie carries the information of which actor has
acted in which movie. Actors, directors and producers have
attributes like age, gender, birthplace, while movies are as-
sociated with attributes like release date, box office, etc.

Definition 3. Meta-path. A meta-path P is a path de-
fined on the schematic graph of a network schema. A meta-

path P: T1
R1−→ · · · Rl−→ Tl+1 defines a composite relation

R = R1 ◦ · · · ◦Rl that relates objects of type T1 to objects of
type Tl+1. We say P is symmetric if the defined relation R is
symmetric. If two objects xu and xv are related by the com-
posite relation R, then there is a path, denoted by pxu;xv ,
that connects xu to xv in G. Moreover, the sequence of
links in pxu;xv matches the sequence of relations R1, ..., Rl

based on the link-relation mapping ψ. We say that pxu;xv

is a path instance of P, denoted by pxu;xv ` P. 2

As an example, the path pM1;M3 = M1 → A2 → M3
in Figure 1(a) is an instance of the meta-path Movie-Actor-
Movie (abbrev. MAM).

Definition 4. Supervision constraint. The clustering
process is supervised by a user through a constraint (M,
C), where M and C are the must-link set and the cannot-
link set, respectively. Each of these sets is a set of object
pairs (xa, xb). An object pair in M represents that the two
objects must belong to the same cluster, while a pair in C
indicates that the two objects should not be put into the
same cluster. 2

Definition 5. Semi-supervised clustering in an AHIN.
Given an AHIN G = (V,E,A), a supervision constraint (M,
C), a target object type Ti, the number of clusters k, and a
set of meta-paths PS, the problem of semi-supervised clus-
tering of type Ti objects in G is to (1) discover an object
similarity measure S that is based on object attributes and
meta-paths, and (2) partition the objects in Xi into k dis-
joint clusters C = {C1, ..., Ck} based on the similarity mea-
sure S such that the clustering results best agree with the
constraint (M, C). 2

4. ALGORITHM
In this section we present our algorithm SCHAIN (Semi-

supervised Clustering in Heterogeneous Attributed Information
Networks). SCHAIN first composes a similarity matrix S
that measures the similarity of every object pair based on
the objects’ attribute similarity and network connectedness.
The latter is derived based on the meta-paths connecting the
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object pair. Since attributes and meta-paths vary in their
relevancy to a clustering objective, SCHAIN assigns a weight
to each object attribute and meta-path in composing S. To
take into account the supervision constraint, SCHAIN de-
rives a penalty function involving all the weightings as well
as objects’ cluster assignment. It then employs an iterative,
staggered 2-step learning process to determine the optimal
weights and cluster assignment as output. Sections 4.1 and
4.2 present the similarity matrix and the penalty function,
respectively. Section 4.3 depicts the optimization technique.

4.1 Similarity Matrix
[Attribute-based] Given two objects xu and xv of type

Ti, let fu and fv be the attribute vectors of xu and xv,
respectively (see Definition 1). Recall that Ai is the set of
attributes associated with type Ti objects. We define an
attribute weight vector ω ∈ R1×|Ai|, whose j-th component,
wj , captures the importance of the j-th attribute in Ai for
the clustering task. We define the attribute-based similarity
matrix, denoted SA, by

SA(xu, xv) =

|Ai|∑
j=1

(ωj · sim(fuj , fvj)) , (1)

where sim(fuj , fvj) can be any standard similarity function
defined over the j-th attribute of Ai [9]. We require that
sim() be normalized to the range [0,1].
[Link-based] Object similarity can also be measured by

the connectedness of objects in the network. As we have
explained in the introduction, meta-paths have been shown
to be very effective in capturing object relations in an AHIN.
Given a symmetric meta path P, SCHAIN measures the
similarity between two objects of the same type xu and xv
w.r.t. P by PathSim [25]:

SP(xu, xv) =
2× |{pxu;xv : pxu;xv ` P}|

|{pxu;xu : pxu;xu ` P}|+ |{pxv;xv : pxv;xv ` P}|
,

where pxu;xv denotes a path instance from object xu to
object xv in the network, and pxu;xv ` P denotes that
the path is an instance of the meta-path P. PathSim is
shown to be a very effective measure of meta-path-based
similarity. It compares favorably against other link-based
similarity measures, such as random walk and SimRank [25].

