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a b s t r a c t

A new Image Super-resolution Reconstruction (ISR) method combined a modified K-means based Sin-
gular Value Decomposition (M_K-SVD) model and Regularized Adaptive Matching Pursuit (RAMP)
algorithm is proposed in this paper. In the M_K-SVD model, the maximum sparsity of sparse coefficients
is considered. In the condition of the unknown sparsity of the original signals, RAMP algorithm can
choose automatically and adaptively the candidate set, and utilize the regularization process to imple-
ment the final support set so as to finish accurately the task of signal reconstruction. Combined the
advantages of M_K-SVD and RAMP algorithm, for LR images and High Resolution (HR) images, the LR and
HR dictionaries are trained. And then, utilized the optimized LR sparse coefficient vectors and the HR
dictionary, the HR image patches can be estimated. And considered the original locations of HR image
patches to be restored, the LR images can be reconstructed. However, LR images contain much unknown
noise, so, before training dictionaries, the LR images are first preprocessed by M_K-SVD model. In test,
human-made LR images (i.e. natural images' degraded versions) and real LR images (i.e. millimeter wave
images, MMW) are respectively used to testify our method proposed. Further, compared our ISR method
with those of the basic K-SVD, Regularized Orthogonal Matching Pursuit (ROMP), RAMP, and Sparsity
Adaptive Matching Pursuit (SAMP) and so on, experimental results testified the ISR validity of our
method proposed. Meanwhile, the Signal Noise Ratio (SNR) criterion is used to measure restored human-
made LR images, and the Relative Signal Noise Ratio (RSNR) criterion is used to test the quality of MMW
image restored. Experimental results prove that our method is indeed efficient in the research field of ISR
reconstruction.

& 2015 Published by Elsevier B.V.
1. Introduction

The spatial resolution of an image is an important measure-
ment criterion of the image's equality. In generally, an image's
spatial resolution means the minimized size can be distinguished
clearly, which can be measured commonly using the spatial pixel
density (i.e. pixels per inch, ppi) [1–3]. The higher the image
resolution is, the larger the spatial pixel density is, and the smaller
the reflective detail size in an image is, as well as the richer the
image's detail is. Therefore, high resolution (HR) images are very
useful in image processing field today [6–8]. However, in the
practical process of imaging, the imaging result is degraded by
selected as one of the best
omputing (ICIC 2014), 2014
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.cn (Z. Sun).
some factors, such as the imaging pattern, the nature weather
condition, and the hardware devices et al, so, the observed image
is in fact a Low Resolution (LR) one. To obtain the HR images from
LR ones, the research of Image Super-resolution Reconstruction
(denoted by ISR) has been an important subfield in image pro-
cessing field at present [6–10]. The goal of ISR is to reconstruct the
High Resolution (HR) image from a single or a series of low reso-
lution images [11–17]. Currently, this ISR technology also has been
used widely in image reconstruction and image compression, high
definition digital TV, remote-sensing and radar images, medical
diagnostics and so on [5–8]. To this day, many ISR methods have
been proposed [1–8], and they are summarized mainly as fre-
quency domain method and spatial domain method. But, the for-
mer's denoising capability is limited in application. Moreover, this
method can not fuse the prior information of images, and it can
not be constrained by regularized rules. Therefore, the latter's
research work is mainly done now.

The published typical spatial domain based ISR methods are
divided into mainly three classes, i.e., the interpolation based
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method, the reconstruction based method and the learning based
method [2–8]. The first class methods are very simple. However,
this class of methods can not introduce extra high frequency
information, and the supposed prior model is usually unstable, so
the interpolation efficiency is commonly bad [3]. The second
methods first assume that LR images are obtained by making HR
images geometry deformed, fuzzed and down-sampled, further,
they utilize the fusion of multiple LR images to invert HR images.
However, in this class of methods, the motion estimation and
matching among frame images are very critical. But, the precise
image matching relation is very difficult to obtain, moreover, with
the increasing of the resolution multiple (commonly exceed
4 times), the matching relation with minor error will cause great
degradation of images restored [18,19], thus, the matching relation
is invalid. The last methods are learning based ones [15–18], which
can obtain much more high-frequency information by training
samples to learn the relation between LR image patches and HR
image patches. At present, learning based ISR methods are thought
as the hot research topics. Currently, typical learning based image
ISR methods generally are summarized as samples based ones
[19,20], Local Linear Embedding based Manifold Learning (LLE-ML)
methods [19], Neighbor Embedding (NE) methods [21,22], K-
Nearest Neighbor (K-NN) methods [21], Kernel ridge regression
methods [23], wavelet coefficient dictionary methods [22], and
sparse representation based methods [24,25] and so on. Among
these typical ones, sparse representation based methods are the
most popular and many ones also has been developed in restoring
LR image s [24–29]. Sparse representation based theories can well
solve many inverse problems existing in the fields of images. At
present, among published sparse representation based algorithms,
the K-means based Singular Value Decomposition (K-SVD) is such
a typical one [30–35], and it has been used successfully in
restoring, denoising and inpainting images. This method algorithm
is an iterative method that alternates between sparse coding of the
examples based on the current dictionary, and a process of
updating the dictionary atoms to better fit the data [30]. The
update of the dictionary column is combined with an update of
the sparse representations, and thereby accelerating convergence
can be done [36]. This K-SVD algorithm is very flexible and can
work with any pursuit method (e.g. basis pursuit or matching
pursuit).