Given a set of meta-paths PS, each meta-path Pj ∈ PS
derives a similarity matrix SPj and is given a weight λj . We
define the link-based similarity matrix, denoted SL, by:

SL =

|PS|∑
j=1

λjSPj . (2)

Let λ ∈ R1×|PS| be the meta-path weight vector, whose
j-th component is λj . Finally, the overall similarity matrix
S is a weighted sum of SL and SA:

S = αSA + (1− α)SL, (3)

where α is a weighting factor that controls the relative im-
portance of the two similarity matrices.

4.2 Supervision Constraints
Given a clustering {Cr}kr=1 that partitions objects in Xi

into k clusters, the quality of the clustering can be measured
by how similar objects of different clusters are to each other

— the larger is the inter-cluster similarity, the worse is the
clustering quality. We measure the inter-cluster similarity
based on the normalized cut [22]. Specifically, for any two
clusters Cp, Cq, define links(Cp, Cq) =

∑
xu∈Cp,xv∈Cq

S(xu, xv).

The normalized cut of the clustering {Cr}kr=1 in terms of ob-

ject similarity is given by NC =
∑k

r=1
links(Cr,Xi\Cr)

links(Cr,Xi)
. Note

that NC is dependent on the similarity matrix S. Hence, it
is a function of ω, λ, and {Cr}kr=1.

Another way to evaluate the clustering quality is to check
how well the clustering agrees with the supervision con-
straint. Specifically, consider an object pair (xu, xv) in a
must-link set M. If a clustering assigns the objects to the
same cluster, the clustering agrees with the constraint, which
is an indication of good clustering quality. On the contrary,
if the object pair is in the cannot-link set C, then having the
objects in the same cluster indicates poor clustering quality.
Taking supervision constraint into consideration, we modify
NC into the following penalty function:

J (λ,ω, {Cr}kr=1) =

k∑
r=1

links(Cr,Xi\Cr)

links(Cr,Xi)

−
k∑

r=1

∑
(xu,xv)∈M

L(xu)=L(xv)=r

S(xu, xv)

links(Cr,Xi)

+

k∑
r=1

∑
(xu,xv)∈C

L(xu)=L(xv)=r

S(xu, xv)

links(Cr,Xi)
,

(4)

where L(x) denotes the assigned cluster for object x. For
convenience, we encode a clustering {Cr}kr=1 by k indica-
tor vectors zr’s. Each zr consists of n = |Xi| bits, such
that zr(u) = 1 if object xu ∈ Xi is assigned to cluster Cr;
0 otherwise. We further encode the supervision constraint
as a constraint matrix W ∈ Rn×n, where W(u, v) = 1 if
<xu, xv> ∈ M; -1 if <xu, xv> ∈ C; and 0 otherwise. Let
D ∈ Rn×n be a diagonal matrix such that d(i, i) is the sum
of the entries in the i-th row of S. Eq. 4 can be rewritten as

J (λ,ω, {zr}kr=1) =

k∑
r=1

zT
r (D − S)zr
zT
r Dzr

−
k∑

r=1

zT
r W ◦ Szr
zT
r Dzr

=

k∑
r=1

zT
r (D − S −W ◦ S)zr

zT
r Dzr

,

(5)

where ◦ is the Hadamard product for two matrices.
Furthermore, to prevent overfitting, we add a regulariza-

tion term to Eq. 5 and get,

J (λ,ω, {zr}kr=1) =

k∑
r=1

zTr (D − S −W ◦ S)zr

zTr Dzr
+ γ(||λ||2 + ||ω||2).

(6)

Finally, to find the best clustering, we minimize the penalty
function J () subject to the following constraints:

∑k
r=1 zr(u) =

1; zr(u) ∈ {0, 1};
∑|PS|

j=1 λj = 1;
∑|Ai|

l=1 ωl = 1; λj ≥ 0
and ωl ≥ 0. Note that α and γ are also parameters in the
function J (). In practice, since the must-link set and the
cannot-link set are provided as supervision information, the
two parameters can be tuned by cross-validation.
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4.3 Model optimization
Our objective is to find the best clustering, or equivalently,

the indicator vectors {zr}kr=1 that minimizes the penalty
function J (). Note that J () is a function of λ and ω (which
are the weights of meta-paths and object attributes), whose
values need to be learned as well. SCHAIN learns these pa-
rameters using an iterative mutual update approach. Each
iteration consists of two steps. First, given λ and ω, we find
the optimal clustering {zr}kr=1. Second, given {zr}kr=1, we
find the optimal λ and ω. SCHAIN iterates until the change
in the penalty is smaller than a threshold ε or a fixed num-
ber of iterations have been executed. Next, we show how
the two update steps are performed.

4.3.1 Finding the optimal {zr}kr=1 given λ and ω
For fixed values of λ and ω, J () is a function of {zr}kr=1.

We define a matrix Z̃, where its r-th column Z̃·r equals

D
1
2 zr/(z

T
r Dzr)

1
2 . Note that since Z̃T Z̃ = Ik, where Ik is

the k × k identity matrix, Z̃ is an orthonormal matrix. For
fixed values of λ and ω, minimizing J () is equivalent to
minimizing:

J ′(Z̃) = trace(Z̃TD−
1
2 (D − S −W ◦ S)D−

1
2 Z̃),

= trace(Ik − Z̃TD−
1
2 (S +W ◦ S)D−

1
2 Z̃).

(7)

Since trace(Ik) is a constant, the above is equivalent to solv-
ing the following trace maximization problem:

max
Z̃T Z̃=Ik

trace(Z̃TD−
1
2 (S +W ◦ S)D−

1
2 Z̃). (8)

Since Z̃ is a rigorous cluster indicator matrix, the optimiza-
tion problem is NP-hard [14]. To address this issue, we allow

real relaxation to Z̃ so that its entries can assume real val-
ues. Then, according to the Ky-Fan theorem [4], the maxi-
mization problem (8) has a closed-form solution that corre-
sponds to the subspace spanned by the top k eigenvectors of

K = D−
1
2 (S +W ◦ S)D−

1
2 . Since Z̃·r = D

1
2 zr/(z

T
r Dzr)

1
2 ,

we need to transform each Z̃·r back to a real-relaxed zr. We
first calculate U = D−

1
2 Z̃ and then normalize it by column.

Each column in U is a real-relaxed zr. Finally, with the real
relaxation, entries in U take on fractional values, so the clus-
tering is not definite. To derive a hard clustering, we treat
each row in U as a feature vector of an object. After row
normalization on U , we adopt k-means to cluster objects.

4.3.2 Finding the optimal λ and ω given {zr}kr=1

For fixed {zr}kr=1, J () is a function of λ and ω. We
rewrite Eq. 6 as:

J (λ,ω) =

k∑
r=1

zTr Dzr − zTr (S +W ◦ S)zr

zTr Dzr
+ γ(||λ||2 + ||ω||2),

= k −
k∑

r=1

zTr (S +W ◦ S)zr

zTr Dzr
+ γ(||λ||2 + ||ω||2).

(9)

Since k is a constant, minimizing J (λ,ω) is equivalent to
maximizing:

max
λ,ω

k∑
r=1

zT
r (S +W ◦ S)zr

zT
r Dzr

− γ(||λ||2 + ||ω||2). (10)

Note that the entries of matrices S and D are linear func-
tions of λ and ω. Therefore, the numerator and the de-
nominator of each term in the summation are both linear
functions of λ and ω. Hence, (10) can be rewritten as:

H(λ,ω) = max
λ,ω

f(λ,ω)

g(λ,ω)
, (11)

where f(λ,ω) and g(λ,ω) are two nonlinear multivariate
polynomial functions.