Currently, in the common K-SVD algorithm, the over-complete
dictionary is trained by using Orthogonal Matching Pursuit (OMP),
Regularized OMP (ROMP) [14–16], Stage-wise OMP (StOMP) [15–16],
Subspace Pursuit (SP), Compressive Sampling Matching Pursuit
(CoSaMP) [6], Sparsity Adaptive Matching Pursuit (SAMP) [6,17,18],
Regularized Adaptive Matching Pursuit (RAMP), et al., these algo-
rithms are summarized as greedy matching pursuit ones [18,42–45].
However, algorithms of OMP, ROMP, StOMP and SP require in
advance the sparsity of the original data to be known [18], at the
same time, they also lack provable reconstruction quality [16,37–42].
The SAMP is effective in the case that the sparsity is unknown [6].
However, the SAMP method could not remove inappropriate atoms
out once they were chosen [18]. The RAMP algorithm was proposed
by Liu et al. [5] by combining the advantages of ROMP and SAMP.
This method can approach the sparsity adaptively by accumulating a
fixed unit of step size and adding the method of regularization to
select the atoms again [5,17–18], and the selection of atoms in this
method becomes more flexible.

In this paper, considering the advances of RAMP and K-SVD as
well as the maximum sparsity of image feature coefficients, a
modified K-SVD (M_K-SVD) denoising model is proposed and
further used to implement the ISR task. This M_K-SVD model
behaves better self-adaptively denoising property and almost
independent of sparse priors. Here, LR images are first
pre-processed by M_K-SVD model based on RAMP optimization
process. Further, utilized the idea of ISR technique and LR and HR
dictionaries, trained by M_K-SVD model based on RAMP, the ISR
task can be implemented well [35–52]. At the same time, in order
to reduce the iteration time, LR dictionary and HR dictionary are
also classed by using K-mean method. Then, using LR coefficients
and HR dictionary learned, the HR image patches can be restored
efficiently. In test, a simulation LR image and a real LR image called
Millimeter Wave (MMW) image are respectively used to testify our
image ISR method. Further, the validity of our method is also
proved that it has better reconstruction efficiency than most of the
available greedy algorithms, such as the basic K-SVD, ROMP, RAMP,
and SAMP.

The remainder of this paper is organized as follows. Section 2
will restate relative greedy algorithms, such as ROMP, SAMP, RAMP
and so on. Section 3 gives the description of basic K-SVD algorithm
and the M_K-SVD denoising model respectively. Finally, some
simulation experiments are discussed in Section 4 and some
conclusions are obtained in Section 5.
2. Relative greedy algorithms

At present, the popular class of sparse recovery algorithms is
based on the idea of iterative greedy pursuit, such as OMP, ROMP,
StOMP, CoSaMP above mentioned. It is noted that the RAMP
algorithm is the combined one of ROMP and SAMP algorithms,
therefore, the ROMP, SAMP and RAMP algorithm are mainly
discussed.

2.1. ROMP algorithm

ROMP is an iterative algorithm proposed by Needell et al. in
2009 [34–36], which is a variant of OMP. Defined a measurement
matrix ΦARm�n with the Restricted Isometry Constant (RIC) δ2T
(δ2T A 0;CT= 2CT þ1ð Þ� �

), the measure vectorxARm, and the support
T of signalv, the ROMP algorithm is generalized as follows
[17,18,34–36]:

Step 1. Initializ: Let the initial residual vector rt ¼ y, the index
set It ¼φ, and start the iteration counter with t ¼ 1.

Step 2. Identify: Choose a set J of Tj j biggest absolute values of
the observed vector u¼Φ � rt .

Step 3. Regularize: Divide the set J into subsets Jk which satisfies
the formula of u ið Þ

�� ��r2 u jð Þ
�� �� for all i; jA Jk, and choose the subset J0

with the maximum energy of ‖u J0‖j .
Step 4. Update: Set It ¼ It�1 [ J0. Calculate the new approx-

imation by solving the least square equation

vt ¼ argmin
c

‖y�ΦItc‖2 ð1Þ

and update the residual: rt ¼ x�ΦItvt .

Step 5. Ending: Check the stopping criterion, if not, then keep
increasing t ¼ tþ1. When ROMP algorithm halts, the residual
vector rt is calculated by the form of ‖rt‖2oK1;T � η, where η is a
minor positive threshold, and K1;T is defined by the following
formula:

K1;T ¼
CT 1�δ2T
� �

CT 1�δ2T
� ��δ2T

CT ¼
1

5:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log Tj j

p
(

ð2Þ

Then, the estimated v̂ of the ROMP algorithm will obey the rule
of ‖v� v̂‖2K2;T � η, where K2;T ¼

ffiffiffi
2

p
K1;T þ1
� �

.
It is well known that the main difference between OMP and

ROMP is the identification and regularization steps. In stead of
choosing only one biggest correlation between the residual and
columns of the matrix at each iteration as in OMP, ROMP choose a
set of J0

�� �� coefficients from J
�� �� biggest absolute coefficients of



Fig. 1. The original images and the corresponding degraded images. (a) The original Lena image; (b) and (c) artificial LR images, i.e., noise versions of Lena image with
different noise level. (d) The imaging target of MMW image; (e) and (f) Real LR images, i.e., MMW images.

L. Shang et al. / Neurocomputing 188 (2016) 120–130122
Φ � rt . By this way, ROMP can recover signals perfectly without
going through all Tj j iterations. As a result, ROMP performs much
faster than OMP [36].

2.2. SAMP algorithm

ROMP can yield exact sparse recovery in the noiseless case, but
it needs in advance to know the prior sparsity level K , so it is
limited in practice. To avoid this defect, SAMP was proposed by Do
Thong et al. [15]. Let x denote the measure vector, y denote the
sampled vector, Φ be the sampling matrix, and s be the size of the
finalist in the first stage of SAMP, referring to the document [17],
the SAMP algorithm is described briefly as follows:

Step 1. Let the initial residue vector r0 ¼ y, the support set
F0 ¼Φ, the iteration index t ¼ 1, the stage index j¼ 1, and the
initial step size Γ¼ s.
Step 2. Find the candidate set Sk by choosing the Γ largest atoms
in the absolute values of rk�1;Φ

� �
, i.e., Sk ¼Max Φ � rk�1

�� ��; L̂� 	
is

the preliminary test.
Step 3. Get the candidate set Ck by Ck ¼ Fk�1 [ Sk.
Step 4. Compute x̂Ck

¼Φ†
Ck
Uy and select the support set Fby

choosing the Γ largest atoms with the value of x̂Ck
.

Step 5. Compute residue r by the formula of r¼ y�ΦFΦ
†
Fy

where ΦF is the sampling matrix corresponding the final test set

F . Here F is calculated by F ¼Max Φ†
Ck
y

��� ���; L̂� 	
, where Φ†

Ck
is the

sampling matrix corresponding to the candidate index Ck.

Step 6. If ‖r‖2Z‖rk�1‖2, going to the stage switching. And
updating the stage index j¼ jþ1, and the size of finalist L̂¼ j� s.
Else, updating the finalist Fk ¼ F and the residue rk ¼ r, and then
beginning the next loop t ¼ tþ1. And go to Step 1 to continue a
new stage iteration process. Output the prediction of non-zero
coefficients, which is calculated by x̂¼Φ†

Fy.
Step 7. If the halting condition ‖r‖2oε is true (ε is the thresh-
old), then the iteration is end, else if beginning the steps from
the Step 6. And it is noted that ε¼ 0 for noiseless measurements
and ε can be chosen as the noise energy for noisy
measurements.

The SAMP algorithm can reconstruct the signal by accumulat-
ing a fixed unit to step size to approach the sparsity adaptively
when the sparsity is unknown. Another is that atoms are chose
accurately by backtracking method. However, SAMP algorithm has
also some defects [48–52]. For example, since the increase unit of
step size is fixed, the length of step size Γ might become larger
than the magnitude of sparsity if the increase unit s is too large.
Besides, there are repeated computations for atom selections
during the adjacent iteration stages [17,18,53–55]. It is inevitable
because there is the backtracking idea of subspace pursuit.