It is shown in [7] that the maximization problem with the
form shown in Eq. 11 can be solved by solving the following
related non-linear parametric programming problem:

Definition 6. [Non-linear parametric programming
(NPP)] Let f(λ,ω) and g(λ,ω) be two multivariate poly-
nomial functions. For a given µ, find

F (µ) = max
λ,ω

(f(λ,ω)− µg(λ,ω)) . (12)

In our context, the parameters λ and ω are subject to the
constraints listed at the end of Section 4.2. 2

In [7], the following theorem is proved.

Theorem 1. Given a fixed µ, let (λ∗,ω∗) be the optimal
solution to F (µ) (Eq. 12). (λ∗,ω∗) is also an optimal solu-
tion to H(λ,ω) (Eq. 11) if and only if F (µ) = 0. 2

Besides Theorem 1, a few lemmas are also proved in [7]:

Lemma 1. F (µ) is convex. 2

Lemma 2. F (µ) is continuous. 2

Lemma 3. F (µ) is strictly monotonically decreasing, i.e.,
if µ1 < µ2, F (µ1) > F (µ2). 2

Lemma 4. F (µ) = 0 has a unique solution. 2

Due to space limit, readers are referred to [7, 23] for the
proofs of the theorem and lemmas.

From Theorem 1, we need to find a µ∗ and its correspond-
ing (λ∗,ω∗) such that F (µ∗) = 0. SCHAIN does so by
an iterative numerical method. In each iteration, SCHAIN
computes a µ and (λ,ω). Let µi, (λi,ωi) be those com-
puted in the i-th iteration. SCHAIN first sets µ1 = 0 and
in each iteration, performs two steps: (Step 1:) Solve the
NPP problem (Eq. 12) for µ = µi and set (λi,ωi) to be the
solution found. (Step 2:) Set µi+1 = f(λi,ωi)/g(λi,ωi).
Next, we show theoretical properties of this update process.
Property 1: F (µ1) > 0. Without loss of generality, we
assume f(λ,ω) > 0 and g(λ,ω) > 0.3 Now, F (µ1) = F (0)
= maxλ,ω f(λ,ω) > 0.
Property 2: if F (µi) > 0 then 0 ≤ F (µi+1) < F (µi).
Since (λi,ωi) is the solution of the NPP problem for µ = µi

(Eq. 12), we have f(λi,ωi) − µig(λi,ωi) = F (µi) > 0.
Hence, µi+1 = f(λi,ωi)/g(λi,ωi) > µi. By Lemma 3,
F (µi+1) < F (µi). Also, we have F (µi+1) = maxλ,ω(f(λ,ω)−
µi+1g(λ,ω)) ≥ f(λi,ωi)− µi+1g(λi,ωi) = 0.

From the properties, we see that SCHAIN starts with
a positive F (µ), whose value stays positive and decreases
across iterations until it reaches 0. The update procedure
thus converges to the optimal values. The SCHAIN algo-
rithm is summarized in Algorithm 1.
3One can show that the quantity (10) is bounded below by
−2γ. We can add an arbitrary large constant to (10) to
make it, and thus f(λ,ω) and g(λ,ω), positive.
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Algorithm 1 SCHAIN

Input: G, M, C, Ti, k, PS.
Output: C = {C1, ..., Ck}
1: Compute similarity matrices SA, SL, and S
2: t = 0, ∆J =∞
3: λ = ( 1

|PS| , ...,
1
|PS| ); ω = ( 1

|Ai|
, ..., 1

|Ai|
)

4: while ∆J > ε or t < max iter do
5: . Step 1: Optimize {zr}kr=1 given λ and ω

6: Solve Eq. 8 to obtain real-relaxed Z̃
7: Calculate U = D−1/2Z̃ and normalize it
8: Derive {zr}kr=1 from U by k-means

9: . Step 2: Optimize λ and ω given {zr}kr=1
10: j = 1; µj = 0
11: repeat
12: Solve Eq. 12 with µ = µj to obtain λj , ωj

13: µj+1 = f(λj ,ωj)/g(λj ,ωj); j++
14: until F (µj+1) converges to 0

15: ∆J = change in J with the updated {zr}kr=1, λ, ω
16: t++
17: end while
18: Decode {Cr}kr=1 from {zr}kr=1
19: return C = {C1, ..., Ck}

5. EXPERIMENTS
In this section we evaluate the performance of SCHAIN

and compare it against 8 other algorithms by applying them
to three example clustering tasks on real data. We will illus-
trate the importance of integrating attribute-based similar-
ity and link-based similarity in clustering objects in AHINs
and show the effectiveness of SCHAIN in determining the
relative weights (ω and λ) of attributes and meta-paths. Fi-
nally, we show that the weight-learning process of SCHAIN
converges quickly under the example clustering tasks. This
shows that SCHAIN is practically efficient.

5.1 Algorithms for comparison
We consider 8 other algorithms, which can be categorized

into four groups:
• Attribute-only: The first group of clustering algorithms
considers only object attributes. These are traditional meth-
ods which ignore the network structure of an AHIN. We
chose Spectral-Learning [11] and a semi-supervised version
of normalized cuts [12] as representatives, which are denoted
SL and SNcuts, respectively. Both methods are spectral
clustering approaches of semi-supervised clustering. The dif-
ference is that SL uses additive normalization while SNcuts
adopts row normalization. Since SL and SNcuts do not learn
attribute weights, we give all attributes equal weights in con-
structing an attribute similarity matrix.
• Link-only: These methods utilize only the link informa-
tion of the network and they ignore object attribute values.
We chose GNetMine [10], PathSelClus [27] and SemiRP-
Clus [16] as representative methods of this category. These
algorithms were described in Section 2.
• Attribute+Link: Methods of this category use both at-
tribute and link information. We consider FocusCO, which
was described in Section 2.
• SCHAIN Variants: To analyze the performance of SCHAIN,
we consider two variants: (1) SCHAIN uses meta-paths to
derive the link-based similarity matrix. An alternative mea-
sure is random walk with restart (RWR) [30]. Specifically, for
the link-based similarity matrix SL, we set its (i, j) entry to
be the steady-state probability from object i in the network
to object j. We call this variant SCHAIN-RWR. By com-

paring SCHAIN with this variant, we will learn about the
importance of meta-paths in solving the clustering problem.
(2) SCHAIN uses an iterative learning process to determine
the optimal weights of attributes and meta-paths. To study
the effectiveness of weight learning, we modify SCHAIN such
that it assumes certain initial values of λ and ω (see Line 3
of Algorithm 1), finds the optimal {zr}kr=1 once, and reports
that as the final clustering. In other words, we take away
the iteration of the while-loop and retain only Lines 6-7. We
call this variant SCHAIN-NL (No weight-Learning).

5.2 Clustering tasks
We use two datasets, namely, Yelp and DBLP in our ex-

periments. Yelp4 contains information of businesses, their
users, locations, reviews, etc. DBLP5 is a bibliographic net-
work dataset which captures authors/venues/ keywords in-
formation of academic publications. From these datasets,
we define three clustering tasks:
• Yelp-Business. We extracted businesses located in three
states of the US: North Carolina (NC), Wisconsin (WI),
Pennsylvania (PA); and in Edinburgh (EDH) of the UK.
From the extracted information, we constructed an AHIN
that comprises 10,133 business objects (B); 73,366 user ob-
jects (U); 100 city objects (C); and 472 business sector ob-
jects (T) (such as “restaurant” and “shopping”). Each busi-
ness object is associated with several attributes including
lat-long, review count, quality star, and parking lot (whether
parking facility is provided). Links include B-T (business
and its category), U-B (customer of a business), B-C (busi-
ness located in a city). We consider the meta-path set {BCB,
BUB, BTB}. The clustering task is to cluster business ob-
jects by state. We use the state information provided in the
dataset as the ground truth.