2.3. RAMP algorithm

RAMP algorithm is a new greedy algorithm, which combines
the advantages of ROMP and SAMP, and ensures both the whole
optimization and the convergent speed [3,5,16]. Let ε1 and ε2
denote respectively the iteration times and the threshold of stage
switch. x and y are still the measurement vector and the obser-
vation vector respectively. Then, referring to ROMP and SAMP
algorithm, RAMP algorithm used in this paper is generalized in
main as follows:



Fig. 2. Lena image's HR and LR dictionaries with different numbers of atoms of M_K-SVD model. The first row: HR dictionaries; The second row: LR dictionaries. (a) 144
atoms (DH) (b) 256 atoms (DH) (c) 625atoms (DH) (d) 144 atoms (DL) (e) 256 atoms (DL) (f) 625 atoms (DL).

Fig. 3. Lena image's HR and LR dictionaries with different dimension of atoms of basic K-SVD model. The first row: HR dictionaries; the second row: LR dictionaries. (a) 144
atoms (DH) (b) 256 atoms (DH) (c) 625atoms (DH) (d) 144 atoms (DL) (e) 256 atoms (DL) (f) 625 atoms (DL).
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Fig. 4. MMW Dictionaries with different numbers of atoms obtained by different K-SVD models. The first row: dictionaries of the M_K-SVD model. The second row:
dictionaries of the basic K-SVD model. (a) 144 atoms (b) 256 atom (c) 625 atoms.
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Step 1. Initialized setting. Let the initial residue r0 ¼ y, the step
size ηa0, the stage index j¼ 1, the iteration time t ¼ 1, and the
index set Ja∅, Λ¼∅.
Step 2. If the residue ‖r‖2rε1, stopping the iteration. The
reconstruction can be implemented by atoms trained. Else, go to
Step 3.
Step 3. Using Eq. (3) to calculate relative coefficient set u, and
the L biggest indexes in u are saved in J.

u¼ uj

 ��uj ¼ r;Φj

� ��� ��; j¼ 1;2;⋯;Ng ð3Þ

Step 4. Regularized relative coefficients of atoms responding
to the index set J, and saved the regularized results in set J0. In
set J0, all coefficients satisfy u ið Þ

�� ��r2 u jð Þ
�� �� (i; jA J0), and choose

J0 with the maximal energy ‖u J0‖2
�� .

Step 5. Updating the support set φΛ, where Λ¼Λ [ J0;

Step 6. Using Eq. (4) to obtain x̂, and updating the residual using
Eq. (5):

u¼ x̂ ¼ argmin
iARΛ

ky�φΛx 2k ð4Þ

rnew ¼ y�φΛ_ x ð5Þ

Step 7. If ‖rnew�r‖2rε2, let j¼ jþ1, η¼ η � j. Then go to Step 3.
Else, let r¼ rnew , t ¼ tþ1, go to Step 2.

According to the above steps, it is clear that by the setting
threshold ε1 and ε2, RAMP algorithm can define self-adaptively
whether to adjust the current step size so as to define whether the
next stage or next iteration is implemented or not [5–9].
3. The modified K-SVD denoising model

3.1. K-SVD algorithm description

K-SVD algorithm is flexible and works in conjunction with any
pursuit algorithm [32–34], and it is designed to be a truly direct
generalization of the K-Means [33–38]. Currently, it is also taken
for a typical sparse representation method based on dictionary
learning. In this case, the small amount of signal values can be
reconstructed accurately when the signal is sparse. Set D to be the
dictionary matrix with K prototype signal atoms for columns, Yto
be the sparse linear combination of these atoms, and S is the
coefficients of sparse representations, the object function of K-SVD
is defined as

min
D;S

‖Y�DS‖2F

 � ð6Þ

subject to 8 i, ‖si‖0rT0. In minimize the expression in Eq. (6)
iteratively, D is fixed to find the best coefficient matrix S that can
be found. Considered column representation, this cost function
can be rewritten as

‖Y�DS‖2F ¼
XN
i ¼ 1

‖yi�Dsi‖22 ð7Þ

subject to 8 i, ‖si‖0rT0. This problem is adequately addressed
by the pursuit algorithms [33]. In Eq. (7), let dk denote the kth
column of D, siT be the ith row of sparse coefficients corresponding
to dk (i.e. si is the ith column in S). Then Eq. (7) is rewritten as