This clustering task is a very simple one. In particular,
either attributes or links provide reliable sources to allow
perfect clustering to be obtained. All the clustering algo-
rithms, whether they are attribute-based only, link-based
only, or both, are expected to perform well.
• Yelp-Restaurant. We extracted information related to
restaurant business objects of three sub-categories: “Fast
Food”, “Sushi Bars” and “American (New) Food”. We con-
structed an AHIN of 2,614 business objects (B); 33,360 re-
view objects (R); 1,286 user objects (U) and 82 food relevant
keyword objects (K). Each restaurant has 3 categorical at-
tributes: reservation (whether reservation is required), ser-
vice (waiter service or self service) and parking; 1 numerical
attribute: review count; and 1 ordinal attribute: quality
star. Links include B-R (business receives a review), R-U
(review written by a customer), R-K (review contains a key-
word). We consider the meta-path set {BRURB, BRKRB}.
The clustering task is to cluster restaurants by category.

This clustering task is slightly more difficult than Yelp-
Business because it is not totally obvious which attributes/meta-
paths are relevant to the task. It is thus more interesting to
see how the various algorithms fair against each other, par-
ticularly in their ability to identify the most relevant features
and their appropriate weights.
• DBLP. CIKM is a conference focusing on three research
areas: Information Retrieval (IR), Data Mining (DM) and
Databases (DB). We extracted a subset of the DBLP net-

4http://www.yelp.com/academic dataset
5http://dblp.uni-trier.de
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Table 1: NMI comparison on Yelp-Business
Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNetMine PathSelClus SemiRPClus FocusCO SCHAIN-RWR SCHAIN-NL SCHAIN
5% 0.001 0.783 0.996 0.687 0.232 0.088 1.000 0.909 1.000
10% 0.016 0.764 0.996 0.697 0.312 0.084 1.000 0.920 1.000
15% 0.011 0.672 0.996 0.730 0.356 0.084 1.000 0.968 1.000
20% 0.004 0.630 0.996 0.757 0.371 0.085 1.000 0.969 1.000
25% 0.004 0.565 0.996 0.787 0.587 0.087 1.000 0.970 1.000

Table 2: NMI comparison on Yelp-Restaurant
Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNetMine PathSelClus SemiRPClus FocusCO SCHAIN-RWR SCHAIN-NL SCHAIN
5% 0.225 0.185 0.284 0.564 0.142 0.088 0.427 0.628 0.689
10% 0.258 0.188 0.332 0.610 0.134 0.087 0.429 0.635 0.707
15% 0.416 0.192 0.367 0.627 0.136 0.095 0.433 0.655 0.725
20% 0.425 0.198 0.379 0.635 0.132 0.087 0.426 0.678 0.738
25% 0.437 0.251 0.392 0.637 0.136 0.090 0.436 0.689 0.744

Table 3: NMI comparison on DBLP
Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNetMine PathSelClus SemiRPClus FocusCO SCHAIN-RWR SCHAIN-NL SCHAIN
5% 0.551 0.576 0.183 0.137 0.113 0.057 0.601 0.613 0.634
10% 0.554 0.554 0.241 0.170 0.090 0.058 0.598 0.611 0.639
15% 0.558 0.540 0.284 0.216 0.084 0.059 0.595 0.614 0.633
20% 0.560 0.531 0.314 0.251 0.080 0.061 0.599 0.615 0.631
25% 0.563 0.524 0.333 0.265 0.077 0.055 0.603 0.616 0.637

work that comprises 387 authors (A), 2044 papers (P), and
2,171 key terms (T). Each of the 387 authors has published
in CIKM and has published in at least one of the conferences
SIGIR, KDD, and VLDB. For each author object, the num-
bers of his/her publications in the four conferences serve as
the object’s attribute values (i.e., 4 numerical attributes).
Links include A-P (author publishes a paper), P-T (paper
contains a key term). We consider the meta-path set: {APA,
APAPA, APTPA}. The clustering task is to cluster au-
thors by their research areas (IR, DM, DB). We obtained
the ground truth from the dataset dblp-4area [28], which
labels each author by his/her primary research area.