‖X�DS‖22 ¼ ‖Y�
XK
j ¼ 1

djsiT‖
2
F ¼ ‖ X�

X
jak

djsiT

0
@

1
A



Fig. 5. Reconstructed results of Lena LR images with different noise level by different algorithms. (a) 0.01 noise varance (b) 0.8 noise varance (c) 1.5 noise varance (d) 0.01
noise varance (e) 0.8 noise varance (f) 1.5 noise varance (h) 0.01 noise varance (i)0.8 noise varance (j) 1.5 noise varance (k) 0.01 noise varance (l) 0.8 noise varance (m) 1.5
noise varance.
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Fig. 6. Dictionary with 256 atoms and denoised results of MMW image 1 by using different algorithms. The first row: reconstructed of MMW image 1 (see Fig. 1(e)). The
second row: reconstructed of MMW image 2 (see Fig. 1(f)).
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�dks
k
T‖

2
F ¼ ‖Ek�dks

k
T‖

2
F ð8Þ

where the matrix Ek stands for the error for all the N examples
when the kth atom is removed [33]. For Eq. (7), it is not directly
used SVD algorithm to update dk. To solve this problem, ωi is
defined as the group of indices pointing to examples yi


 �
that use

the atom dk, thus, ωk ¼ i 1r irK; skT ið Þa0
�� �


. Define Ωk as a
matrix with the size of N � ωij j, with ones on the ωk ið Þ; ið Þ�th
entries, and zeros elsewhere. Let skR ¼ skTΩk and YR

k ¼ YΩk with the
size of n� ωk

�� ��, thus, the error ERk ¼ EkΩk can be obtained. So,
Eq. (8) is rewritten as

EkΩk�dks
k
TΩk

2
2 ¼ ERk�dks

k
R

2
2

����������� ð9Þ

For Eq. (9), it can be done directly via SVD algorithm. Taking the
restricted matrixERk , SVD decomposes it to ERk ¼UΔVT . Here, the
vector dk is defined as the first column of matrix U, and skR is
defined as the first column of Vmultiplied by Δ 1;1ð Þ. While K-
Means applies K computations of means to update the codebook,
the K-SVD obtains the updated dictionary by K-SVD computations,
each determining one column.

3.2. M_K-SVD denoising model

Especially, for images with large noise variance or low-resolu-
tion, K-SVD has better denoising robustness. Assumed that xi an
image patch (column vector), and consider a noisy version of it,
yi ¼ xiþσ, contaminated by an additive zero-mean white Gaussian
noise with standard deviation σ. The maximum a posteriori (MAP)
estimator for denoising this image patch is built by solving the
following form

ŝ ¼ arg min
s

s 0kk ð10Þ

subject to ŝi ¼ ‖Dsi�yi‖22rTr , where Tr40 is a small threshold,
dictated by σ and the number of atoms K . Thus, the denoised
image patch is thus given by xi ¼Dŝi. In practice, the optimization
task of ŝi denoising model is changed to be

ŝi ¼ arg min
s

yi�Dsi 2
2þμ si 0kk
���� ð11Þ

where Eq. (11) is the denoising model described in document [15],
namely the basic KSVD denoising model used in this paper. Here,
to solve Eq. (11), the OMP algorithm is used because of its sim-
plicity. However, the maximum sparsity can not be ensured in
Eq. (10). To solve this question, a M_K-SVD denoising model is
proposed by us, which is described as in the following formula
[31]:

J D̂; Ŝ
� 	

¼ argmin
sij ;D

λ‖Y�X‖22þ
X
i;j

μij‖Sij‖0

2
4

þγ
X
i;j

DT
ijDij

� 	
þ
X
i;j

‖DSij�RijX‖22

3
5 ð12Þ



Table 1
SNR values of restored images obtained by different algorithms (LR images of Lena).

Algorithms

Standard
deviations

M_K-SVD Basic
K-SVD

RAMP SAMP ROMP LR images
(Lena)

0.05 11.898 5.136 9.626 5.728 6.817 0.516
0.1 11.898 5.132 9.622 5.725 6.813 0.515
0.5 9.532 4.532 7.072 4.275 5.382 0.862
1.0 7.271 3.281 5.857 2.621 3.627 0.980
1.5 6.826 3.012 4.718 1.136 2.428 0.507
2.0 3.468 1.192 1.503 0.837 1.263 o0
3.0 1.065 0.826 0.878 0.062 o0 o0
4.0 0.827 0.803 o0 o0 o0 o0
5.0 0.827 0.803 o0 o0 o0 o0

Table 2
RSNR values of different algorithms of restored MMW images.

Algorithms MMW image 1 MMW image 2
Restored
results

MMW
image

Restored
results

MMW
image

M_K-SVD 17.36 12.37 17.42 12.52
Basic K-SVD 13.23 13.36
RAMP 15.68 15.84
SAMP 14.52 14.67
ROMP 14.61 14.73
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In Eq. (12), a larger unknown image patch set X, namely the
reconstructed image patches, and the measured image set Y ,
namely the LR image patches, are also considered. The first term is
the log-likelihood global force that demands the proximity
between the measured image Y and its denoised version X. The
second and the third terms are parts of the image priors that
makes sure that, in the constructed image patch set X, each patch
Xij with the size p� p pixels in every location has a sparse
representation with bounded error, where Xij is calculated by
using the Equation of Xij ¼ RijX. Matrix R is a p� N matrix that
extracts the ði; jÞ block from an image with the size N � N pixels.
For an N � N image set X, the summation over i; j includes
N�pþ1ð Þ2items, considering all image patches with the size of p
�p pixels in X overlaps. The coefficients μij must be location
dependent so as to comply with a set of constraints of the formula
of ‖DSij�Xij‖22rTr .

3.3. Denoising LR image by M_K-SVD model

In training the dictionary, each LR image is sampled randomly
image patches of size p� p 5000 times, and each image patch is
converted into a column, thus, the image patch set Y ¼ yi


 �M
i ¼ 1 is

obtained, where yi is the ith overlap image patch, and M is the
number of overlap image patches, which can be calculated by
N�pþ1ð Þ2. For the set Y , again sampling randomly M0 M0oM

� �
times to obtain training set Y 0 ¼ y'i

n oM0

i ¼ 1
, where y'i is the ith

training sample. Thus, the training sample set Y 0can be obtained,
and using the following steps, Eq. (11) can be minimized.

Step 1. Fixed dictionary D and training sparse coefficient matrix
Ŝ. As to the objective function 8 i; Ŝ i ¼ arg min

Si
DSi�Y 0

i
2
2þ
����

μi‖Si‖0þγ
P
i;j

DT
ijDij

� 	
, and using RAMP algorithm to implement

sparse coding and obtain sparse coefficients Ŝ¼ Ŝi
n o

.

Step 2. Let S¼ Ŝ, and update dictionary. Define ωk ¼ i

 ��1r

irK; Sið ÞkRa0gas the group of indices pointing to examples Yif g
that use the atom vector dk, i.e., those Sið ÞkR is nonzero. Compute
the error matrix

_
Ek by the form of

_
Ek ¼ Y�P

iak
di Sið ÞkR. Restrict

_
Ek by

choosing only the columns corresponding to ωk and
_
E
k
R obtained,

and then apply SVD to decompose _ Ek
R ¼ UΔVT . Finally, update

vector Sið ÞkR as the first column of V multiplied by Δ 1;1ð Þ. If _Ek

satisfy the error condition, then the training loop stops.
Step 3. For dictionary D̂ obtained in Step 2, utilize RAMP algo-

rithm described in Subsection 2.3 to learn all overlap image patch
set Y , and obtain estimated sparse coefficient matrix Ŝ.

Step 4. Fixed dictionary matrix D̂ and sparse coefficient matrix
Ŝ, and then update matrix X by the formula of X̂ ¼ arg min

Xij

λ‖Y�

X‖22þ
P
i;j
‖D̂Ŝij�RijX 2

2

�� .
Step 5. Compute the estimation Ŷ of Y by Ŷ ¼ D̂Ŝ. Then the

denoised image X̂ can be obtained by X̂ ¼ λIþP
i;j
RT
ijRij

 !�1

λD̂ŜþP
i;j
RT
ijD̂Ŝij

 !
, where I is unit matrix.

Using above described steps of K-SVD denoising model, a
degraded image can be effectively and self-adaptively denoised.
Based on this idea, utilizing the self-adaptively denoising advan-
tage of K-SVD model, LR images are preprocessed by it before
training LR dictionary.
4. Experimental results and analysis

4.1. Learning HR and LR dictionaries

In test, several degenerated versions of Lena image and real
MMW images were used. The original Lena image with 128�128
pixels and imaging object of MMW imaging systemwere shown in
Fig. 1(a) and (d). First, for Lena image, the motion blur operator
was used, namely, PSF function was simulated. Next, for the
blurred results of PSF, the down sampling method and Gaussian
mask method were utilized. Further, to get degraded greatly
images, the Gaussian blur method was used, thus, artificial LR
images were obtained. Here, in implementing PSF function, the
filter type was selected as Gaussian low-pass filter, and this filter
size was chosen as 7�7 pixels. In down sampling processing, the
linear type was chosen, and the extracting pixel scalar was set to
be 5. Otherwise, different standard deviations of Gaussian kernel
were considered in Gaussian blur processing.