This task is the most difficult among the three tasks be-
cause the research areas somewhat overlap. Cluster mem-
berships are therefore not as clear cut as in the other tasks.

5.3 Results
For each clustering task, we construct a supervision con-

straint (M, C) in the following way. We randomly pick a
certain percentage of the objects (to be clustered) as seeds.
Since we know the true labels of objects (the ground truth),
for each pair of seed objects xu, xv, we put (xu, xv) in
M if xu and xv share the same label; we put (xu, xv)
in C otherwise. We use Normalized Mutual Information
(NMI) [17] between a clustering result C and the cluster-
ing based on the true objects’ labels to measure the quality
of the clustering C. NMI ranges from 0 to 1; the higher
the NMI is, the more C resembles the true clustering. NMI
= 1 if C perfectly agrees with the true clustering. Each
reported NMI is an average of 10 runs and each run uses
a different set of seed objects to construct the supervision
constraint. In Yelp-related tasks, for numerical and ordi-
nal attributes6, we first normalize them to [0,1] and then
sim(fuj , fvj) = 1 − |fuj − fvj |; for categorical attributes,
sim(fuj , fvj) = 1, if fuj = fvj ; 0, otherwise. For DBLP,
since attributes are sparse, we first normalized them to [0,1]
and then choose sim(fuj , fvj) = fuj · fvj .
6Specially, with regard to attribute lat-long, we first com-
pute the distance between two objects by Euclidean distance
and then calculate sim() = 1

1+distance
.

5.3.1 Clustering quality
Tables 1, 2 and 3 compare the clustering qualities of the

various algorithms on the three tasks. The first column (%
seeds) of each table shows the percentage of objects taken as
seed objects to constructM and C. In each row, the NMI of
the best algorithm is highlighted. From the tables, we make
the following observations.
• As we have explained previously, Yelp-Business is a rel-
atively simple clustering task. In particular, there are at-
tributes (e.g., lat-long) and meta-paths (e.g., BCB) that
individually provide good similarity measures for the clus-
tering task. We therefore see algorithms that give very good
quality results. These include SNcuts (attribute-based), GNet-
Mine (link-based), and particularly all SCHAIN variants,
which produce perfect or almost perfect clusterings.
• As we move from Yelp-Business to Yelp-Restaurant and
then to DBLP, the clustering tasks become more challenging.
For link-based methods and the SCHAIN family, clustering
quality drops. The drop in quality for the link-based meth-
ods is very pronounced. For example, the NMI of GNetMine
(at 5% seeds) drops from 0.996 on Yelp-Business to 0.183
on DBLP. This shows that for the more difficult clustering
problems, we need both attribute and link information.
• The performance of spectral learning algorithms (SL, SNcuts)
is more unpredictable. For example, for Yelp-Business, SL
performs very poorly while SNcuts does very well. On the
other hand, SL performs better than SNcuts for Yelp-Restaurant.
As explained in [11], additive normalization can lead to very
poor performance in the presence of distant outliers. This
explains the very low NMIs of SL (which employs additive
normalization) on Yelp-Business, which happens to contain
distant outliers. SNcuts, which employs row normalization,
does not suffer from such problems.
• Our adaptation of FocusCO performs poorly in all cases of
our experiments. Even though FocusCO is a semi-supervised
clustering algorithm that utilizes both attribute and link in-
formation, it is designed for homogeneous networks. By con-
verting an AHIN to a homogeneous one, information about
object and link types is removed. This significantly weakens
the effectiveness of FocusCO.
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Figure 2: Weight learning on Yelp-Business
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Figure 3: Weight learning on Yelp-Restaurant