By the degraded processing above-mentationed, some degen-
erated versions of Lena image could be obtained, for example, two
degraded Lena images are shown in Fig. 1(b) and (c). The real LR
images used in this paper were MMW images, which were gen-
erated by the MMW imaging system developed by our research
group cooperated with MMW Lab. of Southeast University. How-
ever, the size of a MMW image obtained by our MMW imaging
system was 41�41 pixels, and such MMW image in fact is very
small in test, so, in application, in order to obtain better recon-
struction results, the MMW image's size was usually expanded to
128�128 pixels or larger size. In test, two MMW images are used
as shown in Fig. 1(e) and (f). From Fig. 1, clearly, LR images'
equality is much worse than HR images, many image details are
lost. Therefore, it is necessary to do the research task of super-
resolution reconstruction of LR images.

In implementing the task of image reconstruction, four Lena LR
images and MMW images were used as input images. The number
of atoms is selected as 256. And first, the M_K-SVD denoising
model was used to pre-process LR images in advance. And then,
the denoised images were thought to be LR images in our test. To
reduce computation time, the idea of sampling random image
patches was considered. Here, each HR and LR image were both
sampled 5000 times with 8�8 image patches with overlap of



L. Shang et al. / Neurocomputing 188 (2016) 120–130128
three pixels between adjacent patches, thus the LR and HR image
patch set with 64-dimension could be obtained and were denoted
by XL and XH respectively. For Lena images, the DH and DL dic-
tionary with different atom numbers obtained by the M_K-SVD
algorithm based on RAMP optimization rule are shown in
Fig. 2(a)–(c) and (d)–(f) in order. For comparison, in the same
condition, those dictionaries obtained by the basic K-SVD model
are learned and shown in Fig. 3 in order. For MMW images, the
clear imaging object is unknown in fact, so, HR dictionaries can be
obtained and only LR dictionaries with different dimensions of
MMW images were discussed. The corresponding DL dictionaries
with 144, 256 and 625 atoms, obtained by the M_K-SVD model
and the basic K-SVD model, are respectively shown in Fig. 4.
Compared dictionaries of MMW images and those of Lena's LR
images, it is clear to see that because of the much worse resolution
of MMW images, the former behave more ambiguous orientation.

From Figs. 2 and 3, it is clear to see that, no matter what kind of
K-SVD model, in different numbers of atoms, DH dictionaries all
have distinct orientation, locality and spatiality as those obtained
in documents [39,,41]. And regardless the number of atoms,
compared DL dictionaries of the M_K-SVD model and those of the
basic model, it is also easy to see that the former behaves more
certain orientation than the latter. For LR dictionaries of MMW
images, the same comparison result can also be obtained in
despite of unknown noise contained in LR dictionaries. Otherwise,
in test, it also noted that the training time of M_K-SVD model
based on RAMP algorithm is also less than that of the basic K-SVD
model based on OMP optimization.

Here, it should be noted that because of much unknown noised
existed in original LR images, especially for real LR images, such as
MMW images, the quality of LR images are greatly worse. To get
better LR reconstruction effect, before training LR dictionaries,
they were preprocessed in advance by the M_K-SVD denoising
model. Then, the denoised LR images are confirmed to be LR image
data used to learn LR dictionaries. And then, considered the idea of
image ISR described in document [8], the image ISR task can be
implemented by using the trained HR dictionary DH and the
optimal sparse coefficient vector Ŝ

�
of LR images learned by our

method. And the detail of reconstruction will be discussed in
Subsection 4.2.

4.2. Image reconstruction results

As described in published documents of ISR researches [29–33],
utilized the learned HR dictionary and the optimized feature
coefficient vector of LR images, the HR image patches can be
reconstructed by the estimation form of X̂ ¼DHŜ

�
. And then,

considered each image patch’s original position in the clear HR
image, these image patches is again put into the HR image X0. At
the same time, for the lapped pixels, the mean pixel value is used
as the restored pixel value. In test, the ISR work of artificial LR
images, namely Lena LR images, was first discussed so as to testify
our method's effect. In the stages of degrading Lena images
described in Subsection 4.1, in Gaussian blur processing, different
standard deviations were considered, however, limited by the
length of the paper, the ISR results of our method, corresponding
to Lena LR images with 0.1 and 0.5 and 1.0 standard deviations, are
shown in Fig. 5(a)–(c). Meanwhile, for comparison, in the same
experimental condition, the ISR results of Lena LR images,
obtained by algorithms of basic K-SVD, ROMP, RAMP, and SAMP
are also given in Fig. 5 in order. And the ISR results of MMW
images, obtained by the above-mentioned algorithms, are shown
in Fig. 6.

From Fig. 5, clearly, no matter what kind of algorithms, it can be
seen that the smaller the standard deviations of Gaussian kernel
(i.e. image deviations) is, and the better the visual effect of cor-
responding restored images of Lena is. When the noise level
exceeds 2, the structure and contour of restored images obtained
by our method are better than other methods discussed here. In a
way, this also testifies that our method behaves certain robust to
noise. But, when noise level is set to be 5, the restored effect of all
ISR algorithms are all worse. However, these experiment results in
some ways prove the validity and feasibility in image reconstruc-
tion of our method.

Meanwhile, according to Fig. 5, it is difficult to distinguish each
algorithm’s efficiency only in terms of the visual effect. Therefore,
to further testify the super-resolution efficiency of our method
proposed here, the equality of reconstructed LR images, obtained
by different algorithms above-mentioned, were evaluated by the
criterion of Signal Noise Ratio (SNR). However, it is noted that the
original imaging object of the MMW image is unknown and there
is much noise existed in the MMW image, so the quality of
restored MMW image can not be measured by SNR criterion. Here,
the Relative SNR (RSNR) criterion is used to estimate the MMW
image. And the SNR and RSNR values are calculated by using the
following formulas:

SNR¼ 10log 10

PN

i ¼ 1

PM

j ¼ 1
I2ijPN

i ¼ 1

PM

j ¼ 1
ðIij � ÎijÞ2

RSNR¼ 1ffiffiffiffiffiffi
NM

p
XN
i ¼ 1

XM
j ¼ 1

Î i; jð Þ
2
4

3
5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i ¼ 1
PM

j ¼ 1 Î i; jð Þ� ~Iði; jÞ
h i2r,

8>>>>><
>>>>>:

ð13Þ

where I i; jð Þ denotes the input image with the size of N �M, Î i; jð Þ
denotes the reconstructed image and ~I i; jð Þ denotes the mean of
I i; jð Þ. Î i; jð Þ and ~I i; jð Þ behave the same size as I i; jð Þ.

Utilizing Eq. (13), the SNR values of restored images of Lena with
different noise level are calculated and listed in Table 1, and the values
of RSNR two MMW images are listed in Table 2. From Table 1, it is
clear to see that, for each algorithm, the smaller the noise level is, and
the larger the SNR is. At the same time, with the noise level increasing,
no matter what kind of algorithms, the SNR values decrease. In the
same noise level condition, it is also easy to see that SNR values of our
method proposed are the largest, ones of RAMP algorithm are the
second, and ones of the basic K-SVD are the smallest. Therefore,
according to the visual effect shown in Fig. 5 and SNR values listed in
Table 1, it can be concluded that our M_K-SVD method is efficient and
feasible in processing the ISR task of LR images.

And From Table 2, for MMW images, in terms of RSNR values
obtained by different algorithms, the same conclusions as artificial
LR images can be obtained, which further proves that the M_K-
SVD model can assuredly restore real LR images and is applicable
in practice. Moreover, compared restored MMW images shown in
Fig. 6 with original MMW images shown in Fig. 2, it can be seen
that the noise in background has been reduced greatly and the
contour of each MMW image restored is clearer and easier to
recognition. So, based on test results, it can be concluded that in
the image ISR task of LR images, our method proposed outper-
forms truly other algorithms discussed in this paper.
5. Conclusions

A novel image super-resolution reconstruction method com-
bining a modified K-SVD (denoted by M_K-SVD) model and the
RAMP algorithm is proposed in this paper. To improve the quality
of reconstructed images, before training LR dictionaries, much
unknown noise existed in LR images are first preprocessed by
M_K-SVD model. Then, the HR and LR dictionary pairs are learned
respectively by using M_K-SVD model based on the RAMP
optimized process. After obtaining LR and HR dictionaries, utilizing
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usual ISR idea, the ISR task can be implemented well by using HR
dictionary and the sparse coefficients of LR images. In test, artifi-
cial LR images (i.e., degraded images of Lena with different noise
variances) and real LR images (i.e. MMW images) are both used.
The restored images of Lena and MMW are measured respectively
by the SNR criterion and RSNR criterion. Experimental results
shown that our ISR method proposed here can restore LR images
efficiently Further, compared with ISR methods of the basic K-SVD,
ROMP, RAMP and SAMP, experimental results also show that our
method behaves in indeed the best effect in the image ISR task.
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