• SCHAIN performs better than SCHAIN-RWR. This shows
that meta-paths are more effective than random walk in de-
riving objects’ link-based similarity. This observation is con-
sistent with other works related to mining on heterogeneous
information networks, such as [25].
• SCHAIN performs better than SCHAIN-NL. This shows
that SCHAIN’s ability in learning and distinguishing the
weights of different attributes and meta-paths is important
in achieving good clustering quality.
• Finally, SCHAIN gives the best performance under all the
cases in our experiment. This shows that each one of the
elements SCHAIN makes use of, namely, attribute values,
meta-paths and weight-learning, contributes additively to
high clustering quality.

5.3.2 Weight learning
An interesting feature of SCHAIN is its ability to learn

the weights of attributes and meta-paths. In this section we
take a closer look at the effectiveness of SCHAIN’s iterative
weight-learning process. We will use the three clustering
tasks as examples for illustration. In the following discus-
sion, we assume 5% seed objects.

Figures 2(a) and (b) show the weights learned across iter-
ations for attributes and meta-paths, respectively, on Yelp-
Business. Recall that the task is to cluster business objects
by their geographical locations. From Figure 2(a), we see
that SCHAIN correctly identifies that the meta-paths BCB
(businesses that are co-located in the same city) and BUB
(businesses that serve the same customer) give the most rel-
evant relations in the locality of the businesses. It also cor-
rectly gives a 0 weight to the meta-path BTB (businesses of
the same sector), which is irrelevant to the businesses’ lo-
cations. Moreover, from Figure 2(b), we see that SCHAIN
correctly identifies lat-long to be the only relevant attribute
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(which is given a weight of 1.0), and considers other at-
tributes irrelevant (which are given 0 weights).

Figure 3 shows the weight learning for Yelp-Restaurant.
Recall that the task is to cluster restaurant objects by the
kind of food served. The figure shows that SCHAIN gives a
larger weight to the meta-path BRKRB (restaurants whose
reviews share the same keyword, such as dishes) than to the
meta-path BRURB (restaurants visited by the same cus-
tomer). This is reasonable because the same customers can
visit restaurants serving different categories of foods. In-
terestingly, SCHAIN also finds that whether a restaurant
requires reservation and provides waiter services are rele-
vant to predicting the restaurant’s category. This is because
those that do are likely higher-end restaurants, which serve
more expensive foods (such as Japanese Sushi).

Figure 4 shows the results for DBLP. Recall that the
task is to cluster authors by research area. We see that
SCHAIN finds all three meta-paths relevant to the cluster-
ing task, and they are given similar weights. Interestingly,
SCHAIN gives the attribute CIKM (the number of papers
one published in CIKM) a 0 weight. This is because for the
dataset we extracted, all authors have CIKM publications.
So the attribute has no discerning power for the task. Also,
SCHAIN gives more or less equal weights to the other 3
attributes because they are equally relevant in determining
the research areas of authors. From this discussion, we see
that SCHAIN is highly effective in learning the appropriate
weights of meta-paths and attributes.

5.3.3 Convergence analysis
From Figures 2, 3 and 4, we see that the weights reach

their optimal values in two to three iterations. Figures 5(a)
and (b) further show the convergence of the objective func-
tion J and the NMI of the resulting clusterings, respectively.
Again, for the cases we studied, SCHAIN converges quickly
and is therefore practically efficient.

6. CONCLUSIONS
In this paper we studied semi-supervised clustering in at-

tributed heterogeneous information networks. We put for-
ward a novel algorithm SCHAIN, which integrates object
attributes and meta-paths with a weighting scheme in for-
mulating a similarity matrix for object clustering. SCHAIN
takes a supervision constraint in the form of a must-link
set and a cannot-link set, and through an iterative update
process, optimizes the weighting scheme. We conducted ex-
tensive experiments to show the effectiveness of SCHAIN
and illustrated its ability in assigning the most appropriate
weights to attributes and meta-paths.
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